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Abstract: Model Predictive Control is a control technique that has been greatly investigated in
recent years. It has the versatility of different types of models for the prediction of the system and
aptitude to handle the system constraints. In the last decade, the multi-parametric optimization
has been applied to the control theory that allowed for the MPC optimization to be performed
offline, which was denominated as explicit Model Predictive Control. This work investigates the
application of this control technique in Inverted Pendulum systems, which are commonly used
as didactic control systems. The complete control design is described considering its validation
for two Inverted Pendulum systems through simulations.
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1. INTRODUCTION

Inverted pendulum systems are vastly used as didactic
control tools (Sugaya et al. (2017)). This classic control
problem relies on mechanical actuation to induce a torque
sufficient to maintain a stem on its inverted position.
This system has several mechanical configurations and
adaptability on degrees of freedom. Therefore, a vast set
of control theories can be applied to this multi-variable
system, from the classic control, modern control, to the
most advanced and recent controllers (Jmel et al. (2020)).

This work highlights the application of the Model Pre-
dictive Control (MPC) theory on inverted pendulum sys-
tems. This technique had its origins in the petrochemical
industries in the ’70s and appealed to many researchers.
Nowadays, this theory has several configurations and flex-
ibilities, for example, the usage of different sets of models
as linear, hybrid, nonlinear, deterministic, or stochastic
models (Qin and Badgwell (2003); Lenz et al. (2015)).

The key concept of the MPC is to optimize the system
performance through the prediction of the system model in
a closed-loop. Generally, the control signal is represented
as discrete-time state feedback. Accordingly, the system
states must be measured each time sampling to update the
MPC optimization parameters (states). Additionally, the
MPC theory includes states and control signal constraints
for a feasibility guarantee. Thus, the optimization solution
is heavily influenced by the system complexity. A system
with a high dimension may demand high optimization
solution time that exceeds the time sampling of the control
system (Camacho and Alba (2013)).
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Since the MPC with linear models results in a quadratic
optimization problem, researchers started to apply the
multi-parametric programming theory (Bemporad et al.
(2002)). Briefly, in this approach a feasible parameter
set is assembled, that is a representation of all possible
states that the real system may reach. With this set,
each optimization restriction creates a finite number of
polytopes as a function of the parameters. Each region,
that is related to a subset of parameters, can be interpreted
as the set of active or inactive constraints. Therefore,
the optimization can be solved offline and it designs
the optimal MPC feedback control for each region. This
approach has been known in the literature as the explicit
MPC (eMPC) since the optimization solves the optimal
control actions explicitly for each state subset (Borrelli
et al. (2017)).

The implementation of the eMPC uses a look-up table. It-
eratively, the states of the system are collected and the ac-
tive region of the current states determines the respective
MPC state feedback. Notice that if there is a considerable
number of restrictions or if the system dimension is large
enough, the multi-parametric optimization may result in
a large number of regions. Hence, this work simulates the
eMPC considering multiple system dimensions. The main
contributions for this paper are the investigation of the
eMPC for two inverted control systems and its validation
through simulations.

This work is organized as follows: In Section 2, the model-
ing of two distinct inverted control systems are addressed,
the Reaction Wheel Pendulum and the Rotary Inverted
Pendulum (known as Furuta Pendulum). The next Sec-
tion 3 follows with the specifications for the eMPC with
its tuning parameters and system constraints. Section 4
develops the simulation setup using the nonlinear models
and the discussion of the results. Lastly, Section 5 points
out the conclusions and topics for future works.
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2. INVERTED PENDULUM MODELING

This work considers two configurations that has been re-
searched and built in the Laboratório de Controle Aplicado
(LCA) (Angélico (2016)). The systems are the reaction
wheel inverted pendulum (Block et al. (2007)) and the
pendulum proposed by Katsuhisa Furuta, rotary inverted
pendulum (Mori et al. (1976)).

2.1 Reaction Wheel Pendulum

A representation of the reaction wheel pendulum is shown
in Figure 1. A stem that represents the pendulum rotates
freely on the axis #1. In the opposite side of the pendulum,
a DC motor on the stem. A second body, named as reaction
wheel, is fixed and rotates on the axis #0 of the motor axis.
The only actuator of the system is the DC motor, which
directly applies a torque into the reaction wheel. In this
case, the angular position of axes #0 and #1, α and θ1,
and their respective velocities are considered measured.

Figure 1. Illustration of the reaction wheel pendulum.

