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Abstract: Due to Big Data and the Internet of Things, Machine Learning algorithms targeted
specifically to model evolving data streams had gained attention from both academia and
industry. Many Incremental Learning models had been successful in doing so, but most of them
have one thing in common: they are complex variants of batch learning algorithms, which is a
problem, since in a streaming setting, less complexity and more performance is desired. This
paper proposes the Incremental LSTM model, which is a variant of the original LSTM with
minor changes, that can tackle evolving data streams problems such as concept drift and the
elasticity-plasticity dilemma without neither needing a dedicated drift detector, nor a memory
management system. It obtained promising results that shows it reacts fast to concept drifts
and that is also robust to noise data.
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1. INTRODUCTION

In recent years Big Data changed from just a buzzword to
become a real thing, or a real problem for many companies.
The increase of processing and memory capabilities of
computers, more sensors generating data, the rise of the
Internet of Things, gave businesses the opportunity to
generate more insights by understanding their products
and clients better, but also brought a burden to IT
departments. More data means need for more storage,
more processing power and the need of techniques to
process this data in a distributed manner, because in many
cases they don’t fit into a single machine (Mehta et al.,
2017; De Francisci Morales et al., 2016; Žliobaitė et al.,
2016).

This problem reflects for the Machine Learning field as
well, because normally Machine Learning models are de-
signed to handle finite data sets, so that the learning pro-
cess involves solving complex optimization problems, such
as Support Vector Machines (SVMs) (Awad and Khanna,
2015). The other thing is that most Machine Learning
models are trained with chunks of data that are supposed
to be stationary, which in the real world it is rarely the
case. Instead, information is always coming in an infinite
stream of data that may change over time, so the Machine
Learning researchers and developers should take that into
account (Ditzler et al., 2015).

This paper tackles this problem of supervised learning
from streaming data by proposing a novel Incremental
Learning technique based on the Long Short-Term Mem-
ory (LSTM) Neural Networks (Hochreiter and Schmidhu-
ber, 1997). The main idea is to use the LSTM’s intrinsic

features to be able to detect concept drifts and to learn
new concepts (of course, keeping the old relevant ones) in
an automatic manner using minimal memory resources.

The rest of this paper is organized as follows: in Section
2, both Incremental Learning and LSTMs are defined;
Section 3 introduces the proposed method; In Section 4
the experimental methodology is presented; Section 5 show
the results and Section 6 discusses some conclusions.

2. THEORY

A Machine Learning algorithm can be trained in two
distinguished learning modes: offline learning and incre-
mental or online learning. In the former, the whole dataset
is available at the time of training, whereas in the latter,
the model process data as they come in a real time stream
that may be infinite. In such case, there are two main
problems that it faces (Gama et al., 2014):

(1) If the dataset is infinite, the system hosting the model
should have infinite memory to accommodate it, what
is unreal

(2) Even if we were able to keep a long history of past
data, the data distribution may change as time passes
by (due to concept drifts), what would make past data
stale regarding to the current data distribution

So an incremental learning algorithm is subject to a trade-
off where it has to keep past information so the model
doesn’t learn outliers, but don’t keep too much of it,
because the system has memory constraints and also needs
to be able to learn new concepts (Gama et al., 2014).
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2.1 Concept Drifts & the Stability-Plasticity Dilemma

One of the major concerns of Incremental Learning meth-
ods is the Concept Drift, which primarily refers to an online
supervised learning scenario when the relation between
the input data and the target variable changes over time
(Gama et al., 2014). How an algorithm adapts to a concept
drift is also a challenge: react too quick, old information
is lost; wait too long, concept drifts are not caught at all.
This tradeoff is known as the stability-plasticity dilemma
(Mermillod et al., 2013).

Although these are the most evident challenges faced by in-
cremental learning methods, there are more, as pointed out
by Gepperth and Hammer (2016). Many approaches have
been proposed to address such challenges, which can easily
be divided into two major categories: active approaches,
which explicitly detect concept drifts, and passive ap-
proaches, those that continuously adapt themselves with-
out explicit awareness of occurring drifts (Losing et al.,
2016).

2.2 State of the Art

Most methods that follow the active approach are agnostic
to the drift detection mechanism, meaning that one could
try many flavours of a single method with different drift
detectors. This is the case of many state of the art
methods, like the Oza Bagging ADWIN Classifier, which is
a mixture of the Online Bagging algorithm (Oza, 2005) (an
online version of the original Bagging (Breiman, 1996)),
with the ADaptive sliding Window (ADWIN) (Bifet and
Gavalda, 2007) drift detection mechanism.

