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Abstract: Recently, a new state-space representation has been developed for output feedback
control design. With this transformation, many mechanical systems can be represented with the
system output measurements as the full state vector. Therefore, these models allow the design of
output feedback controllers using state feedback gains. For this work, a set of uncertain models
for a Control Moment Gyroscope is assembled and a polytope discretization is performed. The
resulting set of models is transformed into the Implicit Derivative Estimator and integrators are
added for the output tracking. Finally, a robustH2 digital control is designed, considering the set
of uncertain models. The controller is validated through simulation and practical experiments.

Keywords: Robust control applications, Output feedback control (linear case), Robust control
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1. INTRODUCTION

The attitude control of satellites and spacecrafts are
mostly developed using gyroscopic control systems. The
Control Moment Gyroscope (CMG) is an example of an
under-actuated system that can be implemented for the
desired attitude control (Theis et al. (2014)). The ECP
model 750 has four rotating gimbals which only the inner
two are motorized. Through the conservation of angular
momentum and the gyroscopic torque, the inner motors
can rotate the outer gimbals, that have higher inertia.

Furthermore, the CMG allows the setup for many control
theories. As examples, the linear model can be decoupled
using the control theory (Angélico et al. (2017)), as well as
nonlinear controllers (Toriumi and Angélico (2018)) and
linear parameter varying (LPV) control were applied to
the CMG (Theis et al. (2014)).

The implementation of linear controllers can be performed
generally in three distinct methods. Firstly, a state feed-
back control is assumed and the derivative states that are
not measured can be estimated through approximations,
for example using the Euler backward formula. Alterna-
tively, the same state feedback scheme is assumed and the
states are estimated using observers (Peaucelle and Ebi-
hara (2014); Gao et al. (2017). Lastly, an output feedback
control can be designed (Rosa et al. (2018)).

Recently, Angélico et al. (2019) developed a new state-
space model representation called as implicit derivative es-
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timator. This method has properties of the three methods
previously mentioned. After a transformation of the state-
space considering that the derivative states are estimated,
the state observation is implicit within the linear model.
Therefore, a state feedback control can be designed, given
that all states will be output measurements. Essentially,
such state feedback is also an output feedback control.

This paper main contributions are (i) defining a set of
continuous models of the CMG that have the disc angular
speed as uncertainty; (ii) discretization of the previous
polytope; (iii) application of the implicit derivative estima-
tor for the CMG model; (iv) a robust digital control design
that considers the model uncertainties; (v) the validation
of the controller through practical experiments.

The notation is standard. The function diag(x) makes a
diagonal matrix of zeroes except the main diagonal with
the elements of a vector x; Trace(X) is the sum of elements
on the main diagonal of a matrix X, and He(G) represents
the sum of G with its conjugate matrix.

This work is organized as follows: in Section 2, the CMG
modeling is described and a set of uncertain models is
assembled. Next, Section 3 a robust H2 control is designed
considering the set of uncertainties. The controller is
validated through simulations and practical experiments
in Section 4. Lastly, some final statements are addressed
in Section 5.

2. CMG MODELING

The CMG model 750 from ECP Company is a nonlinear
system with four degrees of freedom. The diagram of the
Fig. 1 shows four rigid bodies that rotate around their
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respective rotation axes (#1,#2,#3,#4), which defines the
four degrees of freedom: θ1, θ2, θ3, θ4.

Fig. 1. Control Moment Gyroscope Diagram (Toriumi and
Angélico (2018)).

There are two actuators in the system: a DC motor
attached in axis #3, that applies a torque T2 into the Body
C and directly changes the angular position θ3; and a DC
motor attached in the axis #4, that produces a torque T1
into Body D (also known as disc) and affects directly θ4.
Note that rotation of bodies A and B are free of actively
applied torques. The movement of Body B is due to the
conservation of angular momentum and Body A rotates
due to the gyroscopic torque (Toriumi et al. (2018)).

The system sensors are four incremental encoders that
provide the measurement of the four degrees of freedom.
The general control objective of the CMG system is to
track reference signals for positions θ1 and θ2 through
the torques T1 and T2. Since there are no angular ve-
locity sensors (ωn), these variables must be estimated
with derivative approximations or computed using states
observers, e.g. the Kalman Filter.

The four nonlinear equations of the CMG are the same
presented in the previous papers (Toriumi et al. (2018);
Toriumi and Angélico (2018)). The Equations (1) to (4)
express all dynamics of the four degrees of freedom, apply-
ing the two DC motor torques T1 and T2 and considering
a viscous friction µnωn on each axis #n. Due to the
limitation of space, the expression of each function fn is
omitted.

