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Abstract: This work presents the use of a move blocking algorithm in the Model Predictive
Control (MPC) of a helicopter with three degrees of freedom (3DoF). Considerations about the
feasibility of the MPC solutions and robustness of the control law are developed to propose
an internal feedback gain array using Linear Matrix Inequalities (LMIs). The objective of this
structure is to grant adjustment flexibility of the plant dynamics through a D-stable region and
to reduce the computational complexity of the problem.
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1. INTRODUCTION

Model-based Predictive Control (MPC) computes control
actions by the iterative solution of an optimization prob-
lem with a finite horizon using the current states of the
system as the initial condition (Mayne et al., 2000). A
control sequence is calculated at each sampling period, and
its first elements are routed as commands to the respective
actuator. Afterward, the feedback of the system output
or state occurs, and the optimization problem is solved
recursively from this condition. This policy is called Re-
ceding Horizon Control (RHC) (Maciejowski, 2002). The
optimization object in question is a cost function that gives
performance guidelines to the desired response of the sys-
tem (Rossiter, 2003). Restrictions on the states and control
signals can be considered, usually leading to numerical
optimization problems. The performance and systematic
modeling of this strategy are attractive for its application
in the control of systems with multiple inputs and outputs,
subjected to dynamically coupled states, constraints on the
excursion of responses, and external disturbances.

The MPC efficiency is directly related to the accuracy level
formulated to model the plant and the size of the predic-
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tion horizon adopted. However, these characteristics must
be weighed against the computational capacity installed
to accomplish the iterative feasibility of the solutions in
real-time. Equivalently, the numerical complexity of this
problem has the number of optimization variables as a
dominant factor, given by the product of the m inputs of
the system by the M control horizon steps. One way to
handle this issue is to adopt a move blocking algorithm,
which holds the input value or its derivatives constant for
several sampling periods (Cagienard et al., 2007).

In the present work, predictive control with a move block-
ing strategy, as detailed in Cagienard et al. (2007), is
explored. The object of study is the linear model of an
educational 3DoF helicopter from manufacturer Quanser
Consulting, which is installed at the Computer Control
Laboratory of the Electronic Engineering Division of the
Instituto Tecnológico de Aeronáutica. The control archi-
tecture proposed by Cagienard et al. (2007) is based on
an algorithm to generate move blocking matrices that
shift blocked control inputs at each iteration of the MPC.
Additionally, there is an internal control-loop with static
gains calculated via an algebraic Riccati equation to guar-
antee stability and recursive feasibility to the final system.
Previous studies developed around the 3DoF helicopter
addressed the use of MPC strategy variations to deal with
plant modeling uncertainty characteristics and processing
time (Caregnato Neto, 2018; Chung, 2017; Pascoal, 2010).
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The contribution in the present paper involves comput-
ing the internal control-loop gains through Linear Matrix
Inequalities (LMIs) to change the dynamics of the plant
respecting a D-stable region, maintaining the recursive fea-
sibility and asymptotic stability properties demonstrated
in Cagienard et al. (2007).

Therefore, the contributions brought by the present work
include a demonstration that the proposed LMIs to com-
pute the gains of the internal closed-loop satisfy the sta-
bility and recursive feasibility of the predictive control
(external closed-loop). An advantage of using LMIs is the
ability to add D-stability constraints, in order not only to
provide recursive stability and feasibility but also to allow
specifying closed-loop behavior more directly as compared
to the simple manipulation of the MPC weight matrices.

The rest of this article is structured as follows: In Section
2 the model of the helicopter is presented; the main
contribution, that is, the formal demonstration that the
stability and recursive feasibility of the MPC scheme with
move blocking is preserved with the calculation of the
internal closed-loop gains through LMIs is found in Section
3, in which the adopted MPC formulation is also presented,
as well as the LMI D-stability restrictions; simulation
results comparing the solutions with internal closed-loop
using a linear quadratic regulator and with the current
proposal are presented in Section 4; finally, conclusions
and suggestions for future work are given in Section 5.

1.1 Notations

• 2′ denotes the transpose of 2.

• ⊗ denotes the Kronecker product.

2. 3DOF HELICOPTER

The 3DoF helicopter is a didactic plant purposed to
represent the dynamics of a real helicopter with two
engines in a simplified way (Figure 1). It can perform three
rotational movements: Pitch (along the body, in the plane
perpendicular to the main arm), Elevation (in the plane
of the main arm with the base), and Travel (in the plane
perpendicular to the base). The secondary arm contains
a counterweight whose purpose is to decrease the power
required to maintain level flight or to impose positive
Elevation accelerations.