The control system objective is the application of a torque
into the reaction wheel that results in a reaction torque on
the pendulum that maintains it in the inverted position
(θ1 = 0). The control input is the Pulse Width Modulation
(PWM) signal applied to the DC motor. By the definition,
the signal ranges between 1 (applying the maximum av-
erage voltage) and 0 (null voltage). Additionally, negative
values imply that the motor rotates in its inverted nominal
rotation. It is considered the Euler-Lagrange modeling
method, with Ei as the kinematic energy and Pi as the
potential energy of body i. This system was divided into
two bodies: the reaction wheel rw and the pendulum p.

The potential energy of the reaction wheel Prw is the
displacement of the Center of Mass (CoM) of the reaction
wheel body in the vertical plane and for the pendulum Pp
is the displacement of its CoM in the same plane.

Prw =mrwgd cos(θ1) (1)

Pp =mpgd cos(θ1) (2)

The kinematic energy of the pendulum Ep is related to
the torque applied on the stem. For the reaction wheel,
Erw has three distinct components. First, the torque
applied to the reaction wheel with both angular velocities.
Additionally, there are vertical and horizontal translation
displacements of the CoM of the reaction wheel.

Erw =
1

2
(θ̇1 + α̇)Jrw(θ̇1 + α̇)

+
1

2
(α̇`rw cos(θ1))mrw(α̇`rw cos(θ1))

+
1

2
(α̇`rw sin(θ1))mrw(α̇`rw sin(θ1)) (3)

Ep =
1

2
α̇Jpα̇ (4)

Using the complete Lagrangian function L of Equation (5),
Equation (6) is the Euler-Lagrange equation to obtain the
nonlinear models for the reaction wheel and the pendulum.
The generalized forces Qi for each body are presented in
Equations (7,8). For the reaction wheel, the control signal
is the PWM signal for the 6 Volts DC motor and there
is viscous damping in axis #0. For the pendulum, there is
viscous damping in axis #1.

L = Erw + Ep − Prw − Pp (5)

d

dt

(
∂L

∂δ̇

)
− ∂L

∂δ
= Qi; for δ = α, θ1 (6)

Qrw =
Kt
R

(6PWM −Keα̇)− b0α̇ (7)

Qp = −b1θ̇1 (8)

Table 1 shows the parameters of the reaction wheel pen-
dulum built in the LCA.

Table 1. Parameters of the reaction wheel.

Parameter Value

mrw Reaction Wheel Mass [Kg] 0.144

g Gravity Acceleration [m/s2] 9.81
d Distance of CoM of rw to axis #1 [m] 0.0987
mp Pendulum Mass [Kg] 0.149

Jrw Inertia of the Reaction Wheel [Kgm2] 9.456×10−4

`rw Distance of rw to axis #1 [m] 0.14298

Jp Inertia of the Pendulum [Kg] 6.2533×10−4

Kt Motor Torque Constant [Nm/A] 0.307
R Armature Resistance [Ω] 5.325
Ke Back EMF Constant [V s/rad] 0.273

b0 Viscous damping of axis #0 [Nm/(rad/s] 1.0×10−5

b1 Viscous damping of axis #1 [Nm/(rad/s] 1.0×10−6

The nonlinear equations are linearized applying the jaco-

bian with the state vector xrw =
[
δθ1 δθ̇1 δα̇

]T , where δ
represents the linearization close to a operation point. The

chosen point was
[
θR1 θ̇R1 α̇R

]T
= [0 0 0]T . Note that

the dimension of the system is three, since the reaction
wheel angle α is not controllable in this configuration.
Aiming the simulations using the MPC, that is a discrete-
time control, a ZOH discretization is applied to the state-
space, using fs = 50 Hz. The discrete linear model for the
control is shown in Equation (9).

xrw(k + 1) = Arwxrw(k) +BrwPWM(k) (9)

Arw =

 1.0189 0.0201 0.0008

1.8777 1.0189 0.0724

−1.5951 −0.0170 0.6563

 ;Brw =

−0.0170

−1.5908

7.5526


The objective of the control system is to regulate all states
to zero since it is the pendulum in the inverted position.
Also, note that the angular position of the reaction wheel



does not impact on the system stability, and the actuation
on the system is limited from -1 to 1 (negative values
of PWM represent opposite rotation). Because of the
mechanical configuration, the reaction torque can not
stabilize the pendulum at any other position other than
the inverted position and the standby position.

