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São Lúıs, MA
(e-mail: o.saavedra@ieee.org)

Abstract: The Dynamic Economic Dispatch problem is a fundamental and challenging
optimization problem in the field of power dispatch. Several techniques have been investigated
for its optimization, especially metaheuristics. This rapid review focuses on evolutionary and
swarm computation, focusing on 22 research publications for solving the single objective DED
problem. Through this review, we discuss the techniques that have been used to solve the
problem and how they tackled the DED constraints. We analyze the problem’s complexity,
showing if the problem being solved considers the valve effect, transmission losses, ramp rates,
prohibited zones, and reserve spinning requirements. Also, we investigate the number of units
used in each case study. Therefore, we believe that this review is relevant for driving researchers
interested in using evolutionary algorithms or swarm intelligence to tackle the DED problem in
all its complexity and how the proposed algorithms deal with constraints.
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1. INTRODUCTION

The primary purpose of the Economic Dispatch (ED)
(Pereira-Neto et al., 2005) (Barros et al., 2013) is to
minimize the total energy production costs while various
generator constraints are satisfied. However, generator
output curves have a high degree of non-linearity and
discontinuities due to the effect of ”valve points”(Ribeiro Jr.
et al., 2020).

As the operating costs of different generating units differ
significantly in ED, it is challenging to schedule the best
mix of generation from several units to attend a particular
load demand at minimum cost for an entire day. So, when
a specific demand is established, the problem is known as
static ED.

The main drawback of the static approach is to establish
a unique demand for 24 hours. Usually, different hours
of the day demand different generation requirements. To
attend them, the ED problem can be extended to the
Dynamic Economic Dispatch (DED), in which each hour
of the day may require a different power consumption,
turning the problem into a more challenging one due to
its high number of variables. For instance, let us consider
a test-bed problem devised by five generators. Thus, to
compute the cost of operation, we need 120 variables, i.e.,
five generators times 24 hours. As we can see, the number
of variables proportionally increases as we increase the
number of generators. Further, limitations such as ramp

rates and transmission losses turn the problem into a much
more complex one.

Therefore, classical optimization methods are inefficient
due to the high number of variables and, either, because
classical algorithms cannot deal with constraints. Con-
sequently, evolutionary and swarm techniques, such as
Genetic Algorithms (GA) (Holland, 1975), Evolutionary
Programming (Yao et al., 1999), Differential Evolution
(Storn and Price, 1997), Particle Swarm Optimization
(PSO) (Kennedy and Eberhart, 1995), and Artificial Bee
Colony (Karaboga, 2005), among others, represent an
attractive manner of tackling this kind of optimization
problem.

Despite the capability of evolutionary and swarm com-
putation, there are still challenges to deal with because
DED, in its full complexity, demands the algorithm
to obey several constraints, as previously mentioned.
Zaman et al. (2016) claims that in most of these
approaches, the equality constraints are usually handled
using the penalty-function technique. However, there are
too many equality constraints in DED problems that
are mutually coupled, making it challenging to generate
feasible solutions and maintain feasibility after crossover
and mutation operations in a metaheuristic such as GA.
Therefore, programmers who want to solve DED must
tackle all those constraint requirements.
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In this context, we would like to contribute with the area
guiding researchers in this challenging field, answering the
following research questions:

Q1 What are the most used evolutionary and swarm
techniques for solving the DED and how they deal
with constraints?

Q2 What the complexity of the DED, and what are the
most common case studies being solved?

For this sake, this paper is divided as follows: Section 2
presents the methodology of selecting and excluding
papers; Section 3 shows the DED problem on its full
complexity; Section 4 presents the results that answer the
questions raised in this paper; finally, Section 5 illustrates
the final remarks of this work.

2. METHODOLOGY

A rapid review is a technique for the synthesis of
evidence for a comprehensive or systematic search of
the literature; however, it requires a shorter time frame
than traditional systematic approaches (Khangura et al.,
2012). It addresses a research question or a set of research
questions related to a single topic. In this particular case,
the subject is using evolutionary or swarm algorithms
for solving the DED problem, consequently answering the
questions Q1 and Q2 presented previously in Section 1.