Figure 1. 3DoF helicopter – (a) body; (b) main arm; (c)
secondary arm; (d) base.

The set of Ordinary Differential Equations (1) was derived
from simplifications of the Lagrange Equations for model-
ing the 3DoF helicopter and later addition of viscous fric-
tion effect (TableA.2). This model represents the evolution
of the work from Lopes (2007), Maia (2008) and Afonso
et al. (2009). Tables A.1 and A.2 contain the values of
linearization voltage and physical parameters of the sixth
order system, respectively.

ẋ1 = x2 (1a)

ẋ2 = e16(e1(u21 − u22) + e2(u1 − u2)− v2x2) (1b)

ẋ3 = x4 (1c)

ẋ4 = x26(e3 sin 2x3 + e4 cos 2x3) + e5 sinx3+

e6 cosx3 + (e7(u21 + u22) + e8(u1 + u2)) cosx1
(1d)

ẋ5 = x6 (1e)

ẋ6 = (e13 + e14 sin 2x3 + e15 cos 2x3)−1

· (v1 − v3x6 + (e9(u21 + u22) + e10(u1 + u2)) sinx1
+ x4x6(e11 sin 2x3 + e12 cos 2x3))

(1f)

The matrices (2a) and (2b) represent the linearized and
transformed model for the discrete-time domain with sam-
pling period T = 100 ms and Zero-order Hold (ZOH)
method (Franklin et al., 2002).

A =


1.0 0.0963 0 0 0 0
0 0.927 0 0 0 0
0 0 0.995 0.0998 0 0
0 0 −0.104 0.995 0 0

−0.00662 −2.17× 10−4 0 0 1.0 0.0978
−0.131 −0.00645 0 0 0 0.957


(2a)

B =


0.0145 −0.0145
0.286 −0.286

0.00208 0.00208
0.0416 0.0416

−1.62× 10−5 1.62× 10−5

−6.44× 10−4 6.44× 10−4

 (2b)

3. MPC WITH MOVE BLOCKING

The matrices in (2) compose the discrete, linear, and time-
invariant equation of states

x(k + 1) = Ax(k) +Bu(k), (3)

where x(k) is the state measured at time k. Let xi denote
the predicted state at instant k+i, given x(k) and a control
sequence (u0, ..., ui−1). Also, assume that the states and
inputs are subject to the constraints

x(k) ∈ X ⊆ Rn, u(k) ∈ U ⊆ Rm, ∀k > 0, (4)

such that X and U are compact polyhedral sets containing
the origin in the interior.

The proposed control law comes from Cagienard et al.
(2007):

V ∗N (x, T ) := min
ĉ0,...,ĉM−1

N−1∑
i=0

(u′iRui + x′iQxi) + x′NPxN ,

(5a)
subject to:



xi ∈ X, ui ∈ U, ∀i ∈ {0, ..., N − 1} , (5b)

x` ∈X (K), ` = rows(T ), (5c)[
c′0, ..., c

′
`−1
]′

= (T ⊗ Im)
[
ĉ′0, ..., ĉ

′
M−1

]′
, (5d)

ci = 0, ∀i ∈ {`, ..., N − 1} , (5e)

ui = Kxi + ci, ∀i ∈ {0, ..., N − 1} , (5f)

xi+1 = Axi +Bui, x0 = x(k), ∀i ∈ {0, ..., N − 1} , (5g)

with the following definitions:

• P , Q and R are positive-definite and symmetric matrices.
Q and R balance the input and state signals weight on the
cost function, respectively. The P matrix is the solution
of the algebraic Riccati equation (6), which guarantees
closed-loop stabilization gains through Equation (7):

P = ATPA−ATPB
(
BTPB +R

)−1
BTPA+Q, (6)

K = −
(
BTPB +R

)−1
BTPA. (7)

• X (K) denotes the maximum positive invariant set for
the linear system (3) that satisfies the restrictions in (4)
through the control law u(k) = Kx(k). The terminal
constraint x` ∈ X (K) guarantees recursive feasibility for
the optimization problem for all time.

