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Abstract The command governor (CG) is a useful strategy to avoid constraints violation in
case of control reconfiguration or operational conditions changes, like switched systems mode
changes. In general, the structure of the CG specializes in producing an alternative reference
signal to drive a closed-loop system to the desired reference while avoiding constraints violations
in the control signal, state-space, or combinations of them. In this paper, we propose a simple
strategy that modifies the conventional structures of the CG and supervisor, yielding a switched
rule based on the estimated controllers’ region of attraction. We present some simulations
to illustrate the proposal’s potential and compare it with a competitor scheme exploiting a
dwell-time approach. The results suggest that our approach adds new possibilities of CG and
supervisor design, reducing the transition time between system modes and improving the closed-
loop performance indexes.

Keywords: Command Governor, Discrete-time systems, Switching systems, Lyapunov stability,
Region of attraction

1. INTRODUCTION

The fundamental frameworks of classical and modern
control theory are conceived for unconstrained systems.
Therefore, if constraints are of interest, ad-hoc solutions
must used. Some approaches handle saturating actuators
by using a polytopic representation or generalized sec-
tor conditions (Tarbouriech et al., 2011). However, these
techniques cannot handle the state’s constraints directly,
requiring the inclusion of state-space constraints (Klug
et al., 2015). Some techniques started to be developed
that enforces constraints, like the model predictive control
(MPC) (Zhang, 2016; Wang, 2009). However, they require
the design of a new controller following the framework.
Another line of research tried to solve the same problem by
using existing controllers. Instead of trying to compute the
optimal control path that keeps the system constrained,
it uses model prediction to change the reference given to
existing controllers to keep the system constrained. The
first of such techniques were reference filters that also
imposed only soft-constraints (Vahidi et al., 2007).
The idea then evolved into Reference Governors (RG),
which makes use of optimization to find the best reference
to follow (Gilbert et al., 1995). The RG gives a virtual
reference g(k) to the controller, which is a scaled ver-
sion of the real reference r(k), read g(k) = δr(k). The
optimization problem finds the best δr(k) that minimizes
the distance between g(k) and y(k) without violating the
constraints. Because of the simplicity of the optimization

problem, this approach has an easy implementation but
suffers from loss of dimensions. Such a loss comes from
the fact that variation is one-dimensional while r(k) may
be multidimensional (Gilbert and Kolmanovsky, 1999).
Building on this idea, Bemporad et al. (1997) and Casavola
et al. (2000) developed what is known today as the
Command Governor (CG) approach. The difference to RG
is that the CG technique optimizes g(k) directly, requiring
more computational processing power but yielding better
system performance, especially when the reference has
dimension greater than 1. They also built on the work
of Kapasouris et al. (1988), which explores the ideas of
the Lyapunov Theorem and Invariant Sets Theorem.
Switching systems are composed of many subsystems,
called modes, which switch according to a switching
rule (Liberzon, 2003; Liberzon and Morse, 1999). Only
one subsystem can be active at a given time. The switch-
ing can cause instability even when all subsystems are
stable, which leads to the notion of a dwell-time: how
long a subsystem must remain active after switching to
avoid instability (Liberzon and Morse, 1999). Different
approaches have been proposed to compute the minimum
dwell time (see (Chesi et al., 2010) and reference therein)
and stabilizing controller (see (Lin and Antsaklis, 2009)
for switched linear systems). Fewer solutions exist to deal
with constrained switching systems, see e.g. (Lucia and
Franzè, 2017; Franzè et al., 2017) and references therein.
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In (Lucia and Franzè, 2017; Franzè et al., 2017), the CG
framework is used to supervise the system mode switches
and assure both stability and constraint satisfaction.
In this work, considering the class of switched systems
(switching systems with controlled switching signals), we
propose a novel switching rule based on the switching
CG’s region of attraction. It aims at improving the control
performance obtained in the previous work of Franzè et al.
(2017) where mode-switches occur after a worst-case dwell-
time elapses.
The presented approach consists of a two-step switch,
which uses an intermediate CG. This intermediate CG has
the constraints of the source CG and the controller of the
target CG. To change from CGi to CGj , you first switch
from CGi to a CGij when the system enters the region of
attraction of CGij ’s controller, and then changes to CGj