In Q1, we aim to identify what are the most used
algorithms in solving the DED problem. Additionally,
we want to distinguish how researchers have dealt with
constraints, which is an essential part of adequately
addressing the problem. In Q2, we intend to determine the
systems and their complexity; thus, researchers can obtain
directions to compare their algorithms. Therefore, consid-
ering Q1 and Q2, we devised the following search string:
”Dynamic Economic Dispatch” AND (Swarm OR
Evolutionary).

As suggested by Brereton et al. (2007), we used the
search string in four electronic databases: IEEE Xplore,
ACM Digital, Springer, and ScienceDirect. As time is a
constraint in getting this job done, it is necessary to define
criteria that narrow the search even more. In this context,
we set the inclusion and exclusion criteria as follows.

2.1 Inclusion Criterion

The following inclusion criterion has carried out:

• Papers whose primary objective is to solve the DED
problem using any evolutionary or swarm algorithms;
• Papers whose the DED problem belongs to the set of

problems being solved using the referred algorithms;
• Papers published between 2016 and 2020;
• Papers solving the single fitness function model

2.2 Exclusion Criterion

As previously mentioned, we have to narrow the set of
papers we want to analyze. Hence, the following exclusion
criteria have been considered:

• Papers in languages other than English;
• Short papers (less than four pages);

• Papers computing only the emission cost;
• Papers whose techniques change the mathemati-

cal model, i.e., other than the model presented in
Section 3;

• Bio-inspired algorithms that are not considered as
evolutionary or swarm one.

• Papers handling only a part of the problem, such as
papers handling only transmission losses;

• Papers combining models that change the mathe-
matical model, such as those mixing the cost with
other power generators, which ends up changing the
mathematical model as well;

• Papers that presented surveys and reviews.

Next, we present the mathematical model of the DED
problem in its full complexity, i.e., including all possible
constraints that make the problem harder to solve.

3. DYNAMIC ECONOMIC DISPATCH

The purpose of the DED problem optimization is to
discover the best power dispatch in a power plant,
i.e., attending different power demands during the day,
minimizing the cost of doing it. Thus, the objective is
to compute the required power on each generator unit
for 24 hours. Moreover, the generation of power must
obey the constraints of the system. Therefore, the goal
is to minimize the cost of production and, at the same
time to satisfy all constraints: (i) balance limits; (ii) real
power generation limits; (iii) unit ramp rate limits; (iv)
prohibited zones; and, (v) spinning generators.

It is clear that when the demand changes, the power
generation must change either. The problem is that
changing the power generation has a cost associated
with the process. This behavior turns the problem into
one impossible to solve by a gradient-based method;
therefore, the problem is entirely suitable to be tackled
by evolutionary algorithms (Ribeiro Jr. et al., 2020).
According to Kumar and Alwarsamy (2011), DED is a
dynamic problem due to the dynamic nature of the power
system and the considerable variation of load demands.

The cost of generating power is depicted by Equation 1,
in which F is the power generation cost within the period,
T is the number of intervals, N represents the number of
generation units, and Fit(Pit) is the cost of the real power
Pit in a time interval t. The function works on 24 intervals
of 1 hour each.

minF =

T∑
t=1

N∑
i=1

Fit(Pit) (1)

Thus, the cost of producing power is represented by
Equation 2, in which i represents the generation unit, ai,
bi, and ci are cost coefficients, and Pi is the power output
of this unit expressed in MW.

Fit(Pit) = ai + biPit + ciP
2
it (2)

When we consider the valve effects, we have to add
the expression |ei sin fi(Pimin − Pit)| to the Equation 2.
Then, we can rewrite the cost function as illustrated in



Equation 3, in which ei and fi are constants of the valve
effect of the generation unit i.

