Projeto Coordenado de Estabilizadores e Controladores TCSC-POD usando o Coyote Optimization Algorithm

Matheus A. G. Calsavara*. Wesley Peres*.

*Departamento de Engenharia Elétrica, Universidade Federal de São João del Rei – UFSJ, São João del-Rei, Minas Gerais, Brasil (e-mail: matheus.guilarducci@hotmail.com; wesley.peres@ufsj.edu.br).

Abstract: Low-frequency electromechanical oscillation (LFO) damping is crucial for a reliable power system operation. As a result of small variations of loads and generations, that cause unbalances between electrical and mechanical torques in synchronous generators, undamped LFO deteriorates the synchronous machine, reduce the limits of power interchange and can cause blackouts. Since the seventies, power system stabilizers (PSS) has been used to damp these oscillations through the excitation system control. The advent of FACTS devices brought new opportunities for power system control in steady-state operation as well as LFO damping (by using the Power Oscillation Damper – POD). A FACTS device that is widely used is the Thyristor Controlled Series Capacitor (TCSC) employed for power flow control. An important task is to design several PSS and POD for damping LFO taking into account several operation conditions (due to system uncertainties). In this paper, it is investigated the application of the recently proposed Coyote Optimization Algorithm (COA) to simultaneously design PSS and TCSC-POD controllers aiming at damping LFO in a set of operating conditions. Promising results for the South-Brazilian power system are obtained by the COA.

Resumo: O amortecimento de oscilações eletromecânicas de baixa frequência é crucial para uma operação confiável dos sistemas elétricos. Estas são resultado do desbalanço entre os torques elétrico e mecânico nas máquinas síncronas após pequenas variações de carga e de geração. Caso não sejam amortecidas, estas podem deteriorar os geradores, reduzir os limites de transferência de potência entre áreas e causar blecautes. Desde a década de setenta, estabilizadores de sistemas de potência (power system stabilizers - PSS) têm sido usados para o amortecimento de oscilações através do controle da excitação dos geradores. Com o advento dos dispositivos FACTS, surgiram novas oportunidades para um controle mais eficaz em regime permanente dos sistemas bem como para o amortecimento de oscilações (através dos controladores power oscillation damper - POD). Um dos dispositivos FACTS mais usados é o Compensador Série Controlado a Tiristor (Thyristor Controlled Series Capacitor - TCSC) usualmente empregado para controle de potência. Uma importante tarefa é o ajuste de vários controladores PSS e POD para o amortecimento de oscilações considerando vários pontos de operação (que traduzem a incerteza na operação do sistema). Nesse trabalho, é investigada a aplicação do algoritmo de otimização bioinspirado no comportamento dos coiotes (Coyote Optimization Algorithm - COA) no ajuste coordenado de controladores PSS e TCSC-POD para o amortecimento de oscilações considerando vários pontos de operação. Resultados promissores são obtidos pelo COA para o sistema Sul-Brasileiro.

Keywords: Low-Frequency Oscillation Damping; TCSC-POD; Power System Stabilizers; Coyote Optimization Algorithm.

Palavras-chaves: Amortecimento de Oscilações de Baixa Frequência; *TCSC-POD*; Estabilizadores de Sistemas de Potência; Algoritmo Bioinspirado no Comportamento dos Coiotes.

1. INTRODUÇÃO

Os Sistemas Elétricos de Potência (SEP) estão sujeitos à constantes variações de carga e geração que causam um desbalanço nos torques elétrico e mecânico nos geradores síncronos. Como resultado, oscilações eletromecânicas de baixa frequência ocorrem e, caso não sejam amortecidas, podem deteriorar os geradores, reduzir os limites de transferência de potência e causar a interrupção do fornecimento de energia. Tais oscilações são estudadas no âmbito da Estabilidade à Pequenas Perturbações e possuem frequência na faixa de 0,1 a 3Hz (Sauer e Pai, 1998).

Desde a década de setenta, Estabilizadores de Sistemas de Potência (ESP) têm sido usados para o amortecimento dessas oscilações através do controle da excitação das máquinas em regime transitório. Em geral, os ESP são eficientes para o amortecimento de modos de oscilação locais (na faixa de 1-3 Hz, quando um gerador oscila contra o resto do sistema).

Além dos modos locais, existem os modos interárea (na faixa de 0,1 a 1Hz, quando um grupo de geradores em uma área oscila contra outro grupo de geradores em outra área do sistema). O amortecimento desses modos tem sido tratado através do ajuste simultâneo (ou coordenado) dos diversos estabilizadores do sistema (Martins et al., 2000). Entretanto, outros equipamentos têm sido empregados para o amortecimento efetivo dessas oscilações.