when the system enters the intersection of the constraint
regions between CGij and CGj . Thus, if it is verified that
the controller of CGj has better performance than that of
CG1, it can be used from an earlier stage.
This paper organization is as follows: in the next section,
we define the command governor and supervisor struc-
tures. In section 3, we give two examples to illustrate
the proposal and to compare its performance with other
approaches found in the literature. The finds suggest our
method outperforms the previous ones, being an excellent
alternative to the CG switching policy.
Notations: The set of real numbers is denoted by R. Rn

denotes a vector of n real elements. V, W and C represent
sets. M⊤ represents the transpose of M . g(k) represents
a discrete-time signal. We define x⊤Ψx with x ∈ Rn and
semidefinite positive matrix Ψ ∈ Rn×n as the norm ∥x∥2Ψ .

2. PROBLEM FORMULATION AND
PRELIMINARIES

A switched discrete-time system given in the state-space
representation has the form

x(k + 1) = Aix(k) +Biu(k),

y(k) = Cix(k) +Diu(k),

c(k) = Eix(k) + Fiu(k),

(1)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rp is the
output, c(k) ∈ Rnc is the constrained or weight output,
the matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n,
and D ∈ Rny×nu concern the system’s dynamic and
output, matrices E ∈ Rnc×n and F ∈ Rnc×nu concern
the constrained output and are chosen by the designer to
take into account the constraints associate with the state
and control signal. The sub-index i = 1, . . . , s refers to
the active model. In many cases the mode i is switched
depending on the state-vector, and thus on its trajectory.
We exploit the state-feedback structure to propose a
mode-dependent proportional-integral (PI) action for the
system (1). The controller is designed to ensure null
steady-state error for piecewise constant references at each
mode i, and thus the integral action is applied over the
tracking error (Lopes et al., 2020)

e(k) = r(k)− y(k), (2)
where r(k) is the desired output of the system. The pro-
portional action comes from the system’s state deviation

with respect to the equilibrium point. Because we suppose
the state values are not measured, we use an observer to
estimate them. Fig. 1 depicts the topology of the consid-
ered controller with the observer.
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Figure 1. PI-like controller.

By defining an augmented state vector

ξ(k) =
[
x̂(k)

⊤
v(k)

⊤
]⊤

,

where v(k) ∈ Rnu is the vector of added integrators, the
closed-loop system shown in Fig. 1 can be rewritten as

ξ(k + 1) = Aiξ(k) + Biu(k),
yk = Ciξ(k) +Diu(k),

(3)

where Ai =

[
Ai 0
−CiAi I

]
, Bi =

[
Bi

−CiBi

]
, Ci =

[
Ci 0

]
,

Di =
[
D⊤

i 0
]⊤.

The design of each controller gain Ki ∈ Rnu×(n+p) may use
standard LMI based techniques, such as, for instance, pole
placement (Yu, 2013), LPV design (Briat, 2014), or robust
control (Boyd et al., 1994). In this case, the main issue is
to ensure the stability between the switching instants, and
our approach concerns such an aspect, as presented in the
next section. It is important to note that, in practice, the
controller may be designed independently for each mode.
Thus, for each mode we design a observer gain Li ∈ Rn×ny

ensuring the asymptotic convergence of the estimation
error (x̂(k)− x(k)) to zero. Such gains yield the following
mode-dependent observers:

x̂(k + 1) = Aix̂(k) +Biu(k) + Li(y(k)− Cix̂(k)). (4)

Conventional methods in the literature can calculate the
gain Li (Chen, 2012-11; Hespanha, 2018-02). Therefore,
the linear control law becomes

u(k) = Kiξ̂(k) =
[
KPi KIi

]
ξ̂(k), (5)

with ξ̂(k) =
[
x̂(k)

⊤
v(k)

⊤
]⊤

, for i = 1, . . . , s.

Note that the constrained output can also be expressed in
terms of the augmented state ξ(k), taking into account the
state of the integrator, i.e., c(k) in (1) can be given by

c(k) = Eiξ̂(k) + Fiu(k), (6)
with the mode-dependent matrices Ei and Fi with ade-
quate dimensions.