Another method that follows that same structure is the
Adaptive Random Forests (Gomes et al., 2017), which is
a online version of the original Random Forest algorithm
(Breiman, 2001). For every incoming sample from a data
stream, it runs a drift detection mechanism for each tree
of the ensemble and, depending on the value obtained, it
either warns a possible drift (which triggers the training
of a background tree), or detects one, in which case the
trained background tree is used to replace the existing
one. A similar recent work is the Adaptive XGBoost (Mon-
tiel et al., 2020), which adapts the XGBoost algorithm
(Chen and Guestrin, 2016) for evolving data streams. Both
methods achieved the best results with the ADWIN drift
detector.

For the passive approach methods, one that has achieved
great results is the Self Adjusting Memory k Nearest
Neighbours (SAM-kNN) (Losing et al., 2016). It’s an
ensemble of two models, one trained by the most recent
samples from the stream, called the Short Term Memory,
and another one trained with past samples, called Long
Term Memory. The passive way that the drift detection
takes place is by training the Short Term Memory model
with different subsets of a window of recent samples, like
a hyper parameter tuning taking place for every incoming
sample.

One characteristic that all those methods have in common
is that they are all structured in a complex way around
classic supervised learning batch algorithms. In another
hand, Long Short-Term Memory (LSTM) neural networks

seem to fit perfectly for streaming scenarios: its hidden
state and more importantly, the memory cell, was built
to deal exactly with stability-plasticity dilemma and avoid
catastrophic forgetting (Gepperth and Hammer, 2016). By
applying minor changes in its architecture, we propose
the Incremental LSTM, an incremental learning algorithm
that doesn’t need neither explicit drift detection, nor
memory management.

2.3 Long Short-Term Neural Networks

Long Short-Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) is a type of Recurrent Neural Networks
(RNNs) and, as such, it is suited to learn sequence prob-
lems by tracking dependencies along the time. It does that
by feeding back the hidden state of a layer, from a time step
t, as an input to the next step t+1, along with the input for
that step. Its weights are trained with the Backpropagation
Through Time optimization algorithm (Goodfellow et al.,
2016).

The problem with the simple RNNs arises when they
are used to learn sequence problems that have long term
dependencies. This happens due to a phenomenon known
as vanishing gradients (Pascanu et al., 2013), where the
network’s weight updates in the beginning of the sequence
tend to lose their contribution due to small values of gra-
dient. To surpass this, the LSTM introduces the memory
cell in its architecture, so it not only track dependencies at
time step t with the hidden state ht−1 from the previous
step t − 1, but it also has a memory cell ct−1, which
doesn’t vanish during the Backpropagation Through Time
(Goodfellow et al., 2016).

The computations performed by an LSTM cell are listed
in Equation 1, which are better understood along with the
following Figure 1.

Γf,t = σ(Wf [ht−1,xt] + bf )

Γu,t = σ(Wu[ht−1,xt] + bu)

c̃t = tanh(Wc[ht−1,xt] + bc)

ct = Γf,t � ct−1 + Γu,t � c̃t
Γo,t = σ(Wo[ht−1,xt] + bo)

ht = Γo,t � tanh(ct)

ŷt = softmax(Wyht + by)

(1)

In 1 , the hidden state ht−1 from the previous time step
t − 1 is concatenated with the current step t input, xt,
which is represented by [at−1,xt]. It is weighted by Wf ,
added with bf and then applied to a sigmoid function
σ(·), resulting in the forgetting gate Γf,t, which is ranged
between 0 and 1, as shown in 2 .

In 3 , the forgetting gate Γf,t weights the previous step’s
cell memory, ct−1. Its role is to forget or not this cell
memory, depending if its value is closer to 0 than to 1.

In 4 , the current time step’s cell memory’s contribution
c̃t is computed. The amount that it will contribute to
the next step’s cell memory is calculated in 6 and will
depend on the update gate Γu,t, which is computed the
same way as the forgetting gate, but with its own weights
Wu and bias bu, as shown in 5 .
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Figure 1. An LSTM cell
Adapted from Olah (2015)

The network’s memory cell ct is updated in 7 based
on the previous and current steps’ memory cell (ct−1 and
Γu,t · c̃t, respectively). Finally, it is weighted by the output

gate Γo,t in 10 , which provides the hidden state ht, which

is weighted by Wy, followed by an element-wise addition

of by, then fed to a softmax activation 1 in 11 , providing

the prediction ŷt of the current step.

Figure 1 depicts a single cell of an LSTM layer, which is
made of a sequence of cells. Also, LSTM layers can be
connected, by feeding the hidden state as the input of the
next layer, as shown in Figure 2.
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Figure 2. A neural network composed of two LSTM layers
design for sequences with five time steps

It is important to note that both initial hidden states (h0
0

and h1
0) and initial memory cells (c00 and c10) are assigned

randomly. In other words, the context carried by both
memory cells and hidden states are exclusive for a single
sequence.

This is the property that the proposed method focuses on,
as described next.