• T ∈ {0, 1}`×M stands for the current blocking matrix,
which reduces the minimization cost (5a) through the

solution of
[
ĉ′0, ...ĉ

′
M−1

]′ ∈ RmM , instead of the full vec-

tor
[
c′0, ...c

′
N−1

]′ ∈ RmN . Such a strategy diminishes the
computational complexity of the control problem by re-
ducing the number of optimization variables (Gondhalekar
and Imura, 2010). Conventionally, one would start with

T ∈ {0, 1}N×N and reduce the dimension of the control
horizon (T columns) through M < N . However, we can
have M 6 ` < N with the blocking matrix to hold several
input values along the prediction horizon (T rows), not
only from M + 1 to N . T (k + 1) = f (T (k)) is computed
recursively at each iteration by Algorithm 1:

Algorithm 1 Move blocking function

1: if ` = 1 then
2: f(T ) := 1N×1
3: else if ` > 1 then
4: S :=

[
0(`−1)×1 I`−1

]
T

5: if S (1, 1) = 1 then
6: f(T ) := S
7: else

8: W := S

[
01×(M−1) 0
IM−1 0(M−1)×1

]
9: f(T ) :=

[
W

0(N−`+1)×(M−1) 1(N−`+1)×1

]
10: end if
11: end if
12: return f(T )

3.1 Redesign of the internal control-loop

Cagienard et al. (2007) proves a theorem to explain how
the move blocking scheme grants asymptotic stability of
the closed-loop system (5g). Such a demonstration was
developed considering the internal stabilizing gain array
K prior computed via the algebraic Riccati equation.

In this section, we propose an adaptation to that theorem
to explore the capability of Algorithm 1 with the premise
to compute K using LMIs while still respecting the pre-
vious proven stability and recursive feasibility of the final
control law.

Theorem 1. Consider that matrix P in (5a) satisfies the
following inequality:

(A+BK)′P (A+BK)− P +K ′RK +Q < 0. (8)

Then applying the move blocking Algorithm 1, assuming
T (0) admissible, makes the origin of the closed-loop system
an asymptotically stable equilibrium with a region of
attraction equal to the set of initially feasible states.

Proof. The optimization problem (5) is solved at each
iteration k, and an optimal control sequence is obtained
as a function of the current states and blocking matrix:

C∗ (x(k), T (k)) :=
[
c∗0 (x(k), T (k))

′
, ..., c∗N−1 (x(k), T (k))

′]′
:= (T (k)⊗ Im) Ĉ∗ (x(k), T (k)) .

A candidate solution for problem (5) at time step k + 1
can be obtained based on

C̃ (x (k + 1) , T (k + 1))

=
[
c∗1 (x(k), T (k))

′
, ..., c∗N−1 (x(k), T (k))

′
, 0
]′
.

(9)

It is easy to verify that the candidate fulfills the constraints
(5b)–(5g), therefore the problem is recursively feasible. For
conciseness, this verification is not included in this paper.

Given that c̃i = c∗i+1, one can similarly write and expand
the cost function (5a) of the candidate, i.e.

ṼN (x (k + 1) , T (k + 1)) =

N−1∑
i=0

(ũ′iRũi + x̃′iQx̃i)+x̃
′
NPx̃N

=

N−2∑
i=0

[ũ′iRũi + x̃′iQx̃i]

+
[
ũ′N−1RũN−1 + x̃′N−1Qx̃N−1

]
+ x̃′NPx̃N

=
N−1∑
i=1

[
u∗
′

i Ru
∗′
i + x∗

′

i Qx
∗′
i

]
+
[
ũ′N−1RũN−1 + x̃′N−1Qx̃N−1

]
+ x̃′NPx̃N

=V ∗N (x(k), T (k))− [u∗0(k)′Ru∗0(k) + x∗0(k)′Qx∗0(k)]

− x∗
′

NPx
∗
N +

[
ũ′N−1RũN−1 + x̃′N−1Qx̃N−1

]
+ x̃′NPx̃N .

Moreover, we can use that c̃N−1 = c∗N = 0 to simplify the
input and state terms:

ũN−1 = Kx̃N−1 + c̃N−1 = Kx∗N ,

x̃N = Ax̃N−1 +BũN−1 = (A+BK)x∗N .

Finally, we get the following expression:

ṼN (x (k + 1) , T (k + 1))

= V ∗N (x(k), T (k))− [u∗0(k)′Ru∗0(k) + x∗0(k)′Qx∗0(k)]

+ x∗
′

N

[
(A+BK)

′
P (A+BK)− P +K ′RK +Q

]
x∗N .
(10)

In view of the optimization of the cost, it follows that

V ∗N (x (k + 1) , T (k + 1)) 6 ṼN (x (k + 1) , T (k + 1)) .
(11)



Subtracting V ∗N (x(k), T (k)) from both sides of the inequal-
ity in (11) yields

V ∗N (x(k + 1), T (k + 1))− V ∗N (x(k), T (k)) 6

− [u∗0(k)′Ru∗0(k) + x∗0(k)′Qx∗0(k)]

+ x∗
′

N

[
(A+BK)