Com o objetivo de se aumentar a flexibilidade do controle em regime permanente e dinâmico dos sistemas elétricos, surgiram os dispositivos FACTS (*Flexible AC Transmission Systems*). Baseados em eletrônica de alta potência, tais equipamentos podem utilizar tiristores (primeira geração) ou conversores fontes de tensão (segunda geração) em sua estrutura (Hingorani e Gyugyi, 2000).

Os dispositivos FACTS podem ser conectados em série com um ramo ou paralelo em uma barra do sistema, fazendo o controle de fluxo de potência e de tensão, respectivamente. Quando equipados com dispositivos *POD* (*Power Oscillation Damper*), os FACTS podem contribuir para o amortecimento de modos interárea (Simoes et al., 2009).

Considerando os diversos controladores de amortecimento no sistema (ESP nos geradores e *POD* nos FACTS), estes devem ser ajustados simultaneamente através de um processo chamado ajuste coordenado (os controladores possuem parâmetros de ganho e de compensação de fase). Além disso, diversos pontos de operação, obtidos a partir de variações de carga, geração e topologia, devem ser considerados na fase de projeto para garantia de robustez (Peres et al., 2015).

Um dos equipamentos FACTS utilizados é Compensador Série Controlado a Tiristor (*Thyristor Controlled Series Capacitor - TCSC*). Conectado em série com um ramo do sistema, o *TCSC* compensa a reatância da linha de transmissão para o controle do fluxo de potência. Quando equipado com um equipamento *POD*, o *TCSC* é capaz de atuar no amortecimento de oscilações (Mondal et al., 2012).

Diversos trabalhos na literatura têm tratado o ajuste coordenado de estabilizadores e TCSC-POD para o amortecimento de oscilações. Entre os métodos, destacam-se as abordagens de otimização metaheurísticas que possuem as seguintes vantagens: (i) o ajuste é feito de forma automática, exigindo pouca experiência do projetista no que tange a teoria de controle; (ii) tais métodos fornecem soluções de boa qualidade e não são sensíveis às condições iniciais; (iii) baseados em população (métodos populacionais), ao final do processo fornecem ao usuário um conjunto de soluções entre as quais pode-se escolher a mais adequada. Entretanto, a variabilidade das soluções e a não garantia da otimalidade são pontos negativos associados às metaheurísticas. Nesse contexto, surge a necessidade de se investigar novos métodos que se adequem ao problema que se quer resolver (Wolpert e Macready, 1997).

Em geral, o ajuste de controladores utilizando técnicas de otimização consiste na maximização do coeficiente de amortecimento ou minimização da abcissa espectral. Ambos os índices são obtidos do modelo linearizado em espaço de estados empregado na análise de oscilações. Tais índices são de natureza não convexa (Burke et al., 2003), o que torna promissora a aplicação de metaheurísticas para solução do problema (Peres et al., 2018).

A aplicação de metaheurísticas para o ajuste simultâneo dos controladores ESP e *TCSC-POD* já foi investigada na literatura: Algoritmos Genéticos (Padma Subramanian e Kumudini Devi, 2010), Otimização baseada em Enxame de Partículas (Menezes et al., 2016; Shayeghi et al., 2010) e Otimização por Colônia de Bactérias (Ali e Abd-Elazim, 2012). Uma técnica híbrida que combina Algoritmos Genéticos com método do gradiente descendente foi investigada em (Castoldi et al., 2014).

Considerando a revisão anteriormente apresentada, observa-se que a otimização de controladores ESP e *TCSC-POD* por metaheurísticas está em constante investigação. Nesse contexto, o presente trabalho visa resolver esse problema através de um método de otimização bioinspirado no comportamento dos coiotes, *Coyote Optimization Algorithm* (*COA*) (Pierezan e Dos Santos Coelho, 2018). O principal objetivo é investigar se o método apresenta boa qualidade de resultado.

O problema de otimização visa maximizar o coeficiente de amortecimento em malha fechada considerando vários pontos de operação. O modelo do *TCSC* em regime permanente é feito através do programa ANAREDE (CEPEL, 2017) e em regime dinâmico através do programa PACDYN (CEPEL, 2018). Resultados para o Sistema Sul-Brasileiro (Menezes, 2014) são apresentados e devidamente validados.