Fit(Pit) = ai + biPit + ciP
2
it + |ei sin fi(Pimin − Pit)| (3)

As previously mentioned, the computation of cost is
associated with constraints. Each one must be obeyed in
order to produce a solution. Equation 4 aims to keep the
operation limits of each generator, in which Pimin is the
lower bound, Pimax is the upper bound of the generation
unit i, t = 1, 2...T , and i = 1, 2...N .

Pitmin ≤ Pit ≤ Pitmax (4)

Equation 5 expresses the first equality constraint that is
the power balance constraint, in which PDt represents the
total power demanded in a period t, PLt is the power loss
during transmission in the same period, both are in MW.

N∑
i=1

Pit − PDt − PLt = 0, in which t = 1, 2...T (5)

The transmission loss is computed by using Equation 6
in which B is a matrix of loss coefficients. Consequently,

Equation 5 can be rewritten as
∑N

i=1 Pit = PDt + PLt

PLt =

n∑
i=1

n∑
j=1

PiBijPj +

n∑
i=1

B0iPi +B00 (6)

Equations 7 and 8 describe the ramp limit constraints of a
unit i, in which URi is the increasing limit of a generation
unit i, and DRi is the decreasing limit.

Pit − Pit−1 ≤ URi, in which i = 1, 2...N (7)

Pit−1 − Pit ≤ DRi, in which i = 1, 2...N (8)

Additionally, the DED problem can present prohibited
zones, i.e., the operation zone of generators can be
discontinuous, which adds more difficulties to the algo-
rithm that will solve the problem. The forbidden zones
can be expressed as depicted in Equation 9, in which Pitj

and Pitz are the limits of the prohibited zones.

Pit ∈


Pitmin ≤ Pit ≤ Pit,1

Pit(j−1) ≤ Pit ≤ Pitj j = 1, 2, . . . , z

Pitz ≤ Pit ≤ Pitmax

(9)

Finally, the DED model can present reverse spinning
requirements to protect the system against unexpected
events such as load changes and failure in the operating
units. Hence, to increase the system reliability, three new
constraints can be included in the DED mathematical
model as shown in Equations 10, 11, and 12.

N∑
i=1

P(it)
max − (PDt + PLoss + SRt) ≥ 0 (10)

N∑
i=1

min(P(it)
max − Pit, URi)− SRt ≥ 0 (11)

N∑
i=1

min(P(it)
max − Pit,

URi

6
)− SRt ≥ 0 (12)

Constraints 10 and 11 are frequently applied to satisfy
the one-hour spinning reserve requirements (SR), and
constraint 12 is used to fulfill the SR for the spinning
generators in each time within 10 min is related to the
ramp-up rate constraint of that unit (URi/6) (Zaman
et al., 2016).

In the next section, we show and analyze the results of this
review.

4. RESULTS AND DISCUSSION

The search has been conducted from April to June of 2020.
The search string returned the following number of papers:
IEEE Xplore - 63, ScienceDirect - 86, ACM Digital - 37,
and Springer 92, totaling 278. After applying the inclusion
and exclusion criteria, we selected 22 papers. Figure 1
shows how many papers we included per year in this study
and how the number of papers is distributed over the years.
As we can see, there are more papers in 2018 and 2019.
The year 2020 presents a low quantity of paper, probably
because we are still in the first semester.

Fig. 1. Number of papers per year

4.1 Q1 - Algorithms Features

Table 1 summarizes the results for Q1, which is divided
into two parts. The first one presents information on the
algorithm, i.e., the name, and if it is an enhanced or hybrid
one. The second part shows how the algorithms deal with
constraints, i.e., if there is an initialization heuristic, if
the algorithm uses a repair method in case of a constraint
violation, and how the constraints are handled.