2.1 Command Governor

The Command Governor (CG) is an add-on technique that
extends existing controllers with constraint enforcement. It
uses the system model to predict states given a reference
y(k) and computes the virtual reference g(k) closest to
y(k) that keeps the system constrained. Fig. 2 presents its
block diagram, which shows that the CG is aware of the



system and controller states. The constraint itself is an
integral part of the CG.
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Figure 2. Command Governor Block Diagram.

In what follows we use the sets C, W, and V defined as
follows:
(1) The set of values allowed to the constrained output,

c(k), defines the set C, which is the output restriction.
(2) Let ω ≡ g(k) for a constant g(k). W is the set of all

values ω that keep c(k) constrained on the steady-
state.

W = {ω ∈ Rny : c(k) ∈ C, k →∞}.
(3) V is the set of ω values ensuring the constrained

output to belong to C in the next k0 samples
V = {ω ∈ W : c(k) ∈ C, 0 < k ≤ k0},

We write the set V in terms of convex constraints on the
virtual reference, the k future states, the minimization
of the distance to the desired reference, and actuator
saturation.
The output of the Command Governor is given by the
following convex optimization procedure:

g(k) = arg min
ω∈V

∥ω − r(k)∥2Ψ (7)

where Ψ is a semi-definite positive weighing matrix and
g(k) is the virtual reference closest to the desired reference,
not allowing the system to violate the constraints. Observe
that the set V is defined by evolving the system in
closed-loop, without disturbances, a number k0 of samples
ahead, and testing if the state sequence remains inside the
constraints.

2.2 Supervisor

The supervisor is responsible for selecting which i-th CG is
currently active. Fig. 3 shows its block diagram, in which
we see that all CGs are continuously updated, but only
one is active to send control signals to the system. The
policy for switching CGs is problem-dependent. It might
be another controller giving better performance, according
to some metric, or being able to access a state-space region.
However, even if the policy allows the change, it will not
be admissible if x(k) ̸∈ Xi ∩ Xj , where

Xi =

{
x ∈ Rn|

[
ω

x

]
∈ Zi for at least one ω ∈ Rny

}
(8)

is the set of all states that can be steered to an equilibrium
point without constraint violation, with

Zi =

{[
r

x

]
∈ Rny × Rn|c(k) ∈ Ci,∀k ∈ Z+

}
(9)

being the admissible output set.
A system can have many CG units, each of them with its
constraint region. A generic CG switch CGi → CGj is
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Figure 3. Supervisor Block Diagram.
admissible (with respect to the plant constraints) if the
two CG’s domains have a nonempty intersection. If one
wants to go from CG1 to CG3 and there is no intersection,
one must find a path through other CGs with nonempty
intersections. Therefore the union of all CG’s domains
cannot be a disconnected domain. To change the active
CG, one needs to go to a point interior to the CG’ domains
intersection, called way-point. This point can be chosen
arbitrarily inside the intersection of constraints. However,
it is better to use points in the central area, not so close
to the borders, to avoid problems involving disturbances
and controller sensitivity (Keel and Bhattacharyya, 1997).
All the paths from one CG to another can be calculated
offline, for example, using graph theory(Ahuja et al., 1990-
04; Pettie, 2004-01).
In (Lucia and Franzè, 2017; Franzè et al., 2017) it has
been shown that any CG switch, e.g. CGi → CGj

can be safely accomplished (preserving the constraints)
form any point belonging to the intersection between the
two CGs’ domains. Therefore, a possible way to achieve
a safe switch is to define a waypoint reference in the
intersection set. Once the plant trajectory, under the
action of CGi is confined in the intersection region, then
CGj is activated. Moreover, the minimum waiting time
assuring that the state of the system enters CGj ’s domain
is defined resorting to the concept of guaranteed dwell-
time.
This approach is a way of guaranteeing stability, as the
dwell-time is calculated not to allow the switching to occur
neither too soon nor too often, giving enough time to the
current controller to stabilize the system before switching
again. It is, however, a very conservative approach that
assumes a worst-case scenario. Although it might be nec-
essary to stabilize some systems, it is not always needed
and may lead the convergence time to take longer.

3. A NEW SUPERVISOR POLICY

We propose a new switching policy that does not use
dwell time, allowing switching modes earlier, by taking
advantage of the concept of the region of attraction of the
controllers, and yielding better closed-loop performance
indexes, as, for instance, minimizing the settling time.
The switch occurs in two steps: first, the CG is changed
to a temporary CG (CGij), consisting of the previous
CG’s constraint and the target CG’s controller. This



switch happens when the system enters the CGj ’ region of
attraction. CGj is activated when the constrained output
is inside CGij and CGj domain intersection.