′
P (A+BK)− P +K ′RK +Q

]
x∗N .
(12)

By design Q,R > 0, therefore the first term between
brackets in the right-hand-side of the inequality in (12)
is such that:

− [u∗0(k)′Ru∗0(k) + x∗0(k)′Qx∗0(k)] 6 0

On the other hand, by the assumption in (8), P is calcu-
lated such that the second term is not positive. Therefore,
one concludes from (12) that

V ∗N (x(k + 1), T (k + 1))− V ∗N (x(k), T (k)) 6 0. (13)

Thus, such discrete difference makes V ∗N a Lyapunov
function. Moreover, since x∗0(k) = x(k) in (12) and since
the matrices are all negative definite, (13) is null only
for x(k) = 0 and strictly negative elsewhere, proving the
asymptotic convergence to the origin. �

In the following, the inequality in (8) is rewritten as an
LMI by considering a symmetric and positive definite
matrix X ∈ Rn×n and matrices Y = KX and P = γX−1.
Multiplying the inequality in (8) from the left by X ′

and from the right by X, and applying successive Schur
complements, an equivalent condition for computing P
and K to satisfy (8) is obtained as the following LMI:

X 0n×n 0n×m AX +BY

0n×n γIn×n 0n×m Q1/2X

0m×n 0m×n γIm×m R1/2Y

XA′ + Y ′B′ XQ1/2 Y ′R1/2 X

 > 0. (14)

3.2 D-stability

The transient response of the system may be adjusted
by restricting the system closed-loop eigenvalues λ to a
particular region of the complex plane. This method is a
high-level alternative to balance the final performance in
terms of gain and damping factors, in contrast to tuning
the weights Q and R in Equation (5a). Indeed, the analytic
solution of the Riccati equation is being exchanged to a
LMI setup perhaps more stringent in the state-feedback
gains design, but that allows closer proximity with the
system behavior desired characteristics (Boyd, 1994).

Equation (15) provides a structure of LMIs for the robust
design of the controller gains (Lixin Gao and Anke Xue,
2004):

R11 ⊗X+R12 ⊗ (AX +BY ) +R′12 ⊗ (AX +BY )′+

R22 ⊗ [(AX +BY )′P (AX +BY )] < 0.
(15)

The following parameters configure the matrices in (15) in
order to restrict the eigenvalues λ according to <{λ} > xα:

−Rα11
= −2xα, (16a)

−Rα12
= 1, (16b)

−Rα22
= 0. (16c)

The parameters that outline a subset inside the cone with
vertex [xv, 0] in [0.95, 0] and internal angle 2γ = 90◦ are
given by Equation (17) and dictate, approximately, the
minimum damping of closed-loop modes:

Rv11 =

[
−2xv sin γ 0

0 −2xv sin γ

]
, (17a)

Rv12 =

[
sin γ cos γ
− cos γ sin γ

]
, (17b)

Rv12 =

[
0 0
0 0

]
. (17c)

The restriction imposed on the eigenvalues by the intersec-
tion of the mentioned regions (gray area), in parallel with
LMI (14) for calculating P , yields the distribution of the
closed-loop eigenvalues of Figure 2. The gains using the
algebraic Riccati Equation in (6) and the Equation (7),
as well as those using the LMIs (14), (16) and (17), are
presented in Tables 1 and 2, respectively.

Table 1. Gains computed by the algebraic
Riccati equation.

x1 x2 x3 x4 x5 x6

u1 1.5100 0.7693 0.1296 0.9427 -0.5342 -0.8603
u2 -1.5100 -0.7693 0.1296 0.9427 0.5342 0.8603

Table 2. Gains computed by the LMIs.

x1 x2 x3 x4 x5 x6

u1 -1.0217 -0.5442 -1.5704 -3.6466 0.1970 0.4254
u2 1.0217 0.5442 -1.5704 -3.6466 -0.1970 -0.4254
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Figure 2. Closed-loop eigenvalues – (4): Riccati; (F):
LMIs. The gray region displays the intersection of the
areas defined by the LMIs (16) and (17).

3.3 MPC constraints definition

The quadratic optimization problem was treated by turn-
ing the cost function into a matrix format:

V = u′Ru + x′Qx



where

u =


u0
u1
...

uN−1


mN×1

,x =


x0
x1
...
xN


n(N+1)×1

,

R =


R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R


mN

,Q =


Q 0 · · · 0 0
0 Q · · · 0 0
...

...
. . .

...
...

0 0 · · · Q 0
0 0 · · · 0 P


n(N+1)

.