According to Table 1, the main base algorithms have
been found solving the DED are: Genetic Algorithms,
Evolutionary Programming, Differential Evolution, Invasive
Weed Optimization (IWO) (Mehrabian and Lucas, 2006),
Particle Swarm Optimization, Artificial Bee Colony, Firefly
Algorithm (FA) (Yang, 2009), Ant Lion Optimizer (ALO)
(Mirjalili, 2015), Moths Search Algorithm (MSA) (Wang,



Table 1. Evolutionary and Swarm Computation Techniques, and dealing with constraints (Q1)

# Paper Algorithms Hybrid Variation Init Heuristic Repair Constraints

1 (Zaman et al., 2016) GA, DE-Se-A No Yes Yes Yes ε−constraints

2 (Zaman et al., 2016)b GA, DE-Se-A No No No Yes Slack Generator

3 (Aydin et al., 2017) ABC No Yes No Yes No

4 (Gupta and Goyal, 2017) PSO No No No No No

5 (Xie et al., 2017) PSO No No No No No

6 (Sun and Wang, 2017) PSO No Yes No No Penalties

7 (Xiong and Shi, 2018) BBOSB Yes Yes No No Slack Generator

8 (Behera et al., 2018) CFBPSO No Yes No No No

9 (Marzbani and Samet, 2018) IWO No No No No No

10 (Wang, 2018) MSA No No No No Penalty

11 (Pattanaik et al., 2018) GA No Yes No No Slack Generator

12 (Zou et al., 2018) DE No Yes No Yes Penalty

13 (Fergougui et al., 2018) GA, PSO No No No No No

14 (Pürlü and Türkay, 2018) GA, PSO No No No No No

15 (Pattanaik et al., 2019) DE, PSO, EP, GA No No No No Slack Generator

16 (Basu, 2019) EP, CFCEP No Yes No No No

17 (Mostefa et al., 2019) FA No No No No ε−constraints

17 (Dhifaoui et al., 2019) ALO No No No No Multiobjective

19 (Shen et al., 2019) DE No Yes Yes No Penalty

20 (Haripuddin et al., 2019) ABC No No No No No

21 (Gupta et al., 2020) PSO, IPSO No Yes No No No

22 (Stanovov et al., 2020) DE No Yes No No ε−constraints

2018), and Bio-geography-Based Optimization (BBO)
(Simon, 2008). Figure 2 presents the results in terms of
numbers. In this context, we can see that PSO is the
most used one, followed by GA, DE, and ABC. The
other metaheuristics are newer than the winners, maybe
that is why they are still not being widely used. Also,
eleven works have implemented variations, i.e., presented
enhanced algorithms, such as Zaman et al. (2016) and
(Zaman et al., 2016) that presented a self-adaptive DE, in
which the DE parameters are encoded into the individuals’
genes. Only one work (Xiong and Shi, 2018) showed a
hybrid metaheuristic that mixes BBO with Brain Storm
Optimization (BSO) (Shi, 2011).

Fig. 2. Number of main algorithms

Concerning constraints, only Zaman et al. (2016)’s and
Shen et al. (2019)’s works use an initialization heuristic.
Usually, all generators are initialized using the constraint
shown in Equation 11; however, this constraint does not
guarantee that the other ones are also satisfied. Thus,
an initialization heuristics intent to create solutions that
satisfy all of them. Further, only four works apply a repair
algorithm, trying to keep all the solutions satisfying the
constraints after genetic or movement operators. On the

one hand, repairing methods try keeping the feasibility of
solutions. On the other hand, it can demand much more
computation, and there is no guarantee that the repair can
be done.

As we can see in the referred table, some works used
the following method to handle constraints: ε−constraints,
Slack Generator, Multiobjective, and Penalties. In ε−constraints,
the violations in constraints are allowed but limited to
an ε value, which usually decreases as the algorithm’s
iterations go by. In Slack Generator, a generator is chosen
to compensate for the power loss. Typically, the last
generator compensates for the losses in balance constraint;
nonetheless, other approaches can be used such that
one that is presented in Xiong and Shi (2018)’s work.
Furthermore, the slack generator is associated with other
handling constraints methods because it might violate the
ramp limit or the prohibit zones.