T1 −µ4ω4 + f4(θ2, θ3, ω1, ω2, ω3, ω̇1, ω̇2, ω̇4) = 0, (1)

T2 −µ3ω3 + f3(θ2, θ3, ω1, ω2, ω4, ω̇1, ω̇3) = 0, (2)

−µ2ω2 + f2(θ2, θ3, ω1, ω2, ω3, ω4, ω̇1, ω̇2, ω̇4) = 0, (3)

−µ1ω1 + f1(θ2, θ3, ω1, ω2, ω3, ω4, ω̇1, ω̇2, ω̇3, ω̇4) = 0.(4)

To obtain linear models for the CMG, the dynamic solu-
tion of the acceleration on each angular position must be
linearized in a control operation point. Furthermore, in the
literature the most frequent state vector 1 is related to the
angles θ1 and θ2 and the angular velocities ω1, ω2 and ω3,

x = [θ1 θ2 ω1 ω2 ω3]
T

.

1 If the angle θ3 is included in the state space, the resulting model
is not controllable.

One interesting feature of the CMG is that depending on
the operating point, there are structural dynamic changes
in the linear model. For example, linearizing in x =

[0 0 0 0 0]
T

and θ3 = 0, the linear model is decoupled.
Choosing negative θ3 as operation point, the linear model
has minimum phase and it is coupled. However, choosing
positive θ3 gives a linear model with a non-minimum phase
and it is coupled as well.

For the sake of simplicity, this work only considers the
decoupled condition (θ3 = 0), θ1 = 0 and θ2 = 0. At an
operating point with T1 = 0 and T2 = 0, the continuous
state-space model is represented in (5).
ω1(t)
ω2(t)
ω̇1(t)
ω̇2(t)
ω̇3(t)

=


0 0 1 0 0
0 0 0 1 0
0 0 −0.0203 0 −0.1345ω4

0 0 0 −0.0592 0
0 0 1.5301ω4 0 −0.4338



θ1(t)
θ2(t)
ω1(t)
ω2(t)
ω3(t)



+


0 0
0 0
0 0

−38.5071 0
0 408.1947


[
T1(t)
T2(t)

]
. (5)

2.1 Linear Uncertainty Description

Foremost, the linear model in (5) is controllable, noting
that angle θ3 is not a state. Using the decoupled model,
the dynamic changes between minimum and non-minimum
phase models do not interfere with the control design.

Usually, the linear control design for the CMG assumes
that the ω4 remains close to a nominal value during the
experiment. However, any variation of the torque T1 surely
changes the angular velocity ω4. Therefore, a set of linear
models that considers the ω4 as system uncertainty is
applied for this work. The control design must track the
desired output signals considering a range of ω4.

Subsequently, a range or even a grid of values for ω4 must
be chosen. The CMG Manual states that the nominal
value for ω4 is 400 rpm, with minimum value 200 rpm
and maximum value 800 rpm, for safety purposes. For
this work, a range of ω4 from 300 rpm to 500 rpm was
assumed. This range was chosen due to the observation of
past control experiments of the CMG.

The continuous linear model in (5) is specified in each limit
of the range of ω4, obtaining two continuous state spaces.
However, the focus of this work is the application of digital
control, therefore the linear models must be discrete. The
main issue is that even though two continuous models
are convex, their discrete counterparts are not necessarily
convex. The discretization of uncertain models still is a
challenge and with few methods available in the literature
(Shieh et al. (1998); de Souza and Trofino (2006); Hetel
et al. (2007); Braga et al. (2013)).

Herein, the procedure presented in Braga et al. (2013) was
implemented. Such discretization scheme is based on Tay-
lor series expansions, considering polytopic uncertainties
in the continuous-time system (Equation (5)), assuming
that the sampling period Ts is constant. Using the same
notation of Braga et al. (2013), consider that the state
space of Equation (5) has the structure of Equation (6),
transforming the uncertainty of ω4 into a simplex α.