2. MODELAGEM DO SISTEMA

2.1 TCSC em Regime Permanente

A Fig. 1 ilustra o *TCSC* em série com uma linha de transmissão a ser compensada (com impedância Z_{km}). De forma geral, o *TCSC* é composto por um Reator Controlado a Tiristor (RCT) em paralelo com um banco de capacitores. Através do controle do ângulo de disparo dos tiristores, é possível obter uma reatância capacitiva ou indutiva X_{TCSC} que fará a compensação da linha (Menezes et al., 2016). No presente trabalho, é utilizado o programa ANAREDE (CEPEL, 2017), que resolve o problema de fluxo de potência, fornecendo a solução em regime permanente necessária para o cálculo do modelo linearizado para análise das oscilações. O ANAREDE (CEPEL, 2017) faz o cálculo da reatância X_{TCSC} tal que o fluxo de potência ativa na linha $km P_{linha}$ seja igual a um valor especificado P_{ref} .

Fig. 1 Linha de transmissão compensada com um TCSC.

2.2 Modelo Dinâmico do TCSC e do Sistema de Excitação

Para que o sistema seja representado corretamente para a análise à pequenas perturbações, torna-se necessário definir os

modelos do sistema de excitação dos geradores, do *TCSC* e dos controladores de amortecimento (ESP e *POD*).

A Fig. 2 apresenta o modelo do sistema de excitação estático adotado, representado por uma função de transferência de primeira ordem (ganho K_A e constante de tempo T_A). A função do sistema é controlar a tensão de campo ΔE_{FD} de forma a manter a tensão terminal ΔV_T em um valor de referência ΔV_{REF} (em regime permanente). Em regime dinâmico, o estabilizador ESP(s) modula a tensão de campo para amortecer as oscilações. Nesse caso, o estabilizador é derivado da velocidade terminal da máquina $\Delta \omega_{pu}$.

Fig. 2 Sistema de excitação dos geradores síncronos.

O modelo dinâmico simplificado para o *TCSC* é ilustrado na Fig. 3 e foi retirado de (Martins et al., 1999). Nesse modelo, a reatância do *TCSC* ΔX_{TCSC} é controlada de forma a se manter a potência ativa do ramo no valor especificado ($\Delta P_{ref} = \Delta P_{linha}$). Esse controle é feito por uma ação proporcionalintegral. Em regime transitório (dinâmico), é possível modular a reatância do *TCSC* de forma a amortecer as oscilações. Nesse caso, o *TCSC* é equipado por um controlador *POD* derivado de um sinal Δu_{POD} .

Fig. 3 Modelo dinâmico de TCSC.

Em ambos os controladores (ESP e *POD*), adota-se a mesma estrutura, dada pela equação (1).

$$ESP_p(s) = K_p \cdot \frac{(s.T_w)}{(1+s.T_w)} \cdot \frac{\left(1+s\frac{\sqrt{\alpha_p}}{\omega_p}\right)^{nbl}}{\left(1+s\frac{1}{\omega_p \cdot \sqrt{\alpha_p}}\right)^{nbl}}$$
(1)

em que os valores de ajuste são o ganho K_p e os parâmetros de compensação de fase α_p e ω_p . Os demais valores são conhecidos, tais como o número de blocos de compensação *nbl* e a constante e tempo do filtro *washout* T_w .

2.3 Modelagem em Espaço de Estados

O sistema em malha aberta (sem os estabilizadores e POD) pode ser representado por um modelo em espaço de estados para cada ponto de operação *j* considerado na análise (adotase *npo* pontos de operação), conforme dado na equação (2) (Sauer e Pai, 1998):

$$\Delta x_{MAj}^{\cdot} = A_{MAj} \cdot \Delta x_{MAj} + B_{MAj} \cdot \Delta u_{MAj}$$

$$\Delta y_{MAj} = C_{MAj} \cdot \Delta x_{MAj} + D_{MAj} \cdot \Delta u_{MAj}$$
(2)

em que A_{MAj} , B_{MAj} , C_{MAj} e D_{MAj} denotam as matrizes de transição de estado, entrada, saída e de transmissão direta (em malha aberta). Adicionalmente Δx_{MAj} representa as variáveis de estado (tensões internas, velocidade, ângulo interno, tensão de campo, variáveis dos controladores, etc.), Δu_{MAj} contém as variáveis de entrada (tensões de referência dos reguladores de tensão dos geradores e potência de referência do *TCSC*) e Δy_{MAj} são as variáveis de saída do sistema (utilizadas na entrada dos estabilizadores e no *POD*). Nesse trabalho, tais matrizes são obtidas a partir do programa PACDYN (CEPEL, 2018).

