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Abstract: This work develops a method for deriving requirements for the goalkeeper of the
robot soccer competition RoboCup Small Size League (SSL) using Monte Carlo simulation.
Initially, an overview of the SSL competition is presented and related works are shown. Then,
the parameters of interest are selected and the developed method is discussed. Afterwards,
different models and control laws are designed to simulate the goal defense performance for
different parameter values. Finally, the data generated is analyzed and a set of requirements for
the mobile robot is selected. Lastly, the method utility is evaluated and possible extensions of
this work are proposed.
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1. INTRODUCTION

The RoboCup Small Size League (SSL) is a robot soccer
competition that focuses on advancing state-of-the-art
research in robotics, including multi-agent cooperation and
dynamic systems control (RoboCup, 2020). The robots
must have up to 0.18 m of diameter and 0.15 m of
height and are allowed to have dribbling and kicking
devices. An external computer receives updates from an
external camera and selects diverse tasks to the robots to
perform, such as shooting the ball, following a trajectory,
and intercepting the ball. Finally, to execute these tasks,
the computer calculates and sends commands of wheel
rotation speed to each robot. Then, the robots use an
embedded control law to steer the present rotation speed
of each wheel to the respective commanded value. An
example of this scheme is shown in Figure 1.

However, the influence of the robot dynamics in the per-
formance of these tasks is not always clear. Thus, a study
of this relationship is necessary. Kress-Gazit et al. (2018)
study a framework for the synthesis of robot controllers
that guarantees to execute complex tasks, and Pinheiro
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Figure 1. Overview of the interfaces between computer,
robot and camera.

et al. (2016) derive requirements for the goalkeeper and
attacker robots of the IEEE Very Small Size Competition.

Requirement derivation is a concept of systems engineering
that aims at producing engineering specifications that
ensure the fulfillment of a set of user requirements. Watson
et al. (1967) developed a methodology for requirement
derivation focused on space missions. Bonfè et al. (2012)
leads a study on automated surgical robots and applies
requirement engineering to obtain specifications for the
robots.

The present work uses Monte Carlo simulations (Hanson
and Beard, 2010) to derive robot requirements based on
the performance of the task of defending shots towards
the goal by the goalkeeper of an SSL team. Due to the
complexity of the SSL competition, a hard requirement
of minimum probability of defense cannot be enforced.
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Figure 2. Typical robot for the SSL competition. Robot
body (gray) and four wheels (black).

Figure 3. Flowchart illustrating the steps used during
analysis.

Therefore, this work contributes with a method that
analyses the given task, and proposes a set of parameters
considering a tradeoff between performance and demand
of the system.

A typical robot of this competition is shown in Figure 2.
The front of the robot corresponds to the position of
the kicking and dribbling device. These robots contain
omnidirectional wheels that enable the movement in all
three degrees-of-freedom simultaneously (translation and
rotation in the plane). Similar robots are used in warehouse
automation (Wurman et al., 2008), hazardous missions
(Houshangi and Lippitt, 1999), and other applications
(Adascalitei and Doroftei, 2011). Then, this method could
be adapted to develop similar analyses for these tasks.

2. METHODOLOGY

Initially, the parameters of interest shall be determined
based on the analyzed task and previous knowledge about
the robot construction. Then, for each set of parameters,
different models shall be designed to analyze the influence
of each parameter in the desired task. Furthermore, Monte
Carlo simulations are performed with different configura-
tions to consider different game strategies and different
initial conditions. Finally, the results of the Monte Carlo
simulation shall be analyzed, and a set of parameter re-
quirements is chosen. This process is illustrated in Fig-
ure 3.

2.1 Parameters selection

To avoid a combinatorial explosion of the parameters
analyzed, a top-down approach was used by starting from
a more simplistic scenario and then adding complexity to
it to form a more specific one. In this work, the parameters
of the first scenario are linear and angular velocities and

(Local) (Global)

Figure 4. Local and global conventions used models deriva-
tion.

Figure 5. Kinematics of a SSL robot.

accelerations, while the parameters of the second scenario
are the phase margin (PM) and bandwidth (BW ) of
the robot dynamics, which are common frequency-domain
parameters used to characterize control systems. The BW
is the frequency at which the system’s gain response falls 3
dB from its value at 0 Hz, while the PM is the difference
between the system’s phase lag and −180◦ at the cross-
frequency (the frequency the gain is 0 dB). The BW is
roughly linked to the speed of the response to changes in
the input, whereas the PM is linked to its damping and to
the stability margins regarding phenomena that introduce
phase lag, such as delays (Ogata and Yang, 2010).

