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Abstract: The vehicle mass is an important information to guarantee drivability, performance feel, fuel economy and 

safety. In this sense, the application of strategies to reach these goals depends on how accurate the vehicle operating 

information is, requiring a precise and robust algorithm. This paper proposes an offline mass estimation method of 

passenger cars, using the Extended Kalman Filter. The method combines the filter approach whereby only the speed 

is provided as a measurement with a parameter estimation to adjust possible modelling errors and to calculate a 
proposed engine torque. Tests in city routes were done in controlled dynamics to guarantee the effectiveness of the 

estimation and the simulation results presented errors below 5%. 
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                 1. INTRODUCTION 

Fuel economy, drivability, and safety of passengers  are 

prioritized areas for today’s automotive manufacturers (Holm, 

2011). In this respect, it is well-known that the dynamic 

behavior of a vehicle is affected by its mass and the road slope 

(Lundin and Olsson, 2012). Thus, many proposed fuel-saving 

techniques are dependent on measurements of road conditions 

and variation of vehicle mass. However, using extra sensors to 

obtain these quantities increases the financial cost of the 

solution. In this way, several studies propose the use of 

software and microprocessor technology to estimate road and 

vehicle mass variations by using data that is already available 

in the vehicle. 

 

 Zarringhalam et al., (2012) present an approach to estimate 

mass in passenger cars based on suspension dynamics and 

compare four estimation techniques, namely: (i) Recursive 

Least Squares (RLS), (ii) Recursive Kalman filter (RKF), (iii) 

gradient parameter estimation and (iv) Extended Kalman filter 

(EKF). They highlight the advantages of using EKF instead of 

others, like consistent performance and applicability to 

nonlinear systems with noisy measurements.  Bae, Ryu and 

Gerdes, (2001) compare two methods of estimating road grade 

of ground vehicles using GPS signal. The results with the 

engine torque measurement are used in a longitudinal balance 

to produce a recursive estimation of vehicle mass and other 

parameters. Winstead and Kolmanovsky, (2005) propose the 

estimation of road grade and mass in a mid-size vehicle using 

the EKF powered by a engine torque uncertainty model, in 

addition to controlling the vehicle speed through a model 

predictive controller in order to enhance parameter 

identification. Paulsson, (2016) estimates the mass and road 

grade applying a method based on RLS associated with vehicle 

longitudinal dynamics, whose the engine torque input signal 

come from vehicle’s CAN-bus. The author works with a mid-

size vehicle and also show the robustness of the RLS method. 

Fathy, Kang and Stein, (2008) work with the same method in 

a instrumented SUV, but a fuzzy supervisor is added to the 

estimator to determine whether the vehicle's data is under 

appropriate conditions to the estimator.  

 

Regarding truck longitudinal models, Andreas Eriksson, 

(2009) works with heavy vehicles and uses an adaptive 

Kalman filter to correct both mass and covariance matrix that 

is set in the filter, the engine torque is known by the truck’s 
electronic engine controller. Furthermore, he needs to set 

several thresholds to avoid erroneous estimates. Holm, (2011) 

works with the EKF and proposes a method that measures the 

road grade and estimates the mass of trucks on road. The 

results show that the filter is fast and sufficiently accurate. 

Lundin and Olsson, (2012) develop two configurations of 

truck inertial parameters estimation, considering the engine 

torque measured: (i) one estimates both mass and road grade, 

while (ii) the other only estimates the mass and uses the road 

grade provided by a sensor in a model. Although both have 

shown satisfactory results, the latter is more accurate, robust, 

and quicker than the former. A hybrid method using a 

weighted trade-off of RLS and the EKF is presented by Sun et 

al., (2016), the goal is to increase the results compared with 

situations where the algorithms are used alone. The estimation 

demonstrated faster convergence and lower error rate on city 

bus route. 

 

By analyzing the proposed methods described above, it is 

possible to highlight some observations.: 

• The RLS and EKF estimation methods are the most 

frequent approaches and present advantages over the 

others; 
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• The engine torque can be obtained from CAN-bus as 

in Paulsson, (2016) or by a model as in Winstead and 

Kolmanovsky, (2005); 

• The vehicles used in most studies are heavy vehicles. 

 

From this scenario, this paper describes the design and 

implementation of EKF to offline estimation of mass and road 

grade in a compact passager car, differing from other 

approaches in this point and in the fact that only the speed is 

provided as measurement by the CAN-bus, which means that 

no additional sensor is used. Furhermore, the engine torque is 

estimated by the author’s method. Once it is an initial 

feasibility study of this methodology applied to compact cars, 

it was chosen an offline approach applied to real operating 

data. 