Considere a existência de nc controladores (nc = nesp + npod, sendo nesp o número de estabilizadores nos geradores e npod o número de controladores POD nos TCSC) com a estrutura dada em (1). Pode-se representar os controladores em espaço de estados e proceder com o processo de realimentação conforme (Kundur, 1994). Com isso, obtém-se o modelo em espaço de estados em malha fechada (que considera os controladores) dado em (3).

$$\Delta x_{MFj} = A_{MFj} \Delta x_{MFj} + B_{MFj} \Delta u_{MFj}$$

$$\Delta y_{MFj} = C_{MFj} \Delta x_{MFj} + D_{MFj} \Delta u_{MFj}$$
(3)

em que o termo MF denota "malha fechada".

A estabilidade do sistema no ponto de operação *j* pode ser avaliada a partir do coeficiente de amortecimento do autovalor dominante ξ_{dj} (calculado a partir da matriz A_{MFj}) (Rogers, 2000). Considerando um conjunto de pontos de operação, define-se o coeficiente de amortecimento mínimo em (4):

$$\xi_{min} = min(\xi_{d1}, \dots, \xi_{dj}, \dots, \xi_{dnpo}) \tag{4}$$

3. METODOLOGIA DE AJUSTE PROPOSTA

3.1 Problema de Otimização

Os *nc* controladores do sistema serão ajustados, neste trabalho, através do problema de otimização dado em (5)-(8).

$$\begin{array}{ll} max & f = \xi_{min} & (5) \\ sa & K_{min} \le K_n \le K_{max} & (6) \end{array}$$

$$\begin{array}{ccc} n & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ &$$

$$u_{\min} \le u_p \le u_{\max} \tag{7}$$

 $\omega_{min} \le \omega_p \le \omega_{max} \tag{8}$

em que $p = 1, \dots, nc$.

3.2 Cálculo da Função Aptidão de um Indivíduo

Nesse trabalho, utiliza-se um método bioinspirado para ajuste dos controladores. Considerando, de forma ilustrativa, que se deseja ajustar dois controladores, a equação (9) mostra a estrutura de um indivíduo ind_c (neste trabalho, um coiote).

$$[ind_c] = \begin{bmatrix} K_1 & K_2 & \alpha_1 & \alpha_2 & \omega_1 & \omega_2 \end{bmatrix}$$
(9)

A função aptidão f_c associada a este indivíduo é calculada como segue: (*i*) calcule a função de transferência da equação (1) e o modelo de espaço de estados para cada controlador; (*ii*) para cada ponto de operação *j*, efetue a realimentação de todos os controladores e calcule o modelo de espaço de estados da equação (3); (*iii*) para cada ponto de operação calcule o coeficiente de amortecimento do autovalor dominante ξ_{dj} ; (*iv*) calcule o coeficiente de amortecimento mínimo do sistema considerando todos os pontos de operação ξ_{min} , conforme a equação (4). A função aptidão será dada por $f_c = \xi_{min}$, considerando um algoritmo de maximização.

4. COYOTE OPTIMIZATION ALGORITHM (COA)

4.1 Formulação do Algoritmo COA

O método *COA* foi proposto por (Pierezan e Dos Santos Coelho, 2018) e foi aplicado com sucesso no problema de planejamento de sistemas de distribuição (Chang e Cong Chinh, 2020) e no problema de extração de parâmetros de painéis fotovoltaicos (Qais et al., 2019). É baseado em população (inteligência de enxames) e é bioinspirado nas espécies *canis latrans*.

O *COA* descreve o comportamento social de coiotes e sua adaptação ao ambiente (estrutura social e experiência mútua entre os indivíduos). Nesse algoritmo, a população é dividida em N_p grupos de N_c coiotes. Cada coiote (indivíduo) c, no grupo p e na geração t, é uma solução candidata ao problema de otimização, sendo representado pelo seu comportamento social conforme a equação (10):

$$soc_c^{p,t} = ind_c$$
 (10)

A inicialização de cada coiote na primeira geração é feita dentro dos limites das variáveis (espaço de busca, vide equações (6)-(8)). O valor da função aptidão de cada coiote é dado na equação:

$$fit_c^{p,t} = f_c \tag{11}$$

O valor dessa função é calculado conforme a seção 3.2.

No início do algoritmo, os coiotes são aleatoriamente divididos em grupos, mas podem, às vezes, mudarem de grupo. A probabilidade P_L de um coiote deixar o grupo é dado por (12):

$$P_L = 0,005. N_c^2 \tag{12}$$

O mecanismo de troca de indivíduos constitui em uma troca de informações entre os grupos. O líder dos coiotes ou o coiote alfa é aquele que melhor se adaptou ao ambiente (melhor função aptidão, aqui considera-se um algoritmo de maximização):

$$alfa^{p,t} = soc_c^{p,t} \quad com \quad max(fit_c^{p,t}) \tag{13}$$

em que $max(fit_c^{p,t})$ representa a maior função aptidão entre todos os coiotes.