2.2 Furuta Pendulum

The Figure 2 is a representation of the Furuta Pendulum.
There is a DC motor accoupled to a fixed structure with a
beam fixed on axis #0. This beam is referred as the body
arm. There is also a stem that rotates around axis #2 on
the other edge of the arm. This stem is referred as the
body Furuta Pendulum f . The objective of this system
is to apply a torque to rotate the arm and stabilize the
pendulum in the inverted position (θ2 = 0).

Figure 2. Illustration of the Furuta pendulum.

There are two bodies for this system: arm and pendulum
f . The potential energy of the arm Parm is equal to zero
because of the CoM of the arm maintains in the horizontal
plane. The potential energy of the pendulum Pf is the

displacement of the CoM in the vertical plane.

Parm = 0 (10)

Pf =mfg`f cos(θ2) (11)

The kinematic energy of the arm Earm is obtained from
the torque of its rotation. The energy Ef for the pendulum

can be described using its rotation, the velocity of the CoM
in the directions of x, y, and z (Mori et al. (1976)).

Earm =
1

2
(θ̇0)Jarm(θ̇0) (12)

Ef =
1

2
(θ̇2)Jf (θ̇2) +

mf

2

(
`2f θ̇

2
2 + r2f θ̇

2
0 + . . .

+`2f θ̇
2
0 sin2(θ2) + 2rf `f θ̇0θ̇2 cos(θ2)

)
(13)

With the Lagrangian function for the Furuta Pendulum in
Equation (14), the nonlinear equations of this system are

solved with Equation (15). The generalized forces Qi for
each body are defined in Equations (16,17). For the arm,
the control signal is a PWM for the 12 Volts DC motor
and there is viscous damping in axis #0. Additionally,
there is a viscous damping in axis #2. Table 2 shows the
parameters of the Furuta pendulum built in the LCA.

L = Earm + Ef − Parm − Pf (14)

d

dt

(
∂L

∂δ̇

)
− ∂L

∂δ
= Qi; for δ = θ0, θ2 (15)

Qarm =
Kt
R

(
12PWM −Keθ̇0

)
− barmθ̇0 (16)

Qf = −bf θ̇2 (17)

Table 2. Parameters of the Furuta Pendulum.

Parameter Value

mf Pendulum Mass [Kg] 0.076

g Gravity Acceleration [m/s2] 9.81
`f Distance of CoM of pendulum to axis #2 [m] 0.125

Jarm Inertia of the arm [Kgm2] 0.0046
Jf Inertia of the Pendulum [Kg] 0.00039
rf Distance of pendulum to axis #0 [m] 0.25
Kt Motor Torque Constant [Nm/A] 0.118
R Armature Resistance [Ω] 3.6
Ke Back EMF Constant [V s/rad] 0.118

barm Viscous damping of axis #0 [Nm/(rad/s] 3.0×10−5

bf Viscous damping of axis #2 [Nm/(rad/s] 5.0×10−6

Afterwards, the nonlinear equations are linearized apply-
ing the jacobian with the state vector

xf =
[
δθ0 δθ2 δθ̇0 δθ̇2

]T ,
where δ represents the linearization close to a operation
point. It was linearized for[

θR0 θR2 θ̇R0 θ̇R2

]T
= [0 0 0 0]T .

Note that this system has dimension four since the angular
positions of the arm, of the pendulum, and their respective
velocities are controllable in this configuration. Applying a
ZOH discretization in the state-space, the discrete model
for the control is shown in Equation (18). This control
system is able to track a reference signal for the arm
position while stabilizing the pendulum on its inverted
position.

xf (k + 1) = Afxf (k) +BfPWM(k) (18)

Af =


1.000 −0.005 0.020 0.000

0.000 1.019 0.001 0.020

0.000 −0.486 0.987 −0.005

0.000 1.914 0.020 1.019

 ;Bf =


0.014

−0.021

1.362

−2.051


3. EXPLICIT MODEL PREDICTIVE CONTROL

The MPC is a discrete-time controller that uses the model
to predict the optimal control sequence. For both systems,
the control input is u(k) = PWM(k). Consider the cost
function of Equation (19).