Considering the closed-loop control law xi+1 = Aclxi + ci,
with Acl = A+BK, from (5f) and (5g), one has:

x = Hc + f ,

with

H =



0 0 0 · · · 0
B 0 0 · · · 0

AclB B 0 · · · 0
A2
clB AclB B · · · 0
...

...
...

. . .
...

AN−1cl B AN−2cl B AN−3cl B · · · B


n(N+1)×mN

,

c =


c0
c1
...

cN−1


mN×1

, f =



I
Acl
A2
cl

A3
cl
...
ANcl


n(N+1)×n

·x0.

Developing the control vector, we have:

u = Kx + c = (KH + I) c + Kf = αc + β,

with

K =


K 0 · · · 0 0
0 K · · · 0 0
...

...
. . .

...
...

0 0 · · · K 0


mN×n(N+1)

.

From this, we can formulate the restrictions over the states
(18) and control signals (19):[

H
−H

]
· c 6

[
xmaxn(N+1)×1 − f
f − xminn(N+1)×1

]
, (18)

[
α
−α

]
· c 6

[
umaxmN×1 − β
β − uminmN×1

]
. (19)

The simulations run in this work were configured with
prediction horizon N = 50, control horizon M = 20,
and R = Q = 1. The maximum values for each state
position and velocity, respectively, were set as xmax =
[0.2, 0.2,∞, 0.5,∞,∞]

′
, with xmin = −xmax. The pair

umin = [−2.9735,−2.9735]
′

and umax = [2.0265, 2.0265]
′

constraints the excursion of the control signals around the
equilibrium condition (A.1) inside the interval [0, 5] V .

4. RESULTS

The control law derived in this work was simulated in the
regulation of the Elevation and Travel sates with initial
conditions −1 rad and 1 rad, respectively. In other words,
a positive initial Pitch is expected for the helicopter to
climb up and move counterclockwise over the workbench.
Figures 3, 4 and 5 show that the control signals, state
derivatives and their trajectories, respectively, respect the
limits imposed by the control law. Figure 5 depicts a
more dampened response by the gains calculated via LMIs
compared to the nominal gains from the algebraic Riccati
equation (Figure 6) in terms of the Elevation angle.

The simulation elapsed time of the maneuver described
above was approximately 22.9% shorter with the move
blocking algorithm enabled, regarding the mean time value
to run 500 cycles with and without using the strategy.
Table 3 summarizes these results in absolute values.

Table 3. Simulation elapsed time comparison.

Mean time [s] Standard deviation [s]

MPC 2.84 0.153
Move blocking MPC 2.19 0.112

5. CONCLUSION

This paper verified the move blocking algorithm from
Cagienard et al. (2007) as suitable for the control strategy
of the 3DoF helicopter. It was formally demonstrated that
the proposed method to calculate the internal-loop gains
retains both stability and recursive feasibility of the MPC,
and the modified set yielded an improved system response.

Future work may investigate adding robustness capabil-
ities to handle parametric variations of the plant model
and exogenous disturbance, as well as the experimental
validation of this proposal. In parallel, the derived LMI
setup could be used to manipulate the optimization sce-
nario regarding the domain of attraction to grant other
feasible solutions, alternative to the D-stability approach.

The discussed results set precedents to extend simulation
of other maneuvering conditions and operation of the
3DoF helicopter aiming eventual workbench experiments.
Also, a potential development would be the integration of
the move blocking an MPC scheme with binary decision
variables. This tool could add collision avoidance function-
ality to the control system.
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Figure 5. State excursion response with the internal
control-loop gains computed through LMIs.
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Figure 6. State excursion response with the internal closed-
loop gains computed through the algebraic Riccati
equation.
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Appendix A. MODEL PARAMETERS

Table A.1. Inputs: equilibrium condition.

Motor Voltage [V ]

u1 2.9735
u2 2.9735

Table A.2. Plant parameters.

Parameter Value

v1 0 N ·m
v2 0.18 N · s
v3 0.47 N ·m · s
e1 0.1117 N/V 2

e2 0.0449 N/V
e3 −0.4843
e4 0.1153
e5 −1.0389 N/(m · kg)
e6 −1.3170 N/(m · kg)
e7 0.0656 N/(m · kg · V 2)
e8 0.0264 N/(m · kg · V 2)
e9 −0.0718 N ·m/V 2

e10 −0.0289 N ·m/V
e11 1.0567 kg ·m2

e12 −0.2515 kg ·m2

e13 0.5454 kg ·m2

e14 0.1258 kg ·m2

e15 0.5283 kg ·m2

e16 4.1832 (m · kg)−1