3.1 Offline computations

When switching controllers earlier, it is necessary to com-
pute an estimate of the region of attraction of the i-th
controller. A region of attraction (RoA) is a region of ini-
tial conditions yielding trajectories with guaranteed con-
vergence to the equilibrium condition. In such a case, we
consider (1) under input saturation. Thus, even though the
input constraints are usually included in the set C and are
handled by the optimization machinery, at this point, we
explicitly consider them, by using a saturating allowance
approach (Tarbouriech et al., 2011). In such a case, we
assume decentralized saturation function, sat (u(k)), in-
stead of u(k) as the input signal in (1), where ū is the
saturation value and

sat (u) = sign(Uℓ)min{|u(ℓ)|, ū(ℓ)}, ℓ = 1, . . . ,m,

where u(ℓ) means the ℓ-th entry of u. An useful Lyapunov
candidate function for each CG is V (ξ̂(k)) = ξ̂(k)

⊤
Piξ̂(k),

with 0 < Pi = P⊤
i ∈ Rna×na and i = 1, . . . , s, where na is

the system dimension plus the number of controller states
(e.q. integrators). Such an estimate can be computed by
solving a suitable optimization procedure for each mode,
such as

min
Pi,Gi,Si

Trace(Pi)

s. t.
[
A⊤

i PiAi − Pi −BiSi +G⊤
i

⋆ −2Si

]
< 0 (10)[

−Pi (Ki −Gi)
⊤

⋆ −u2

]
< 0

with Gi ∈ Rnu×na , Si ∈ Rnu×nu is a positive diagonal
matrix, for ℓ = 1, . . . ,m. This optimization procedure
allows to compute a contractive level set associate with
the Lyapunov function V (ξ̂(k)), given by

LV (Pi) = {ξ̂(k) ∈ Rna : ξ̂(k)
⊤
Piξ̂(k) ≤ 1}. (11)

Note that (10) uses control signal saturation (ū) to gener-
ate an estimate of RoA. Because we can run the optimiza-
tion procedure (10) offline, it does not change the proposed
switching scheme.

3.2 Implementation summary

Algorithm 1 describes how the switch should occur be-
tween the current CG and the target one. We suppose
that the target CG is known, and its constraint set has a
no empty intersection with the constraint set of the actual
one. Thus, the next CG should be decided in a higher
instance, calculated offline, as stated in the Section 2.2.
The algorithm gives the possibility of operating in a hybrid
condition, i.e., with constraints of the current CG and
the controller of the target CG. Thus, a vital part of our
switching policy is allowing switching controllers earlier,
mixing the CG operational conditions. Switching earlier is
a good option when one knows that the next command
governor’s controller has better performance than the

Algorithm 1 New Supervisor Policy
1: Input: CGi ← current CG, CGj ← target GG.
2: let P1 and P2 be the solution of optimization proce-

dure (10), for CGi and CGj , respectively.
3: if should switch controllers earlier then
4: while ξ̂(k) ̸∈ LV (P2) do
5: calculate g(k)
6: execute controller
7: end while
8: change current controller and model to CGj ’s ones
9: reset integrators

10: end if
11: while x(k) ̸∈ Xi ∩ Xj do
12: calculate g(k)
13: execute controller
14: end while
15: change to CGj

16: reset integrators if not already done
17: change r(k) to next way-point
18: restart algorithm

controller of the current one. Note that better performance
can mean, but is not limited to, faster convergence.
The implementation of the Algorithm 1 deserves some
attention concerning the next steps.

Should controllers switch earlier? The user may imple-
ment several strategies to answer such a question. The
main issue here is to determine when the controller of the
target CG may perform better. Such a controller activation
must happen only when the closed-loop state belongs to
its RoA. Moreover, it must achieve some performance
requirements, justifying an earlier activation. One case is
a controller that gives a more aggressive control action,
for instance, by accelerating the closed-loop convergence
response. The designer must carefully evaluate the ideal
criteria for each controlled process.

Hybrid CG changing: In case of changing to the next CG
controller but remaining with the current CG constraints,
we call such a case hybrid or partial change. Both model
and controller switch. Therefore, the new model and
controller should attain the same output values as its
previous one.