    2. MODELLING 

2.1 Vehicle Dynamic Model 

The car dynamics can be modeled by Newton’s second law to 

rotational and translational systems as in Holm, (2011): 

 
∑𝐹 = 𝑚𝑣̇      (1) 

     ∑𝑇 = 𝐼𝑤̇      (2) 

 

where, ∑𝐹 is the sum of all translational forces acting in the 

car,  ∑𝑇 is the sum of all torques that acts in the body, 𝑚 is its 

mass, 𝑣̇ is the translational acceleration, 𝐼 is the rotational 

moment of inertia, and 𝑤̇ is the rotational acceleration. 

 

The Fig. 1 is the body diagram of the car, thus, the equation 

that defines the translational forces can be represented by: 

 

𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝐹𝑎𝑖𝑟 − 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 − 𝐹𝑟𝑜𝑙𝑙 = 𝑚𝑣̇      (3) 

 

  

Fig.1. Forces diagram of a vehicle going uphill 

The traction force (𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ) is the vehicle propulsive force, 

originated of the combustion within the engine and then 

transmitted to the wheels and it is defined by Holm (2011) as:  

 

     𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑇𝑒𝑖𝑡𝑓𝜂

𝑟
− 𝑚𝑟𝑣̇,       (4) 

 
where, 𝑇𝑒 is the engine torque, 𝑟 is the wheel radius, 𝑖𝑡𝑓 is the 

gear ratio of the transmission multiplied by the ratio of the final 

drive, 𝜂 is the mechanical losses and 𝑚𝑟𝑣̇ is the rotational 

inertia of the driveline. 

 

The air resistance (𝐹𝑎𝑖𝑟) depends on the squared vehicle speed, 

𝑣, the air density, 𝜌air, the vehicle aerodynamic drag 

coefficient 𝐶𝑑, and the car frontal area 𝐴𝑓: 

     𝐹𝑎𝑖𝑟 =
1

2
𝜌air𝐶𝑑𝐴𝑓𝑣

2.                   (5) 

 

Another force that acts in a vehicle is the longitudinal 

component of gravitational force (𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦). It can accelerate if 

the car is going downhill or decelerate when the car is uphill: 

 
    𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔𝑠𝑖𝑛(𝜃),                   (6) 

 
where 𝑔 is the acceleration of gravity and 𝜃 is the inclination 

angle. 
 

Lastly, there is the rolling resistance (𝐹𝑟𝑜𝑙𝑙), which is an effect 

of the friction and deformation of the wheels. It depends on the 

coefficient of rolling resistance (𝑓𝑟), the vehicle mass (𝑚), the 

gravitational acceleration (𝑔) and the road slope (𝜃): 

 
    𝐹𝑟𝑜𝑙𝑙 = 𝑓𝑟𝑚𝑔𝑐𝑜𝑠(𝜃),                   (7) 

 
additionally, 𝑓𝑟 is assumed to be independent of speed (Lundin 

and Olsson, 2012).  

 
Combining the equations (3) to (7), the result is: 

 

(𝑚 + 𝑚𝑟)𝑣̇ =
𝑇𝑒⋅𝑖𝑡𝑓⋅𝜂

𝑟
−

1

2
𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑓𝑣

2 −  𝑚𝑔(𝑠𝑖𝑛(𝜃) + 𝑓𝑟𝑐𝑜𝑠(𝜃))    (8) 

 

It is necessary to manipulate the equation to separate the 

variables of interest that are the inclination and the vehicle 

mass. This can be done by the method available in (Holm, 

2011): 

 

  𝑠𝑖𝑛(𝜃) + 𝑐𝑜𝑠(𝜃)𝑡𝑎𝑛(𝑦) =
𝑠𝑖𝑛(𝜃+𝑦)

𝑐𝑜𝑠(𝑦)
         (9) 

 

Considering 𝑦 = 𝑎𝑡𝑎𝑛(𝑓𝑟), it is possible to obtain (10) from 

(8). 
 