The multiobjective approach, done in Dhifaoui et al.
(2019)’s work, is an interesting way of handling constraints
by transforming them and the cost function into a
multiobjective problem. Finally, in penalties, a certain
value is added to the cost function for each violated
constraint. Either, many works in Table 1 do not inform
how they manipulated constraints; however, we believe
that they used penalty functions because it is the most
common way of doing it, as mentioned by Zaman et al.
(2016).

4.2 Q2 - DED Features

Table 2 refers to the complexity of the problem being
solved on each work. In the simplest form, the DED
only considers the valve effect that affects only the
cost function. Ramp Limits, Losses, Prohibit Zones and
Reverse Spinning requirements (SR) are constraints that
increase the search space complexity. The table also
presents the number of units used as a test problem.



Table 2. Complexity of the DED problem (Q2)

# Paper Valve Effects Ramp Limits Losses Prohibit Zones SR Units

1 (Zaman et al., 2016) Yes Yes Yes No No 5, 10, 30, 100, 150

2 (Zaman et al., 2016)b Yes Yes Yes Yes Yes 5,6,7,10,19

3 (Aydin et al., 2017) Yes No Yes No No 3, 5, 6, 13, 40

4 (Gupta and Goyal, 2017) Yes Yes Yes No No 5

5 (Xie et al., 2017) No No No No No 10

6 (Sun and Wang, 2017) No Yes Yes No No 5

7 (Xiong and Shi, 2018) Yes Yes Yes No No 5, 10

8 (Behera et al., 2018) No No No No No 10

9 (Marzbani and Samet, 2018) No Yes Yes No No 6

10 (Wang, 2018) Yes Yes Yes No No 5, 9

11 (Pattanaik et al., 2018) Yes Yes Yes No No 5

12 (Zou et al., 2018) Yes Yes Yes Yes No 5, 10, 30

13 (Fergougui et al., 2018) Yes No Yes No No 10

14 (Pürlü and Türkay, 2018) Yes No Yes No No 3, 10

15 (Pattanaik et al., 2019) Yes Yes Yes No No 10

16 (Basu, 2019) Yes Yes Yes No No 10

17 (Mostefa et al., 2019) Yes Yes Yes No No 10

18 (Dhifaoui et al., 2019) Yes Yes Yes No No 5,10

19 (Shen et al., 2019) Yes Yes Yes Yes No 5, 10

20 (Haripuddin et al., 2019) No Yes Yes No No 7

21 (Gupta et al., 2020) Yes Yes Yes No No 5

22 (Stanovov et al., 2020) Yes Yes Yes No No 5, 9

As we can see, only Zaman et al. (2016) deals with
DED in its full complexity. Moreover, the problem’s
most common complexity is considering the valve effects,
ramp limits, and losses. Only three works handle the
prohibited zones, and only one research examines the
reserve spinning requirements. Regarding the number of
units or generators, Figure 3 shows which the number of
units is most common in the studies. The most recurrent
units are 10 and 5 generators, followed by 6, 7, 9, and
30. More than 30 are uncommon problems and quite hard
to deal with regarding computational time and showing
results.

Fig. 3. Number of units used in the DED

5. CONCLUSIONS

This paper presented a rapid review of evolutionary and
swarm computation for solving de Dynamic Economic-
Dispatch Problem. The most common metaheuristics are
PSO, GA, and DE. However, new metaheuristics, such as
ALO and MSA, have been studied as well. We believe that
attributing a penalty in the cost function for violating
the constraints is the most common form of handling

constraints, followed by Slack Generators. On the other
hand, repairing solutions is not common, probably because
it can increase the required computing time excessively,
and there is no guarantee that the solution might be
repaired. Nonetheless, interesting solutions have been
proposed, such as ε−constraints and the multiobjective
approach. The most common problem solved is the DED
with valve effect and ramp limits considering transmission
losses and using 5 and 10 units (generators).