3. INCREMENTAL LSTM

Before going into the details of learning algorithm, it is
important to define how the proposed method prepares
the received data into sequences suited for LSTMs.
1 This is the case for a Neural Network designed to address a
multiclass classification task, otherwise, other activation function
should be used. Also, if this is not the output layer, the hidden state

is passed to the next layer - i.e. without the need of step 11 .

As will be seen in mentioned in Section 4, batches with
a specific number of samples are accumulated in the data
stream and then provided to the model, so it can predict,
and then train. In the other hand, LSTMs expect a batch
of sequences as input for training.

In order to transform a batch of samples into a batch
of sequences, the batch is ordered by the time they were
received. Then, it is broken down into multiple sub-batches
in a sliding window manner. Figure 3 illustrates this. In
blue, we have the current batch, with length 10, which is
split into sub-batches of length 5 (in red), each of which
is presented to the model as a sample sequence. So, with
that example in mind, a batch of ten samples became a
batch of six sample sub-batches.
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Figure 3. Data stream sub-batching

With the data preprocessing defined, the incremental
learning process here proposed relies on using LSTM’s own
components to determine when to forget past concepts and
when to learn new ones.

As mentioned earlier, the hidden state and memory cell
are reset for each sample sequence received by the model.
So, in batch Bt, we have c0 = 0 and s0 = 0. The trick
here is to keep the last value of both c e t, so that at the
next batch, they are provided, instead of vectors of zeros.

By doing so, the following problems are solved:

(1) No need to keep a history of past sample that may
violate the system’s memory constraints, since only
the LSTM cell’s weights (Wf , Wu, Wc, Wo and
Wy), biases (bf , bu, bc, bo and by) and the last values
(meaning, at time t) of the cell and hidden state (ct
and at) should be kept in memory

(2) No need to implement a specific mechanism to detect
a concept drift, since they should be captured auto-
matically by the memory cell

This approach can be applied to distinct supervised Ma-
chine Learning problems, such as regression, classification
and forecasting.

4. EXPERIMENTAL METHODOLOGY

To evaluate the proposed method, experiments were con-
ducted comparing state of the art models using Prequential
Evaluation. In the setting, data comes in batches over
time. The initial batch, usually bigger than the subsequent
ones, is used to pre-train the model. In the following ones,
the batch data is first presented to the model without
labels, which makes predictions. After that, a prequential



error is calculated using a metric best suited for the given
experiment.

For all the experiments, the initial batch had a window
size of 300 samples, while the subsequent batches had 100
samples. The prequential error evaluation metric used was
accuracy, since only classification datasets with reasonable
balancing were used. All experiments were conducted
using the Scikit-multiflow framework 2 (Montiel et al.,
2018) and were repeated five times, to increase statistical
representativity.

4.1 Datasets

Four datasets were used for the experiments, which are:

• Electricity (Zliobaite, 2013): formed from data col-
lected in the Australian electricity market. In this
market, prices fluctuate according to the demand and
data was sampled every five minutes. It has 45312
instances, 8 dimensions and 2 classes. There is no
information regarding when concept drifts occur.

• SEA (Street and Kim, 2001): a synthetic dataset
with 60000 instances, 3 dimensions and 2 classes. It
contains two unbalanced classes with 22384 and 37616
instances each. The dataset presents four different
concepts, with 15000 instances each and 10% of the
data are noisy.

• SINE 1 (Gama et al., 2004): has a total of 10000
instances, without noise, 2 dimensions and two differ-
ent concepts with 5000 instances each and an abrupt
change of concept. In the first concept, all points be-
low the curve y = sin(x) are classified as positive and
after the concept drift, the classification is reversed.

• SINE 2 (Gama et al., 2004): has a total of 10000
instances, of 4 dimensions, two of which are noisy
values, and two different concepts, 5000 instances
each, with gradual change. The gradual change of
concept was carried out by a sigmoid function f(t) =
1/(1 + e4(tp)/w), where p = 5000 is the position that
happens the change and w = 500 the width of the
transition.

4.2 Models

The proposed algorithm was compared with the following
incremental learning models, configured with their default
hyperparameters from their implementation on Scikit-
multiflow :

• Oza Bagging ADWIN (Oza, 2005)
• Adaptive Random Forest (Gomes et al., 2017)
• SAM kNN (Losing et al., 2016)

The proposed method was configured equally for all ex-
periments:

• LSTM layers: 3 layers, with 150, 100 and 50 units
respectively, all of them using the hyperbolic tangent
activation function

• Number of epochs: 300 for the initial batch, 60 for
the subsequent ones

• Sub-batch size: 60

2 Available online on: scikit-multiflow.github.io

• Optimizer: Adam, with η = 0.001, β1 = 0.9, β2 =
0.999 and epsilon = 1e−7

• Loss function: Binary cross-entropy

5. RESULTS

A summary for experimental results is presented in Table
1, whereas a more detailed behavior of the models’ accu-
racy over time can be seen in Figures 4, 5, 6 and 7. In
such Figures, we have a thick gray line representing the
average accuracy for each training batch (across the five
experiments), in lighter gray, the accuracy average stan-
dard deviation and in dashed red, the timestamps where
a concept drift occurred. As pointed out early, there is no
information regarding drifts for the Electricity dataset.