(𝑚 + 𝑚𝑟)𝑣̇ =
𝑇𝑒𝑖𝑡𝑓𝜂

𝑟
−

1

2
𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑓𝑣

2 −  𝑚𝑔(
𝑠𝑖𝑛(𝜃+atan(𝑓𝑟))

𝑐𝑜𝑠(atan(𝑓𝑟))
)      (10) 

   

To simplify the equation, some substitutions are made, 

namely: 𝑎1 =
𝑖𝑡𝑓𝜂

𝑟
, 𝑎2 = 𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑓, 𝑎3 =

𝑔

𝑐𝑜𝑠(𝑎𝑡𝑎𝑛(𝑓𝑟))
 , 𝛽 =

𝑎𝑡𝑎𝑛(𝑓𝑟), 𝜑1 =
1

𝑚 
, and 𝜑2 = sin (𝜃 + 𝛽). 

 

Therefore, the equation that describes the dynamic behaviour 

of velocity in a passenger vehicle is: 

 

                   𝑣̇ =
𝜑1(𝑇𝑒𝑎1−

1

2
𝑎2𝑣2)−𝑎3𝜑2

1+𝜑1𝑚𝑟
                   (11) 

 

The system states are 𝑣,  𝜑1, 𝜑2 and the model input is the 

engine toque 𝑇𝑒. The values of the model parameters used are: 



 

 

     

 

𝑖𝑡𝑓 = 6.39, 𝜂 = 0.90, 𝑟 = 0.29 m, 𝜌𝑎𝑖𝑟 =  1.22 kg/m3, 𝐶𝑑 = 

0.35, 𝐴𝑓 = 2.15 m2,  𝑓𝑟 = 0.01 and  𝑚𝑟 = 71 kg   

2.2 State Space Model 

Once the final system equation is defined (11), the state space 

model can be established (12). The vehicle mass is considered 

constant, this means that its variation is considered equal to 

zero. The road grade is supposed to be constant in a relatively 

short time interval as in Sun, Y. et al. (2016), for this reason 

the derivative is also equal to zero. 

 

                     𝒙̇ = [
𝑣̇
𝜑1̇

𝜑2̇

] = [

𝜑1(𝑇𝑒𝑎1−
1

2
𝑎2𝑣2)−𝑎3𝜑2

1+𝜑1𝑚𝑟

0
0

]                (12) 

 

 

However, to implement the filter, it is adequate to use the 

model in discrete form. The discretization is carried out using 

the first-order Euler method and the discrete state space model 

is given by (13). 

 

  𝒙𝑘+1 = [

𝑣𝑘+1

𝜑1,𝑘+1

𝜑2,𝑘+1

] =

[
 
 
 𝑣𝑘 + 𝑇𝑠 (

𝜑1,𝑘(𝑢𝑘𝑎1−
1

2
𝑎2𝑣𝑘

2)−𝑎3𝜑2,𝑘

1+𝜑1,𝑘𝑚𝑟
)

𝜑1,𝑘

𝜑2,𝑘 ]
 
 
 

, (13) 

 

where 𝑇𝑠 is the sample time and the input signal is the engine 

torque (𝑢𝑘 = 𝑇𝑒). 

 

As the speed is the unique measurement used, the 

measurement equation is: 

                      𝒛𝑘 = [1 0 0] [

𝑣𝑘

𝜑1,𝑘

𝜑2,𝑘

] + 𝒆𝑘 ,                    (14) 

 

where 𝒆𝑘  is the measurement noise. 

2.3 Model adjustment 

In order to correct possible modelling errors in (11), a 

parameter adjustment was suggested using real speed data, a 

reference inclination and the knowledge of true mass. So, it 

was proposed some correction factors to the model parameters 

𝑎1, 𝑎2 and 𝑎3 as follows: 

𝑎̂1 = 𝑎1 + 𝑝1 + 𝑝2𝑣𝑘−1          (15) 
  

𝑎̂2 = 𝑎2 + 𝑝3 + 𝑝4𝑣𝑘−1                         (16) 

  𝑎̂3 = 𝑎3 + 𝑝5 + 𝑝6𝑣𝑘−1                         (17) 

𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5 and 𝑝6 are the parameters estimated by Least 

Square Method. It is important to note that the new parameters 

are now dependent of the measured speed in the previous 

instant 𝑣𝑘−1. This structure was proposed to generate a better 

use of the dynamics of the unique measurement available. 

Another factor was also added (𝑝7) in the model adjustment. 