O *COA* pode coletar informações entre os coiotes de um grupo e promover uma troca cultural entre esses, cuja tendência é dada pela equação (14):

$$cul_{j}^{p,t} = \begin{cases} O_{\frac{N_{c}+1}{2},j}^{p,t} se N_{c} \notin impar \\ \left(O_{\frac{N_{c}}{2},j}^{p,t} + O_{\frac{N_{c}}{2}+1}^{p,t} \right) \\ \hline 2 \end{cases} caso \ contrário \end{cases}$$
(14)

em que $O^{p,t}$ denota uma condição de ranqueamento social dos coiotes do grupo p em um tempo t da variável de decisão j. Pode-se entender o termo $cul_j^{p,t}$ como a mediana do vetor formado pelas variáveis de decisão j de todos os coiotes.

O *COA* considera o nascimento e a morte de um coiote como o ciclo de vida. O nascimento (filhotes, *pups*) é uma combinação do comportamento social de dois pais aleatoriamente selecionados mais um fator de ambiente, conforme equação (15):

$$Pup_{j}^{p,t} = \begin{cases} soc_{r_{1},j}^{p,t} \ se \ rand_{j} < P_{s} \ ou \ j = j_{1} \\ soc_{r_{2},j}^{p,t} \ se \ rand_{j} \ge P_{s} + P_{a} \ ou \ j = j_{2} \\ R_{j} \ caso \ contrário \end{cases}$$
(15)

em que r_1 e r_2 são coiotes aleatoriamente selecionados no grupo p, $j_1 e j_2$ são duas variáveis de decisão aleatórias, $P_S e$ P_a são probabilidades de dispersão e agrupamento, R_j representa um número aleatório dentro dos limites da variável, e $rand_j$ é um número aleatório entre 0 e 1. Essas probabilidades indicam a diversidade cultural dos coiotes de um grupo, sendo calculadas conforme (16) e (17):

$$P_S = 1/D \tag{16}$$

$$P_a = (1 - P_S)/2 \tag{17}$$

onde D é o número de variáveis de decisão. Os filhotes possuem uma probabilidade de não sobrevivência (morte) de 10%. A sincronização entre "nascimento" e "morte" é dada pelo algoritmo da Fig. 4.

Algoritmo 1
Determinar $\omega e i$
se $i = 1$
o filhote (pup) vive e o coiote em ω morre
senão se $i > 1$
o filhote vive e o coiote mais velho em ω morre
Senão
o filhote more
fim se

Fig. 4 Algoritmo de sincronização do ciclo de vida.

em que ω representa o grupo de coiotes associados às piores soluções (piores que a solução do novo coiote) e *i* é o número de coiotes neste grupo.

O *COA* demonstra a interação cultural entre os grupos usando os fatores $\delta_1 e \delta_2$, sendo δ_1 a diferença cultural entre um coiote aleatório $c_{r1} e$ o coiote alfa do grupo, e δ_2 a diferença cultural entre um coiote randômico $c_{r2} e$ a tendência cultural do grupo. Por coiote randômico, entende-se um coiote aleatoriamente selecionado.

$$\delta_1 = alf a^{p,t} - soc_{r_1}^{p,t} \tag{18}$$

$$\delta_2 = cul^{p,t} - soc_{r_2}^{p,t} \tag{19}$$

O novo indivíduo é então atualizado com base no alfa e dos demais indivíduos do grupo:

$$nsoc_{c}^{p,t} = soc_{c}^{p,t} + r_{1}\delta_{1} + r_{2}\delta_{2}$$
 (20)

em que r_1 e r_2 são números randômicos entre 0 e 1, que expressam o peso da contribuição do líder (alfa) e da influência do grupo. A função objetivo dos novos coiotes é calculada como segue:

$$nfit_c^{p,t} = f\left(nsoc_c^{p,t}\right) \tag{21}$$

$$soc_{c}^{p,t+1} = \begin{cases} nsoc_{c}^{p,t} \ se \ nfit_{c}^{p,t} > fit_{c}^{p,t} \\ soc_{c}^{p,t} \ caso \ contrário \end{cases}$$
(22)

No final do processo, o melhor indivíduo (como maior função aptidão no problema de maximização) é escolhido como a melhor solução. O algoritmo do método *COA* é apresentado na Fig. 5.