Accuracy (%)
Dataset Model

SEA ILSTM 84.68 ±3.83
SAM-KNN 87.09 ±2.82
ARF 87.35± 3.78
OB-ADWIN 85.66 ±5.88

Sine 1 ILSTM 97.34± 8.63
SAM-KNN 96.80 ±13.72
ARF 97.01 ±8.74
OB-ADWIN 87.76 ±23.54

Sine 2 ILSTM 95.16± 8.75
SAM-KNN 86.01 ±17.52
ARF 89.39 ±9.75
OB-ADWIN 81.89 ±17.70

Electricity ILSTM 59.47 ±12.27
SAM-KNN 64.20 ±10.27
ARF 79.77± 9.66
OB-ADWIN 67.22 ±10.10

Table 1. Experiments overall results
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Figure 4. Accuracy evolution over time for the SEA dataset

The proposed method achieved competitive performance
in comparison with the state-of-the-art methods. As can be
observed in Figures 4, 5, 6 and 7, the accuracy drawdown
that usually occurs after a concept drift tends to be smaller
for ILTSM than for the other methods.

Nevertheless, those are preliminary results, and a more
deep understanding of the Incremental LSTM’s properties
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and its sensitiveness to hyperparameter tuning is neces-
sary. The method seems to be robust to noise, as shown
by the results with SEA and SINE 2 datasets. However,
the performance achieved for the Electricity was poor
compared to the other methods.

6. CONCLUSION

The proposed method achieved promising results, having
its simplicity as main strength. In contrast to other online
learning algorithms, it does not need a complex memory
structure, nor explicit mechanisms for detecting drifts or
forgetfulness. Instead, it uses the ability to deal with the
stability-plasticity dilemma of LSTM networks, through a
simple but effective adaptation.

This is still a work in progress. The authors believe
that experimenting with different architectural setups,
as well as other recurrent neural network variants, like
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the Gated Recurrent Units (GRU) (Chung et al., 2014),
performance could be improved. Another future effort
would be to experiment with datasets for different tasks,
such as regression and forecasting.
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Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. (2014). A survey on concept drift
adaptation. ACM computing surveys (CSUR), 46(4),
1–37.



Gepperth, A. and Hammer, B. (2016). Incremental learn-
ing algorithms and applications.

Gomes, H.M., Bifet, A., Read, J., Barddal, J.P., Enem-
breck, F., Pfharinger, B., Holmes, G., and Abdessalem,
T. (2017). Adaptive random forests for evolving data
stream classification. Machine Learning, 106(9-10),
1469–1495.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8), 1735–1780.

Losing, V., Hammer, B., and Wersing, H. (2016). Knn
classifier with self adjusting memory for heterogeneous
concept drift. In 2016 IEEE 16th international confer-
ence on data mining (ICDM), 291–300. IEEE.

Mehta, S. et al. (2017). Concept drift in streaming
data classification: Algorithms, platforms and issues.
Procedia computer science, 122, 804–811.

Mermillod, M., Bugaiska, A., and Bonin, P. (2013). The
stability-plasticity dilemma: Investigating the contin-
uum from catastrophic forgetting to age-limited learning
effects. Frontiers in psychology, 4, 504.

Montiel, J., Mitchell, R., Frank, E., Pfahringer, B., Ab-
dessalem, T., and Bifet, A. (2020). Adaptive xg-
boost for evolving data streams. arXiv preprint
arXiv:2005.07353.

Montiel, J., Read, J., Bifet, A., and Abdessalem, T.
(2018). Scikit-multiflow: A multi-output streaming
framework. The Journal of Machine Learning Research,
19(1), 2915–2914.

Olah, C. (2015). Understanding lstm networks.
Oza, N.C. (2005). Online bagging and boosting. In 2005

IEEE international conference on systems, man and
cybernetics, volume 3, 2340–2345. Ieee.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On
the difficulty of training recurrent neural networks. In
International conference on machine learning, 1310–
1318.

Street, W.N. and Kim, Y. (2001). A streaming ensemble
algorithm (sea) for large-scale classification. In Pro-
ceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining,
377–382.

Zliobaite, I. (2013). How good is the electricity benchmark
for evaluating concept drift adaptation. arXiv preprint
arXiv:1301.3524.
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