It corresponds to a proportional gain that permits the torque to 

be estimated by the relation: 

            𝑇𝑒 = 𝑝7𝑣𝑘−1                     (18) 

     3. EXTENDED KALMAN FILTER 

The Kalman filter uses a set of mathematical equations to 

estimate the process states of a linear model in a way that 

minimizes the mean of the squared error (Welch and Bishop, 

2006). It solves the problem of estimating the states of a 

process defined by the linear state space form: 

          𝒙𝑘 = 𝑨𝒙𝒌−𝟏 + 𝑩𝑢𝑘−1 + 𝒘𝑘−1,                  (19) 

and measurement equation given by: 

                            𝒛𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘 ,                                (20) 

where 𝒘𝑘  and 𝒗𝑘 are the process and measurement noise 

vectors whose covariance matrices are 𝑸 and 𝑹, respectively. 

The 𝑨 matrix relates the state at the previous step with the 

states in the current step  𝑘. The matrix 𝑩 relates the control 

input 𝒖 to the state 𝒙. The matrix 𝑯 relates the state to the 

measurement 𝒛𝑘. 

A common modification of the Kalman filter which linearizes 

about the current mean and covariance is referred to as an 

extended Kalman filter or EKF (Welch and Bishop, 2006). The 

EKF method first linearizes the system around the current state 

estimate, with a first order Taylor series expansion, then the 

standard Kalman filter equations are applied (Holm, 2011). 

The Kalman filter is divided in two steps, namely: (i) 

prediction, and (ii) correction. The former predicts the state 

and error covariance one step of time ahead (𝒙𝒌), using the 

state space model and a priori estimate (𝒙𝒌−𝟏). The equations 

that represent this step are: 

         𝒙𝒌 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1)                        (21) 

         𝑷𝑘
− = 𝑨𝑘𝑷𝑘−1𝑨𝑘

𝑇 + 𝑸𝑘−1                    (22) 

(21) is the generic representation of the non-linear state space 

model, P is the state error covariance, Q defines how much the 

process can be trusted and A is the process Jacobian matrix that 

linearizes the model in each iteration and is calculated by: 

  𝑨 = 

(

 

𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1
⋯

𝜕𝑓𝑚

𝜕𝑥𝑛)

 |𝒙 = 𝒙̂𝑘
−, 𝑢 = 𝑢𝑘          (23) 

The correction performs a feedback weighted by a Kalman 

gain (𝑲), which incorporates the measurement into the a priori 

estimate, providing an improved state estimate (𝒙̂𝑘).  It is 

represented by the equations: 

                     𝑲𝑘 = 𝑷𝑘
−𝑯𝑇(𝑯𝑘  𝑷𝑘

−𝑯𝑇 + 𝑹𝑘)
−1               (24) 

𝒙̂𝑘 = 𝒙̂𝑘
− + 𝑲𝑘(𝒛𝑘 − 𝑯𝑘𝒙̂𝑘

−)                 (25) 



 

 

     

 

      𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘
−                       (26) 

𝑰 is the identity matrix and R is the matrix that represents the 

confidence of the measurement. 

A representation of the filter flow can be seen in Fig. 2. 

  

Fig.2. The Kalman filter predictor-corrector cycle. 

It is important to emphasize that to start the operation of the 

filter, initial guesses on state and state error covariance (𝑷) 

need to be provided together with 𝑸 and 𝑹 matrices. 

4. ESTIMATION OF VEHICLE MASS WITH EKF 

Fig. 3 describes the steps of the EKF application to estimate 

vehicle mass. In this structure, only the speed is measured and 

it is provided by CAN-bus. Therefore, vehicle torque, mass 

and road slope are simultaneously estimated. The torque 

estimation was performed as an adjustment of the vehicle 

speed based in Lundin and Olsson (2012) and using the 

expression (18).  

 

Fig.3. Flowchart of mass estimation 

The model equations that compose the filter are those in the 

discrete state space form (13) and (14). The filter receives the 

noise covariance matrices, the initial conditions and performs 

the estimation of the state variables (speed, mass, and road 

grade) calculating, in each step, the Kalman gain (K), the state 

error covariance (𝑷) and the Jacobian matrix (𝑨) applied to the 

model. 

Once that the filter estimation is completed, the calculation of 

the average mass is based in Holm (2011) and is represented 

in  Fig. 4. It is done with respect to the last data from 

estimation, evaluating the time necessary for the filter to 

complete the convergence entirely. Once the data is selected, 

they are separated in groups of the same size. For each group, 

the standard deviation is calculated and, afterwards, an average 

standard deviation is obtained using the values calculated for 

each group and defined as a limit. The masses of the groups 

with standard deviation below this limit are, then, used to 

calculate the mean mass of the estimation. This method was 

chosen because it is effective in eliminating outliers and 

selecting the data from convergence.  