Algoritmo 2

ngornino 2
Definir o número de grupos N_p e de coiotes N_c
Iniciar a população e calcular a função aptidão dos indivíduos
<i>Enquanto iter</i> $<$ iter _{max}
Para cada grupo
Determinar o alfa via equação (13)
Determinar a tendência cultural via equação (14)
Para cada coiote do grupo
Calcular o novo indivíduo via equação (20)
Calcular a função aptidão conforme (21)
Determinar se o novo indivíduo irá substituir o antigo
conforme (22)
Fim Para
Desenvolver o ciclo da vida conforme a equação (15) e
Algoritmo 1
Fim Para
Realização transição entre grupos de acordo com (12)
Atualizar contador de iterações (gerações ou idade dos coiotes
Fim Enquanto
Escolher o melhor coiote
Fig. 5 Algoritmo do COA.

Nesse trabalho aplica-se o *COA* no projeto de estabilizadores e controladores *POD*. Cada coiote representa uma solução para o problema de ajuste e questões associadas à avaliação da função aptidão foram tratadas na seção 3.

4.2 Alteração do Algoritmo: COAmod

Para efeitos de comparação, esse trabalho propõe uma alteração no algoritmo, específica para a solução do problema de ajuste de controladores. No cálculo da troca cultural, equação (14), são consideradas somente soluções que garantam a estabilidade do sistema. Isso, é, somente coiotes que garantam um coeficiente de amortecimento mínimo positivo são capazes de influenciar as demais soluções do grupo (na atualização do indivíduo, equações (19) e (20)).

5. ESTUDO DE CASO

Essa seção apresenta o estudo de caso realizado para o Sistema Sul Brasileiro (Menezes, 2014). Inicialmente, uma análise foi realizada em regime permanente para a alocação do *TCSC* no sistema no caso base. Em seguida, o *TCSC* foi ajustado para um conjunto de pontos de operação obtidos a partir do caso base aplicando-se retirada de circuito e variação de geração.

5.1 Sistema em Regime Permanente

A Fig. 6 apresenta o diagrama unifilar do sistema Sul-Brasileiro. Os dados de carga, geração, linha e parâmetros para simulação dinâmica podem ser obtidos em (Menezes, 2014).

Fig. 6 Sistema Sul-Brasileiro. Fonte: (Menezes, 2014).

Um TCSC foi inserido no sistema de transmissão com o objetivo de regular o fluxo de potência entre os barramentos e tornar o sistema mais estável. Sua localização foi definida considerando a posição da máquina com a maior capacidade de geração. O gerador 4 fornece a potência para o sistema através do barramento 25, que é interligado a várias outras barras através das linhas de transmissão. Assim, diante de um aumento de 30% na carga ligada ao barramento 27, observouse um aumento do fluxo de potência da barra 25 em direção as barras 26 e 27 e uma redução do fluxo entre as barras 26 e 27. Dessa forma, optou-se por alocar o TCSC entre as barras 25 e 27. Para alocar o TCSC entre os barramentos citados foi criado um novo barramento de número 46. O equipamento ficou localizado entre as barras 25 e 46. A barra 46 foi então ligada

ao barramento 27 através da linha transmissão já existente. Ressalta-se que métodos de otimização poderiam ter sido usados para a alocação ótima do *TCSC*, conforme feito em (Mondal et al., 2012).

Para determinação dos parâmetros do TCSC, primeiramente, o sistema foi simulado em regime permanente considerando a condição de potência constante, atribuindo um fluxo de potência de 800 MW no circuito de transmissão compensado pelo TCSC. Logo, o ANAREDE (CEPEL, 2017) calcula uma reatância equivalente para o TCSC tal que o fluxo entre os barramentos 25 e 46 seja 800 MW. O valor obtido foi $X_{TCSC} = -0,1605 \, pu$. O valor é negativo, indicando a natureza capacitiva do TCSC. A reatância fornecida pelo ANAREDE (CEPEL, 2017) foi utilizada como valor especificado nas simulações dinâmicas posteriores. As matrizes de espaço de estados em malha aberta foram obtidas pelo PACDYN (CEPEL, 2018).

5.2 Sistema em Malha Aberta

Considerou-se nove pontos de operação (PO) conforme a Tabela 1. É importante mencionar que a estratégia aqui utilizada (projeto considerando vários pontos de operação) é a adotada nas empresas de energia elétrica: a definição dos pontos de operação é feita através de um processo criterioso (fora do escopo deste trabalho). Aqui, optou-se pelo desligamento de algumas linhas de transmissão e variação de geração conforme (Menezes, 2014). Apresenta-se, para o sistema em malha aberta (vide seção 2.3), a definição do ponto e coeficiente de amortecimento do autovalor dominante.