J(k) =

N−1∑
j=0

(x(k+j))TQ(x(k+j))+(u(k+j))TR(u(k+j))

(19)



The element x(k + j) is the prediction of the states
after j samples, considering the linear model presented
in Equation (9) for Reaction Wheel system and Equation
(18) for Furuta Pendulum. Note that the measurement
of x(k) is a requirement for the model prediction. The
control sequence u(k + j) is the optimization vector with
the structure u(k+j) = F (j)x(k+j)+gj(j). The element

gj(j) is related to the input saturation. If F (j)x(k + j)

would saturate the control signal, gj(j) for the prediction j

provides the saturated value for u(k+j) to respect all input
restrictions. For this approach, consider that N is finite
and represents the prediction horizon. Therefore, there
are N control signals for optimization for each input. The
elements Q and R are semi-definite and definite matrices,
respectively, for tuning the system performance. Now,
observe the last term of J(k), for j = N − 1:

J(k)j=N−1 = (x(k +N − 1))TQ(x(k +N − 1))

+(u(k +N − 1))TR(u(k +N − 1)) (20)

For J(k) to be bounded, the term J(k)j=N−1 should

be as small as possible, representing that at the end of
the prediction the system should be close to its desired
states. For this bound certification, it is usual to include a
terminal penalty at the end of prediction, as in Equation
(21). The matrix P is called a terminal penalty and it
is commonly computed using the Ricatti equation P =

ATPA+Q, where A is the state transition matrix and Q
is the state weighting matrix.

J(k)MPC = J(k) + (x(k +N))T P (x(k +N)) (21)

The MPC definition problem is stated in Lemma 1.

Lemma 1. The MPC controller computes the following
optimization (Camacho and Alba (2013)):

min
u(k+j)

J(k)MPC (22)

subject to

x(k + 1) = Ax(k) +Bu(k) (23)

x(k + j) ∈ X (24)

u(k + j) ∈ U (25)

for all j = 0, ... , N − 1 .

The Equation (23) is the constraint for the model pre-
diction. X is the parameters set that contains all feasible
values for the states and U is the set of all input signals that
satisfies its restrictions, for example, the input saturations.

For each time sampling, the controller in Lemma 1 obtains
the present state x(k) and solves the optimization problem.
Hence, consider that the sets X , U , and the system model
(Equation (23)) are known. Since all these restrictions are
linear, they can be described as g(u(k + j), x(k)) ≤ 0.
Also, note that u(k+j) is a function of x(k) because of the
feedback structure u(k+j) = K(j)x(k+j)+gj(j) and the

discrete linear model. Therefore, the cost function at the
instant k can be described as JMPC = J(u(k+ j), x(k)),
with u as the optimization vector and x the parameter
vector. Finally, the Lemma 2 defines the eMPC problem.

Lemma 2. The eMPC controller computes the following
multi-parametric optimization (Borrelli et al. (2017)):

min
u(k+j)

J(u(k + j), x(k)) (26)

subject to
g(u(k + j), x(k)) ≤ 0 (27)

for all x(k) ∈ X , u(k + j) ∈ U , and j = 0, ... , N − 1. The
restrictions of Equation (27) form a polytope with a finite
number of partitions (regions). For each region, there is an
optimal u∗(k+ j) vector that minimizes J(u(k+ j), x(k)).

Since Lemma 2 considers the sets X and U , this can be op-
timized offline and its solution has a structure of a look-up
table. The implementation of the eMPC does not require
any online optimization. At each time sampling, the state
x(k) checks which region of Equation (27) is active through
the process of branch search. After detecting the active
region, its respective u∗(k+ j) vector should be applied to
the system. The current control action (j = 0) is chosen
as the control signal and the controller holds for the next
time sampling to update the states and repeat the process.

This control setup has been programmed in the Multi-
Parametric Toolbox (MPT) for Matlab (Herceg et al.
(2013)). This toolbox has a complete set of functions
for parametric optimization, computational geometry, and
especially a framework for MPC design. The MPT become
a standard environment for eMPC since it has compatibil-
ity with YALMIP (Löfberg (2004)) for MPC design and
algorithms to solve multi-parametric optimizations.

The MPT setup for MPC design has a list of requirements.
First, a Linear Time-Invariant (LTI) System object selects
a discrete linear model. Next, the set X is defined by
inserting the upper and lower bounds of each state or
declaring the polyhedra of constraints. The set U has
similar requirements for the control input restrictions.

The matrices Q and R are included in the framework
as quadratic functions for the states and control signals,
respectively. One remark is that it is possible to use one
norm or infinity norm functions for MPC design. Addi-
tionally, there is a function that computes the terminal
penalty P using the usual LQR Penalty algorithm (Riccati
Equation). Finally, the MPT designs the MPC similar to
Lemma 1. Furthermore, there is a function to explicit the
controller, applying Lemma 2.