 

Fig.4. The process of mean mass calculation 

Eriksson (2009) shows that during brake and low speeds the 

estimator does no performs well. In this way, it is possible to 

add an on/off logic that selects the adequate data to realize the 

estimation, turning this off and repeating the last estimation in 

case of non-adequacy. However, if the data is kept avoiding 

these disturbances, the on/off logics can be dispensed and the 

data can be used in the estimation. 

        5. RESULTS AND DISCUSSION 

5.1 Experimental Data 

Three experiments were conducted 3 times in a compact 

passenger vehicle, with only the driver. The mass was kept 

constant at 1092 kg and the experiments were operated under 

similar circumstances during around 20 minutes. Since there 

are some limitations in the data that can be provided to the 

filter, the road selected to do the tests was characterized by few 

curves and low slopes and also without a traffic jam, to keep 

the car in movement. The measurement sample time was 

defined as 7 seconds, once this proved to be satisfactory to 

represent the car dynamics. 



 

 

     

 

5.2 Model Adjustment 

The parameter adjustment of the model was done using the 

data from Test 01 as a reference and the knowledge of mass 

and road grade. The values obtained with this test were also 

used in the others. As can be seen in figures 7, 8 and 9, the 

model's behaviour is superimposed on the measurement, 

proving that its adjustment was successful. 

 

Fig.7. Comparison of measured speed and model speed after 

optimization in Test 01. 

 

Fig.8. Comparison of measured speed and model speed after 

optimization in Test 02. 

 

Fig.9. Comparison of measured speed and model speed after 

optimization in Test 03. 

5.3 Mass Estimation 

Once that the model is adjusted, the states can be estimated. 

The initial conditions of the states provided to the EKF are 

𝑋0 = [𝑣0,
1

1500
, 0.01], 

so the speed is considered equal to the first measurement (𝑣0) 

and the mass initial condition is 1500kg, because it is the 

maximum mass of the compact vehicle used and it is important 

to set the mass in a value far from the real to verify the 

convergence of estimation. To the inclination, once that the 

state is 𝜑2= sin(𝜃+𝛽), the initial condition of 𝜃 is considered 

0.005°. The diagonal of the process covariance matrix used is, 

then 

𝑄 = [0.1,10−10, 0.005], 

the measurement covariance R = 10-4 and the state error 

covariance P = Q. The mass estimation for each test together 

with the respective instant estimation errors can be seen in 

figures 10 to 15.  

 

Fig.10. Mass estimation of Test 01 

 

Fig.11. Mass estimation error of Test 0 



 

 

     

 

 

Fig.12 Mass estimation of Test 02 

 

Fig.13 Mass estimation error of Test 02 

 

Fig.14. Mass estimation of Test 03 

 

Fig.15. Mass estimation error of Test 03 

The results show that the mass estimation, and consequently 

the relative error, converges in a short time interval of 

approximately 5 min towards the expected mass of 1092, what 

represents a quarter of the time of the test. It is possible to 

highlight the fact that the estimation converges without any 

disturbance in the path and, once it approaches the true value, 

it stabilizes so that it does not reach smaller values. As can be 

seen in Table 1 the errors are smaller to Test 01 and Test 03, 

but still does not assume significant values in Test 02. 

Table 1. Mass estimation results to each test 

Experimental 

Data 

Mean 
Estimated 

Mass 

Relative 
Mass 

Error 

Test 01 1092,07 kg 0,0069% 

Test 02 1095,58 kg 0,33% 

Test 03 1092, 02 kg 0,0025% 

 

Another relevant indicator is the confidence interval, 

represented by the green line in the Figures 10, 12 and 14 , that 

is associated with the uncertainty of the estimation and 

represents a range of probable estimates. As can be seen on the 

charts, this interval is bigger in the beginning, that is when the 

filter works more to adjust the estimation, and smaller in the 

end, indicating convergence. Some peaks occur throughout the 

estimation, due to questions of the measurement dynamics and 

it decreases temporarily the confidence. In the last 200 data of 

simulation, that is when the filter estimation is considered 

convergent, the confidence interval is kept below ±200 kg to 

all tests, as can be seen in Table 2. 