This research’s main difficulty is that some papers do
not provide enough information to identify all questions
done in this work. Sometimes we have to go after one
or more related works to correctly identify the base al-
gorithm, the number of generators, or how they dealt with
constraints. Especially those conference papers that are
abided by restricted space rules. Some lack of information
also impacts the experiment’s reproducibility, especially
in those works that do not provide information about how
they treated constraints.

Future work to improve this review is: (i) add those works
dealing only with emission cost; (ii) investigate other types
of metaheuristics; and, (iii) expand the mathematical
model to include also the multiobjective approaches; (iii)
use this work to implement a variant of an algorithm for
solving the DED; and (iv) implement an algorithm in GPU
for solving big instance problems whit more than 30 units.
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Pürlü, M. and Türkay, B.E. (2018). Dynamic economic
dispatch with valve point effect by using ga and pso
algorithm. In 2018 6th International Conference on
Control Engineering Information Technology (CEIT),
1–6.

Ribeiro Jr., E.C., Cortes, O.A.C., and Saavedra, O.R.
(2020). A parallel mix self-adaptive genetic algorithm
for solving the dynamic economic dispatch problem. In
Simpósio Brasileiro de Sistemas de Energia, 1–6. SBA.

Shen, X., Zou, D., Duan, N., and Zhang, Q. (2019).
An efficient fitness-based differential evolution algo-
rithm and a constraint handling technique for dynamic
economic emission dispatch. Energy, 186, 115801.

Shi, Y. (2011). Brain storm optimization algorithm.
In Y. Tan, Y. Shi, Y. Chai, and G. Wang (eds.),
Advances in Swarm Intelligence, 303–309. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Simon, D. (2008). Biogeography-based optimization. IEEE
Transactions on Evolutionary Computation, 12(6), 702–
713.

Stanovov, V., Akhmedova, S., and Semenkin, E. (2020).
Combined fitness–violation epsilon constraint handling
for differential evolution. Soft Computin, 24(10), 7063–
7079.

Storn, R. and Price, K. (1997). Differential evolution –
a simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization,
11(4), 341—-359.

Sun, Y. and Wang, Z. (2017). Improved particle
swarm optimization based dynamic economic dispatch



of power system. Procedia Manufacturing, 7, 297–
302. International Conference on Sustainable Materials
Processing and Manufacturing, SMPM 2017, 23-25
January 2017, Kruger.

Wang, G. (2018). Moth search algorithm: a bio-
inspired metaheuristic algorithm for global optimization
problems. Memetic Computing, 10(1), 151–164. doi:
https://doi.org/10.1007/s12293-016-0212-3.

Xie, M., Cheng, P., and Ke, S. (2017). Power system
dynamic economic dispatch with wind-solar integration
based on particle swarm intelligent searching algo-
rithm. In 2017 China International Electrical and
Energy Conference (CIEEC), 252–257.

Xiong, G. and Shi, D. (2018). Hybrid biogeography-
based optimization with brain storm optimization for
non-convex dynamic economic dispatch with valve-point
effects. Energy, 157, 424–435.

Yang, X.S. (2009). Firefly algorithms for multimodal
optimization. In O. Watanabe and T. Zeugmann (eds.),
Stochastic Algorithms: Foundations and Applications,
169–178. Springer Berlin Heidelberg, Berlin, Heidelberg.

Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary
programming made faster. IEEE Transactions on
Evolutionary Computation, 3(2), 82–102.

Zaman, F., Elsayed, S.M., Ray, T., and Sarker, R.A.
(2016). Configuring two-algorithm-based evolutionary
approach for solving dynamic economic dispatch
problems. Engineering Applications of Artificial
Intelligence, 53, 105–125.

Zaman, M.F., Elsayed, S.M., Ray, T., and Sarker, R.A.
(2016). Evolutionary algorithms for dynamic economic
dispatch problems. IEEE Transactions on Power
Systems, 31(2), 1486–1495.

Zou, D., Li, S., Kong, X., Ouyang, H., and Li, Z. (2018).
Solving the dynamic economic dispatch by a memory-
based global differential evolution and a repair technique
of constraint handling. Energy, 147, 59 – 80.