4. SIMULATION SETUP AND DISCUSSIONS

The software Simulink was chosen for the environment
setup. Each system was simulated using the nonlinear
equations of Section 2 and the eMPC has the objective
to control the system using the discrete linear model.
The reaction wheel pendulum stabilizes the system on
its inverted position θ1 = 0, subject to initial conditions
and disturbances. The Furuta pendulum stabilizes the
pendulum on its inverted position θ2 = 0 and tracks a

reference signal for arm angular position θ0 → θR0 , also
subject to initial conditions and disturbances.

Since output measurements are usually noisy, a white noise
signal was added for each output signal. The white noise

signal had variance of 5× 10−6 for angular measurements

and 3× 10−5 for angular velocities. Each noise signal was
generated with a distinct seed to minimize correlations
between the signals.



Firstly, the parameter set X for the reaction wheel was
defined. After few simulations without viscous damping
and noise signals, the maximum value for θ1 was 25◦.
Considering that the DC motor has a symmetric operation,

the minimum value was θmin1 = 25◦ (0.43 rad). Also,

θ̇max1 = −θ̇min1 = 5 rad/s; α̇max = −α̇min = 25 rad/s.

The tuning parameters for the reaction wheel pendulum
were:

Q =

25 0 0

0 10 0

0 0 1

 ;R = 1.

Next, the parameter set X for the Furuta pendulum was
defined similarly to the previous case. The arm angle po-

sition was considered as a full rotation θmax0 = −θmin0 =

180◦(π rad). The maximum angle for the pendulum was

θmax2 = −θmin2 = 15◦ (0.26 rad). The maximum angle
velocities were

θ̇max0 = −θ̇min0 = θ̇max2 = −θ̇min2 = 5 rad/s.

The tuning parameters for the Furuta pendulum were:

Q =


3000 0 0 0

0 50000 0 0

0 0 300 0

0 0 0 500

 ;R = 1.

The control set U was the same for both systems since
its signal was modularized. Therefore, the maximum value
was 1 and the minimum value was -1. Both systems had a
sampling frequency of fs = 50Hz. The initial conditions
were all zeros except for each pendulum position, with
θ1(0) = θ2(0) = 10◦.
The last parameter of the eMPC is the prediction horizon
N . For the reaction wheel, which has dimension 3, few
configurations were investigated. With N = 1, it had 3
regions; N = 2 had 5 regions, N = 3 had 7 regions, up to
N = 30 with 61 regions. However, since the eMPC only
applies the first control signal (j = 0), it has been observed
that all cases for this system had the same performance.
This distinct behavior has a direct relation with the sets X
and U . For example, if a restrictive control signal would be
applied, the set U would be smaller and a larger prediction
horizon could improve the system performance. Since that
it was not the case for this system, the prediction horizon
N = 1 was chosen in the following simulations.

For the reaction wheel pendulum, Figure 3 shows the
pendulum position subject to an external disturbance.
The explicit MPC was able to stabilize the system with a
initial condition and noisy measurements. The controller
sustained with impulse disturbances and a small step
signal in t = 6 s.

The Figures 4 and 5 shows the angular velocities and
the control signal computed by the eMPC. Note that the
control signal had brief saturated impulses.

For the Furuta Pendulum, which has dimension 4, some
configurations were investigated. N = 1 had 11 regions,
N = 3 had 296 regions, up to N = 5 with 2108 regions.
Note that the increase in system dimension strongly im-
pacts the number of regions. For this system, all configu-
rations also had the same performance, thus N = 1 was
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Figure 3. Reaction Wheel: Pendulum Position and Distur-
bance.
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Figure 5. Reaction Wheel: Control Signal.

chosen for simulations. Figure 6 shows the arm position
tracking the reference signal. In Figure 7, the pendulum
position is stabilized considering the external disturbances.

Lastly, Figure 8 shows the angular velocites of the system
and Figure 9 shows the control signal through the simula-
tion.

5. CONCLUSIONS

This work investigated the application of the eMPC tech-
nique in two inverted pendulum control systems. The for-
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Figure 7. Furuta: Pendulum Position and Disturbance.
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Figure 8. Furuta: Angular velocities.

mulation of the parameter set X and the U is a crucial step
for eMPC design since unreachable states do not need to be
considered for the control system, reducing the number of
constraints regions. Additionally, the small increase in the
system dimension greatly affected the number of regions.
However, the increase of the prediction horizon N did not
improve the control performance for these control systems.
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