PO	Característica	ξ_{d} (%)
1	LT 18-19 desligada	-2,3633
2	LT 16-18 desligada	-1,8504
3	LT 13-14 desligada	-1,8367
4	LT 14-15 desligada	-1,8409
5	LT 18-44 desligada	-1,8842
6	LT 15-39 desligada	-1,8287
7	Aumento em 30% na geração de G10	-1,5643
8	Aumento em 30% na geração de G7	-1,7518
9	Caso base (com TCSC sem POD)	-1,8288

Tabela 1. Pontos de Operação

5.3 Parâmetros de Controle

Para o projeto dos controladores, foram considerados os seguintes parâmetros: (*i*) $0,01 \le K_p \le 20$, $0,1 \le \alpha_p \le 10$, $1,25 \le \omega_p \le 30$; (*ii*) a constante de tempo do *washout* é de 3 segundos e foram usados dois blocos de compensação; (*iii*) os ganhos dos controlares proporcional e integral do *TCSC* é 0,001 e 0,01, respectivamente. O sinal de entrada do POD do TCSC é a velocidade do gerador 4. O procedimento de ajuste foi feito considerando um total de 20 indivíduos (4 grupos de 5 coiotes) e 30 gerações.

5.4 Resultados

A partir da realização de 20 simulações considerando o mesmo procedimento de ajuste foram encontrados coeficientes de amortecimentos mínimos compreendidos entre os intervalos mínimos e máximos apresentados na Fig. 7 e na Tabela 2. Foram realizadas simulações considerando o algoritmo COA e COA modificado.

Fig. 7 Distribuição dos dados baseado no amortecimento

Tabela 2. Mínimo amortecimento obtido (%)

	Mínimo	Média	Máximo
COAmod	14,7415	20,2516	26,5261
COA	16,13	20,1367	23,1012

Observa-se que que o COA modificado, proposto nesse trabalho, apresentou valores máximos maiores que os do COA convencional, embora a mediana e a variabilidade sejam aproximadamente iguais. Nesse sentido, torna-se necessário investigar novos aprimoramentos para o COA.

A Tabela 3 apresenta os parâmetros de ajuste dos controladores para a iteração que obteve o melhor coeficiente de amortecimento mínimo (26,5261%).

Tabela 3. Parâmetros obtidos para melhor FOB

	K _p	α_p	ω_p		
ESP 1	14,6587	1,3267	14,7544		
ESP 2	8,4371	1,4519	5,6268		
ESP 3	20,0000	4,8566	30,0000		
ESP 4	8,5335	3,9532	1,2500		
ESP 5	17,5371	5,6260	18,9914		
ESP 6	17,6327	5,6079	28,0637		
ESP 7	19,6172	3,7110	25,2029		
ESP 8	15,7725	6,2606	24,5839		
ESP 9	20,0000	3,0523	4,9399		
ESP 10	9,3996	10,0000	22,4978		
POD	8,3359	5,3832	16,8421		

5. CONCLUSÕES

O sistema Sul-Brasileiro, utilizado como base de testes para o problema de otimização, apresentou coeficientes de amortecimento mínimo em malha aberta negativos, o que ocasiona perdas de estabilidade diante da ocorrência de um distúrbio.

A adição dos controladores suplementares nos geradores e no TCSC foi responsável por elevar o coeficiente mínimo de amortecimento do sistema. Através do método COA foi possível otimizar os parâmetros dos controladores visando o para ajuste coordenado amortecer as oscilações eletromecânicas do sistema multimáquinas. Os parâmetros de ajuste dos estabilizadores obtidos através dos algoritmos COA e COA modificado (aqui proposto) consideraram vários pontos de operação e foram capazes de tornar o sistema estável em malha fechada, garantindo a elevação coeficiente de amortecimento mínimo do sistema.

A partir das diversas simulações realizadas considerando o mesmo procedimento de ajuste do algoritmo bioinspirado no comportamento dos coiotes, foi possível tecer uma distribuição estatística dos dados com base no valor do amortecimento mínimo.

De maneira geral, pode-se dizer que a metaheurística apresentada foi eficiente, expondo resultados satisfatórios para o ajuste coordenado dos controladores, sendo capaz de apresentar soluções objetivando a melhora do desempenho operacional do sistema avaliado.

AGRADECIMENTOS

Os autores agradecem à FAPEMIG, CAPES, CNPq e PPGEL/UFSJ pelo auxílio financeiro.