Reset integrators: After hybrid or complete CG switch-
ing, it is necessary to adequately set the controller state
ensuring the continuity of the system output. In this paper,
we chose to simulate the target CG’s model and controller,
evolving the closed-loop to the same output value of the
actual non-linear system.
Another way of dealing with integrators is to run the
next CG in parallel, with some modifications: instead of
minimizing the distance to the reference, minimize the
distance to the actual state and use only ω ∈ C as a
constraint. Also, do not use an observer. This way, the
next CG’s system’s internal states will evolve to a valid
point that lies in its constraint. When the switch occurs,
the CG will already have a valid state.
Another approach is to find the values of the integrators
that make the control output the same as the actual



output. This method might work well with stable systems
that have continuity from one mode to another but will
not work if the modes require completely different control
signals (for example, switched electrical systems).

4. NUMERICAL EXAMPLES

In this section, we apply our approach to two systems and
compare the achievements with the approaches presented
by Franzè et al. (2017). The first example is physically mo-
tivated, and the second one concerns an unstable academic
model.

4.1 Level Control System

Consider an interactive tank system as indicated in Fig-
ure 4. It consists of two coupled tanks, namely T1 and T2,
that are feed by two with controlled outflows u1 and u2,
measured in cm3 s−1. The levels of each tank, h1 and h2

(cm), are the control objective variables.

q1 q2

R12

u1 u2

h1

h2

R1 R2

Figure 4. System of Coupled Tanks

The output flow of the T1 and T2 are denoted by q1 and
q2 (cm3 s−1), respectively, and the flow between them is
noted by q12 (cm3 s−1).
Both tanks have the same cross-section area, denoted as A
(cm2), as well as the cross-section areas of the restrictions
in the outputs of the tanks, a (cm2); g (cm s−2) is the
gravity acceleration. By using Bernoulli’s equations, we
have:

ḣ1(t) =
u1(t)− q1(t)± q12

A
,

ḣ2(t) =
u2(t)− q2(t)∓ q12

A
,

(12)

where the flows are given by q1(t) = a
√
2gh1(t), q2(t) =

a
√

2gh2(t), and q12(t) = a
√
2g |h2(t)− h1(t)|.

This is a nonlinear and switching system, as the model
changes depending on the height of the tanks’ water
column. At each mode, h1 > h2 or h1 ≤ h2, equation (12)
can be linearized around an equilibrium operational point
(xeq, ueq) by using Jacobian matrices. In what follows, we
use a = 5.9, A = 961π, and g = 980.665.

Two operational conditions with x(k) =
[
h1(k) h2(k)

]⊤ ,
are such that:

x1
eq =

[
57.5

43.61

]
, u1

eq =

[
744

2960

]
, x2

eq =

[
43.61

57.5

]
, u2

eq =

[
2960

744

]
,

yielding two operational modes, each of them correspond-
ing to a CG. After the linearization, we discretized the

continuous-time model using a sample time of 5 s and
Euler equations to get discrete-time model given by (1)
with matrices:

A1 =

[
0.92 0.053

0.053 0.91

]
, A2 =

[
0.91 0.053

0.053 0.92

]
B1 =

[
0.0016 4.5 · 10−5

4.5 · 10−5 0.0016

]
, B2 =

[
0.0016 4.5 · 10−5

4.5 · 10−5 0.0016

]
,

C1 = C2 =

[
1 0

0 1

]
,

and s = 2. Using Lyapunov’s and Kalman’s approaches (Chen,
2012-11; Hespanha, 2018-02) we got the following con-
troller and observer gains:

K1 =

[
−875.384 −9.217 −297.447 7.982

−8.505 −849.853 8.514 −279.434

]
,

K2 =

[
−849.853 −8.505 −279.434 8.514

−9.217 −875.384 7.982 −297.447

]
,

L1 =

[
−0.919 −0.053
−0.053 −0.915

]
, L2 =

[
−0.915 −0.053
−0.053 −0.919

]
,

for the operational modes 1 and 2.
We simulated our approaches described by algorithm 1
to switch between the CGs 1 and 2. In both cases the
system starts in x(0) =