ẋ(t) = E(α)x(t) + F (α)u(t) (6)

The state-space matrices for the discrete-time system
obtained via the procedure are in the form of homogeneous
polynomials of the degree `. These polynomials represent
uncertain parameters, which are norm bounded and also
are a set in the unit simplex. Hence, the system obtained
via the procedure can be written as

A(α) = A`(α) + ∆A`(α);B(α) = B`(α) + ∆B`(α). (7)

Note that the additional terms in Equation (7), matrices
with “∆” representing the residue of approximation, de-
pends on the number of terms Taylor series expansion.
Each matrix in (7) is obtained as

A`(α) =
∑̀
j=0

E(α)j

j!
Ts
j , (8)

B`(α) =
∑̀
j=0

E(α)j−1

j!
Ts
jF (α), (9)

∆A`(α) = eE(α)Ts −A`(α), (10)

∆B`(α) = (

∫ Ts

0

eE(α)sds)F (α)−B`(α). (11)

Remark : It is important to point out that to guarantee the
system performance it is necessary to bound the system
norm. A way to cope with this issue is to use the Small
Gain Theorem for this task (Zhou and Doyle (1998)).
Another important aspect is that as the degree ` increases,
the residue of approximation norm decreases. Therefore, if
the Small Gain Theorem criterion is not satisfied with a
given `, a direct solution is to increase the degree ` until
the performance criterion is satisfied.

The discretization of the system model presented in (5)
had a fixed sampling period of Ts = 0.025 seconds and
the Taylor series was expanded with ` = 2, which satisfied
the performance criterion. The resulting set (A`(α), B`(α))
was convex and appropriate for robust digital control
design.

2.2 Implicit Derivative Estimator State-Space

The implicit derivative estimator state-space is a non-
minimal representation which all states are measurements
of the outputs of the system (Angélico et al., 2019).
The requirement is that original discrete state-space must
have a set of positions and their respective velocities as
the state vector, a common feature of mechanic systems.
Note that the current discrete state vector is x[n] =

[θ1[n] θ2[n] ω1[n] ω2[n] ω3[n]]
T

.

As a possible solution, each discrete model is aug-
mented to include θ3 and creating a new state vector

xd[n] = [θ1[n] θ2[n] θ3[n] ω1[n] ω2[n] ω3[n]]
T

. Basically,
in the third row and column of A`(α) and in the third
row of B`(α) an appropriate number of zeros is inserted,
not modifying any dynamic of the model. Notice that
the resulting model is not controllable, however, another
transformation will be applied. Generally, the resulting
state-space has the block-matrices of Equation (12). Also,
note that the matrices can be dependent on the parameter
α of a simplex Λ.

[
Θ[n+ 1]
Ω[n+ 1]

]
=

A11(α) A12(α)

A21(α) A22(α)

[Θ[n]
Ω[n]

]
+

B1(α)

B2(α)

u[n].

(12)

The main feature of the implicit derivative estimator
model comes with the approximation of the derivative
states, for example, a First-Order Euler backward for each
Ω[n]. Accordingly, the resulting model is presented in (13).[

Θ[n+1]
1

Ts
(Θ[n+1]−Θ[n])

]
=

A11(α) A12(α)

A21(α) A22(α)

[ Θ[n]
1

Ts
(Θ[n]−Θ[n−1])

]

+

B1(α)

B2(α)

u[n] (13)

Therefore, two expressions are obtained:

Θ[n+ 1] =

(
A11(α) +

A12(α)

Ts

)
Θ[n] · · ·

−A12(α)

Ts
Θ[n− 1] +B1(α)u[n],(14)

Θ[n+ 1]−Θ[n]

Ts
=

(
A21(α) +

A22(α)

Ts

)
Θ[n] · · ·

−A22(α)

Ts
Θ[n− 1] +B2(α)u[n].(15)

Adding the dynamics of (14) and (15), the implicit
derivative estimator model representation is expressed in

(16). Note that Θ[n] = [θ1[n] θ2[n] θ3[n]]
T

and Ω[n] =

[ω1[n] ω2[n] ω3[n]]
T

for the CMG and all states are mea-
surements of the system outputs.[

Θ[n+ 1]
Θ[n]

]
=

[
P1(α) P2(α)
I 0

] [
Θ[n]

Θ[n− 1]

]
+

[
P3(α)

0

]
u[n],

(16)

P1(α) =
1

1 + Ts
(TsA11(α) +A12(α) · · ·

+TsA21(α) +A22(α) + I) ,

P2(α) =
−1

1 + Ts
(A12(α) +A22(α)) ,

P3(α) =
Ts

1 + Ts
(B1(α) +B2(α)) .