Table 2. Mass estimation results to each test 

Experimental 

Data 

Confidence Interval to 

last 200 data 

Test 01 ±100 𝑘𝑔 



 

 

     

 

Test 02 ±200 𝑘𝑔 

Test 03 ±200 𝑘𝑔 

 

6. CONCLUSIONS 

This paper proposes a method to estimate the mass of compact 

passenger vehicles by an EKF with only the speed provided as 

measurement, compensating the modelling errors by a 

parameter adjustment and an engine torque estimation, 

differing from the solutions that already exist in the literature 

that are focused on heavy vehicles and instant measurement of 

engine torque from CAN-bus. Such proposal uses a grey box 

model that follows Newton’s second law and is evaluated on a 

data set collected from a vehicle under controlled conditions 

to guarantee the filter effectiveness. 

As can be seen in the results, the method proposed is 

satisfactory to the presented proposal and it is necessary only 

5 minutes of data to obtain mass estimation errors below 1% 

with a confidence interval around 20% of the real value. This 

means that the car algorithms to reach the drivability, 

performance, safety and comfort can be updated over this time 

interval, with a satisfactory information of mass. Furthermore, 

the model adjustment worked successfully in avoiding 

modelling errors and providing the model input, what helped 

the filter in their estimations. Thus, the EKF proved to be 

sufficient and accurate enough to solve this problem. 

However, since the mass estimation is an important source of 

information to increase vehicle performance and the control 

actions of the vehicle systems need to be done in real time, it 

would be very advantageous, in future works, to develop some 

other analyses. Develop an embedded system and apply this 

tool online is essential to verify the effectiveness in real 

situations. Furthermore, work with another vehicle masses and 

under different driving conditions to verify limits of the 

method and its effectiveness is an important step. Another one 

is to use different structures of model to improve the results 

and the confidence interval. Lastly, study the data uncertainty 

is necessary because the model may have been adjusted to 

process noise. 

       REFERENCES 

AndreasEriksson (2009) Implementation and Evaluation of a 

Mass Estimation Algorithm. 

Bae, H. S., Ryu, J. and Gerdes, J. C. (2001) ‘Road grade and 

vehicle parameter estimation for longitudinal control using 

GPS’, IEEE Conference on Intelligent Transportation 

Systems, Proceedings, ITSC, pp. 166–171. 

Fathy, H. K., Kang, D. and Stein, J. L. (2008) ‘Online vehicle 

mass estimation using recursive least squares and 

supervisory data extraction’, Proceedings of the American 

Control Conference, pp. 1842–1848. doi: 

10.1109/ACC.2008.4586760. 

Holm, E. J. (2011) Vehicle Mass an Road Grade Estimation 

Using Kalman Filter, Electrical Engineering. Linkopingd 

Universitet. Available at: 

http://www.vehicular.isy.liu.se/Publications/MSc/09_EX_4

227_JL.pdf. 

Lundin, B. and Olsson, A. (2012) Estimation of Vehicle Mass 

Using an Extended Kalman Filter. Chalmers University of 

Technology. Available at: 

http://publications.lib.chalmers.se/records/fulltext/160109.p

df. 

Paulsson, E. (2016) ‘Vehicle Mass and Road Grade 

Estimation Using Recursive Least Squares’. 

Raffone, E. (2013) ‘Road slope and vehicle mass estimation 

for light commercial vehicle using linear Kalman filter and 

RLS with forgetting factor integrated approach’, 

Proceedings of the 16th International Conference on 

Information Fusion, FUSION 2013, pp. 1167–1172. 

Sun, Y. et al. (2016) ‘A hybrid algorithm combining EKF 

and RLS in synchronous estimation of road grade and 

vehicle mass for a hybrid electric bus’, Mechanical Systems 

and Signal Processing. Elsevier, 68–69, pp. 416–430. doi: 

10.1016/j.ymssp.2015.08.015. 

Welch, G. and Bishop, G. (2006) ‘An Introduction to the 

Kalman Filter’, In Practice, 7(1), pp. 1–16. doi: 

10.1.1.117.6808. 

Winstead, V. and Kolmanovsky, I. V. (2005) ‘Estimation of 

road grade and vehicle mass via model predictive control’, 

Proceedings of 2005 IEEE Conference on Control 

Applications, pp. 1588–1593. doi: 

10.1109/CCA.2005.1507359. 

Zarringhalam, R. et al. (2012) ‘A comparative study on 

identification of vehicle inertial parameters’, Proceedings 

of the American Control Conference, (x), pp. 3599–3604. 

doi: 10.1109/acc.2012.6314832. 

 