[
43.61 57.5

]
. The references are

r =
[
57.5 43.61

]
, for 0 ≤ k ≤ 10 ∪ 50 ≤ k ≤ ∞, and

r =
[
43.61 57.5

]
, for 11 ≤ k ≤ 49. Therefore, the system

must perform a closed path.
Fig. 5 shows the path taken by the closed-loop system
over the space of the system’s state. The trajectory marked
with red-dashed line concerns the results achieved without
early-switch, and the solid-blue line is related to ones with
early-switch. The shadow regions concern the constraints
of each mode. Also, Fig. 5 shows the borders of the
estimates of the regions of attraction, RoA, for each mode,
with dot-dashed lines.
It is clear that the path taken under each algorithm are
almost the same. The respective control signals are given
in Fig. 6, pointing to no relevant difference between the
methods.

4.2 Unstable System

Consider the unstable switching system (1) with matrices:

A1 =

[
1 0.003

0 1

]
, A2 =

[
1 0.0074

0 1.1

]
,

B1 =

[
0.0005 1.2 · 10−6

0 0.0008

]
, B2 =

[
0.0019 3.6 · 10−5

0 0.011

]
,

C1 = C2 =

[
1 0

0 1

]
,

and two operational points were selected:

x1
eq =

[
1

1

]
, u1

eq =

[
−2
−5
4

]
, x2

eq =

[
−1
1

]
, u2

eq =

[−30
19

−10

]
.

The sample-period was 0.1 s, and controller and observer
gains are given by:
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Figure 5. States trajectory for Example 1.
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Figure 6. Control signals for Example 1.

K1 =

[
−2.669 · 103 −1.993 −6.741 · 102 1.010

3.582 · 10−4 −1.669 · 103 −3.103 · 10−4 −4.210 · 102

]
,

K2 =

[
−7.034 · 102 −1.268 −1.769 · 102 6.097 · 10−1

−3.903 · 10−6 −1.370 · 102 −1.292 · 10−5 −3.202 · 101

]
,

L1 =

[
0.89374311 0.01193574

0.00922275 0.91488323

]
, L2 =

[
0.64130679 0.0107965

0.00533561 0.8518838

]
.

With the same procedures and considerations of the previ-
ous example, including the used color codes, we simulated
the unstable system. Figure 7 shows the same system
trajectory for both methods.
The second method shows better performance under con-
trol signal restrictions. Figure 8 reveals a difference in
the control signals, where the first method, displayed in
red dashed-line and green dashed-line, have higher control
signal outputs than the second method, shown by blue
solid-line and orange solid-line.
Both methods results in the same settling time, but
with much lower control effort with the strategy of early
switching.
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Figure 7. States trajectory for Example 2
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Figure 8. Control signals for Example 2

4.3 Dwell-time comparison

We simulated the system described in in (Franzè et al.,
2017, Equation 25) using the approach proposed here. We
used the same controllers and simulated with the same
changes and times as described by Franzè et al. (2017).
Our method took 15 s to converge after the first reference
change, as opposed to 20 s achieved by the dwell-time
method, making our approach 25% faster.

5. RESULTS AND DISCUSSIONS

We presented two new schemes for Control Governor
switching that do not use dwell-time, leading to faster
closed-loop responses. When the control’s objective is to
take the system from one operational condition to another,
it might not be necessary to calculate a dwell-time. A
dwell-time is only necessary to prevent the system from
switching back and forth and becoming unstable, which is
not the case when the system will switch and move away
from the switching condition.
In the case of the tanks presented, the switch can only
occur at the intersection of the constraints. The supervisor
will move the reference to the next way-point as soon as the
CGs are swapped, disqualifying any further CG change. It
is then only necessary to show the stability of the switch.
It is possible to calculate the region of attraction of the
controller designed using the Lyapunov theorem. It is
then possible to guarantee that, once switched, the system
will converge to the new reference. Because of this, both
methods avoid waiting for the system to converge to a



way-point. The advantage is then a shorter time to reach
the real reference.

6. CONCLUSIONS

The proposed method allow for faster mode switching
when the system can not, by design, go back to the previ-
ous mode. The approach allow us to bypass the dwell-time
and achieve better closed-loop performance indexes, such
as the settling time. The use of the region of attraction can
be further investigated to easy the work done by the com-
mand governor, by exploring the contractivity properties
of the estimate region of attraction.
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