An interesting remark is that the state space in (16) is
controllable and observable. The controllability is recov-
ered since the state space internally computes the angular
velocity ω3[n] from the measurements of θ3[n] and θ3[n−1].
In Table 1, the parameters are each model are shown,
recalling that the Taylor degree was ` = 2, thus the
discretization created a polynomial with the same degree.

Furthermore, each model was augmented with integrators
to track set-point positions for θ1[n] and θ2[n], as presented
in Fig. 2. Note that (Ad, Bd) are obtained from Equation
(16) and are dependent on α. The augmented system has
two additional states v[n], resulting in a new state vector

x′[n] = [x[n] v[n]]
>

.

The augmented system matrices are represented as

A′d(α) =

[
Ad(α) 0
−C I

]
, B′d(α) =

[
Bd(α)

0

]
,



Table 1. Implicit Derivative Estimator Model
Parameters

P1 P2 P3

α2
1

[
1.83 0 −0.17

0 2.00 0
1.94 0 1.77

][
−0.83 0 0.17

0 −1.00 0
−1.94 0 −0.79

][
0 −0.02

−0.02 0
0 0.25

]
α1α2

[
2.82 0 −0.28

0 3.02 0
3.11 0 2.70

][
−1.79 0 0.28

0 −2.00 0
−3.11 0 −1.72

][
0 −0.04

−0.05 0
0 0.50

]
α2
2

[
1.94 0 −0.10

0 2.00 0
1.16 0 1.88

][
−0.94 0 0.10

0 −1.00 0
−1.17 0 −0.90

][
0 −0.01

−0.02 0
0 0.25

]

z−1 K1 Ad, Bd C

−Kc

r[n] v[n+ 1] v[n] u[n] x[n] y[n]

Fig. 2. Discrete time state feedback with integrator.

and C ′d = [C 0], while the control is K ′ = [KC −KI ].

Remark : The implicit derivative estimator transformation
was applied to each model, however, one must assure that
the set of models remains convex. Due to the limitation
of space, two proof sketches are briefly addressed. First,
if the sampling period Ts is small enough, the deriva-
tive approximation becomes most similar to the real val-
ues. Therefore, the implicit derivative estimator does not
change the system dynamics and it is considered as a basis
transformation. Alternatively, one may increase the degree
of the approximation as much as possible. Thus, similar to
the previous method, the derivative approximation draws
near to the original value and the transformation only
changes the basis. The key aspect of these proof sketches is
to check the model eigenvalues to guarantee the properties
of a basis transformation.

3. ROBUST CONTROL DESIGN

As discussed in Section 2, a discrete convex set of models
for the CMG was assembled, considering the disc velocity
ω4 as uncertainty. Accordingly, robust digital control is
designed with a set of uncertain models. The design
is described by Lemma 1 (de Oliveira et al. (1999)),
considering a state-space represented by (17), where w[n]
is an exogenous input and z[n] is the controlled output.

x′[n+ 1] = (A′d(α)−B′d(α)K ′)x′[n] +Bww[n] (17)

z[n] = (Cz −DzuK
′)x′[n]

Lemma 1. There exists a controller for the model in (17)
satisfying the constraints ‖H(z)‖22 < µ if there exist
symmetric matrices W`(α) and X, and matrices G and
Z of compatible dimensions satisfying the LMIs:

Trace(X) < µ, (18)[
X CzG+DzuZ
? He(G)−W`(α)

]
> 0, (19)[

W`(α) A′d(α)G+B′d(α)Z Bw
? He(G)−W`(α) 0
? ? I

]
> 0, (20)

and holds for all α ∈ Λ. If a feasible solution is obtained,
a robust controller is given by K ′ = ZG−1.

The controller of Lemma 1 was designed using the
YALMIP, the ROLMIP (Agulhari et al. (2019)) for cre-
ating the matrices A′d(α), B′d(α) and W`(α) with degree
` = 2 and the Semidefinite Programming was solved using
the SeDuMi. The matrices Bw, Cz and Dzu were tuned to
achieve the desired system performance for an exogenous
input w[n]. The chosen matrices were:

Bw = I8, Cz =

[
Czp

0[8×8]

]
, Dzu =

[
0[8×2]
Dzup

]
,

Czp = diag

([
1 1

√
2

2
1 1 0.1

√
2

20
0.1

])
,

Dzup =

[√
5 0 0 0 0 0 0 0

0
√

5 0 0 0 0 0 0

]T
.

Applying Lemma 1, the controller was designed, such that

K ′ = [−KC KI ] ,KI =

[
0 −0.0365

−0.0246 0

]
,

KC =

[
0 −9.7664 0 0 8.6782 0

−2.3493 0 1.2220 1.7149 0 −1.2893

]
.