REFERÊNCIAS

- Ali, E. S., e Abd-Elazim, S. M. (2012). Coordinated design of PSSs and TCSC via bacterial swarm optimization algorithm in a multimachine power system. *International Journal of Electrical Power & Energy Systems*, 36(1), 84–92. https://doi.org/10.1016/j.ijepes.2011.10.027
- Burke, J. V., Lewis., A. S., e Overton, M. L. (2003). Optimization and Pseudospectra, with Applications to Robust Stability. SIAM Journal on Matrix Analysis and Applications, 25(1), 80–104. https://doi.org/10.1137/S0895479802402818
- Castoldi, M. F., Sanches, D. S., Mansour, M. R., Bretas, N. G., e Ramos, R. A. (2014). A hybrid algorithm to tune power oscillation dampers for FACTS devices in power systems. *Control Engineering Practice*, 24, 25–32. https://doi.org/10.1016/j.conengprac.2013.11.001
- CEPEL (Centro de Pesquisas de Energia). (2018). PacDyn -Versão 9.8.3.

- CEPEL (Centro de Pesquisas de Energia Elétrica). (2017). ANAREDE - Programa de Análise de Redes Elétricas.
- Chang, G. W., e Cong Chinh, N. (2020). Coyote Optimization Algorithm-Based Approach for Strategic Planning of Photovoltaic Distributed Generation. *IEEE Access*, 8, 36180–36190. https://doi.org/10.1109/ACCESS.2020.2975107
- Hingorani, N., e Gyugyi, L. (2000). Understanding FACTS: concepts and technology of flexible AC transmission systems (1st ed.). Wiley,.
- Kundur, P. (1994). *Power System Stability and Control*. McGraw-Hill.
- Martins, N., Pinto, H. J. C. P., e Paserba, J. (1999). TCSC Controls for Line Power Scheduling and System Oscillation Damping – Results for a Small Example System. *Power Systems Computation Conference* -*PSCC*.
- Martins, N., Taranto, G. N., J.F.Hauer, e M.J.Gibbard. (2000). Impact of Interactions Among Power System Controls (Task Force No. 38.02.16).
- Menezes, M. M. (2014). Métodos de otimização aplicados no ajuste de ESPs e controladores de amortecimento inseridos no FACTS - TCSC em Sistemas Elétricos de Potência. Universidade Estadual Paulista - UNESP Ilha Solteira.
- Menezes, M. M., Araujo, P. B., e Valle, D. B. (2016). Design of PSS and TCSC Damping Controller Using Particle Swarm Optimization. *Journal of Control, Automation and Electrical Systems*, 27(5), 554–561.
- Mondal, D., Chakrabarti, A., e Sengupta, A. (2012). Optimal placement and parameter setting of SVC and TCSC using PSO to mitigate small signal stability problem. *International Journal of Electrical Power & Energy Systems*, 42(1), 334–340.
- Padma Subramanian, D., e Kumudini Devi, R. P. (2010). Application of TCSC Power Oscillation Damping controller to enhance power system dynamic performance. 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, 1–5. https://doi.org/10.1109/PEDES.2010.5712541
- Peres, W., De Oliveira, E. J., Passos Filho, J. A., e Da Silva Junior, I. C. (2015). Coordinated tuning of power system stabilizers using bio-inspired algorithms. *International Journal of Electrical Power and Energy Systems*, 64. https://doi.org/10.1016/j.ijepes.2014.07.040
- Peres, W., Silva Júnior, I. C., e Passos Filho, J. A. (2018). Gradient based hybrid metaheuristics for robust tuning of power system stabilizers. *International Journal of*

Electrical Power and Energy Systems, 95. https://doi.org/10.1016/j.ijepes.2017.08.014

- Pierezan, J., e Dos Santos Coelho, L. (2018). Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems. 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, 1– 8. https://doi.org/10.1109/CEC.2018.8477769
- Qais, M. H., Hasanien, H. M., Alghuwainem, S., e Nouh, A. S. (2019). Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. *Energy*, 187, 116001. https://doi.org/10.1016/j.energy.2019.116001
- Rogers, G. (2000). Power System Oscillations. Springer .
- Sauer, P., e Pai, M. A. (1998). *Power system dynamics and stability* (1st ed.). Prentice Hall.
- Shayeghi, H., Safari, A., e Shayanfar, H. A. (2010). PSS and TCSC damping controller coordinated design using {PSO} in multi-machine power system. *Energy Conversion and Management*, 51(12), 2930–2937. http://www.sciencedirect.com/science/article/pii/S0196 890410002463
- Simoes, A. M., Savelli, D. C., Pellanda, P. C., Martins, N., e Apkarian, P. (2009). Robust Design of a TCSC Oscillation Damping Controller in a Weak 500-kV Interconnection Considering Multiple Power Flow Scenarios and External Disturbances. *IEEE Transactions on Power Systems*, 24(1), 226–236. https://doi.org/10.1109/TPWRS.2008.2006999
- Wolpert, D. H., e Macready, W. G. (1997). No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1(1), 67–82. https://doi.org/10.1109/4235.585893