An important note is that the matrices G and Z did
not have a fixed structure and the controller of Lemma
1 was decoupled. That occurred due to the decoupled
linearization in Section 2.

4. SIMULATION AND PRACTICAL RESULTS

Foremost, the usual sampling period of experiments for the
ECP 750 is lower than Ts = 0.01 seconds (Angélico et al.
(2017)). However, the application of such fast sampling
period presented poor performance using the model repre-
sentation of the implicit derivative estimator. The reason
is that using such a model designs a control signal that is
sensitive to measurement variations in a short period.

The sensibility of the model of implicit derivative estima-
tor is related to the chosen order of the approximation of
the derivative and the noise present in the output mea-
surements. Thus, a higher sampling period of Ts = 0.025
seconds reduced the sensibility of the output measure-
ments and improved the control law performance, espe-
cially in practical experiments. To validate the controller
of Lemma 1, a step response and a sinusoidal response were
performed through simulations and practical experiments
with the ECP model 750 2 .

The experiment setup starts with the positioning of the
CMG in the decoupled position (θ1 = 0, θ2 = 0, θ3 = 0)
that was the linearized position of the linear models. Next,
with the breaks of θ1 and θ2 activated, a PI controller
actuates motor #1 until it reaches the nominal speed of
ω4 = 400 rpm. Finally, the breaks are released, the PI
controller is turned off and the controller of Section 3
begins to track the output set-points.

2 The readers are invited to see a quick video of the practical
experiment through the link: https://youtu.be/oemUZ2KPZ-g



The step response is shown in Fig. 3 and 4, in which the
system outputs θ1 and θ2 track a filtered step pulse, both
for simulation and practical experiments. Although the
model was linearized close to the origin, the performance
of the static gain control using state feedback was investi-
gated into a far operation point, up to 30◦.

Time (s)
0 20 40 60
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le
 θ
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Fig. 3. Step Response: Output θ1.
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Fig. 4. Step Response: Output θ2.

The control signals T1 and T2 for the step response are
shown in Fig. 5. It stands out that the torque T1 of
the practical experiment presented a distinct performance.
Most likely, the reason is that the DC motor dynamics and
Coulomb friction of the joints were not included in the
model.
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Fig. 5. Step Response: Control Signals T1, T2.

Ultimately, the disc angular speed is shown in Fig. 6.
Remark that during the CMG modeling, the linear models
considered that the ω4 was uncertain and within a range
of 300 to 500 rpm. Fig. 6 shows that the disc angular
speed maintained within the uncertainty of ω4, asserting
the system stability with good performance for such range.
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Fig. 6. Step Response: Disc Angular Speed ω4.

Next, the sinusoidal response is shown in Fig. 7 and 8. The
amplitude was increased to 40◦, with good performance
considering that the controller is a static gain. Addition-
ally, a small delay to the set-point was detectable.
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Fig. 7. Sinusoidal Response: Output θ1.
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Fig. 8. Sinusoidal Response: Output θ2.

As previously, Fig. 9 presents the control signals T1 and
T2. In such a case, it is evident the similarity of the torque
T2 between the simulation and the practical experiments.
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Fig. 9. Sinusoidal Response: Control Signals T1, T2.

The last results in Fig. 10 show that the disc angular speed
ω4 remained within the range of 300 to 500 rpm assumed
in Section 2, reasserting the system stability and control
performance.
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Fig. 10. Sinusoidal Response: Disc Angular Speed ω4.

5. CONCLUSIONS

A discrete polytope set for the CMG has been success-
fully assembled, considering that the disc angular speed
is uncertain. Each model was transformed into the im-
plicit derivative estimator representation, which allowed
a design of output feedback using the structure of state
feedback. The model states were the three system outputs
measurements and integrators were added for the output
tracking. The controller of Lemma 1 managed to track high
amplitude set-points, considering that the control law was
a static gain and operated away from the linearized point.
Furthermore, the disc angular speed remained within the
range defined in the model uncertainties.
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Toriumi, F.Y. and Angélico, B.A. (2018). Robust nonlin-
ear control applied to a control moment gyroscope with
SISO configuration. IFAC-PapersOnLine, 51(25), 152 –
157. 9th IFAC Symposium on Robust Control Design
ROCOND 2018.

Zhou, K. and Doyle, J.C. (1998). Essentials of Robust
Control. Prentice-Hall.