Initially, the robot dynamics were modeled as double
integrators in each wheel with restrictions on velocity
and acceleration. Later, the double integrator model was
replaced by a underdamped second order model with the
restrictions derived by the first scenario.

Assuming that the robot wheels do not slip in the rotation
direction, a relationship can be found for the vector of

wheel speed ω = [ω1 ω2 ω3 ω4]
T

and the robot’s kinemat-

ics vl = [v vn ωa]
T

, where v and vn are the robot tan-
gencial and normal velocities and ωa is the robot angular
velocity. This convention is illustrated in Figure 5.

Then, using the local conventions shown in Figure 4, the
condition of no slip is (Pinheiro et al., 2019)

ω = Mvl, (1)

where

M =
1

r

− sin(α1 + β1) cos(α1 + β1) l cos(β1)
− sin(α2 + β2) cos(α2 + β2) l cos(β2)
− sin(α3 + β3) cos(α3 + β3) l cos(β3)
− sin(α4 + β4) cos(α4 + β4) l cos(β4)

 , (2)

and l is the robot radius; r is the radius of the wheels; αi

is the angle formed by the wheel i, the robot center, and
the robot front; βi is the inclination angle of the wheel i.
Besides, if det(MTM) 6= 0, then

vl = M+ω, (3)



where M+ = (MTM)−1MT is the Moore-Penrose
pseudo-inverse of M .

Double integrator model An initial approximation is the
use of a double integrator model for each wheel. This
model assumes direct control over the wheel acceleration,
which although not feasible, provides useful insight of the
ideal behavior. This model is described by the following
differential equation

ω̇(t) = aω
ref (t), (4)

where aω
ref (t) is the commanded acceleration of the

wheels. Then, choosing aω
ref (t) = Maref

l (t), where

aref
l (t) is the desired robot acceleration, and left multi-

plying (4) by M+, the robot dynamics become

v̇l(t) = aref
l (t). (5)

Including the velocity and acceleration restrictions, the
robot model becomes

v̇l(t) = aref
l (t), (6a)

s.t.: |v(t)|2 + |vn(t)|2 ≤ v2max, (6b)

|v̇(t)|2 + |v̇n(t)|2 ≤ a2max, (6c)

|ωa(t)| ≤ ωmax, (6d)

|ω̇a(t)| ≤ aωmax, (6e)

where vmax, amax, ωmax, and aωmax are the parameters of
interest.

Underdamped second order model Now, modeling the
robot dynamics, an expression for ω is found as (Pinheiro
et al., 2019)

ω̇ = Aω
c ω +Bω

c V (7)

whereAω
c ,Bω

c ∈ R4×4 , V = [V1 V2 V3 V4]
T

, and Vi is the
voltage applied to the motor corresponding to the wheel i.
Then, assuming a PI control law to drive ω to a constant

reference ωref =
[
ωref
1 ωref

2 ωref
3 ωref

4

]T
, V becomes

V = Kp(ωref − ω) +Ki

∫
(ωref − ω)dt, (8)

where Kp, Ki ∈ R. Then, differentiating (8) with respect
to time

V̇ = −Kpω̇ +Ki(ωref − ω). (9)

Now, differentiating (7) with respect to time and using (9),
the robot dynamics becomes

ω̈ = (Aω
c −KpB

ω
c )ω̇ −KiB

ω
c ω +KiB

ω
c ωref . (10)

Approximating (10) into four single-input single-output
(SISO) systems (i.e. neglecting the coupling between the
wheels)(Sherback et al., 2006), it can be written as

ω̈ + 2ξωnω̇ + ω2
nω = ω2

nωref , (11)

where ξ and ωn are, respectively, the damping ratio and the
natural frequency of the system. Finally, left multiplying
(11) by M+ and using (3), the following equation is found

v̈l + 2ξωnv̇l + ω2
nvl = ω2

nv
ref
l , (12)

where vrefl = M+ωref , and, by including velocity and
acceleration restrictions, the robot position model becomes

Figure 6. An example of sample case for the defense
analysis.

v̈l + 2ξωnv̇l + ω2
nvl = ω2

nv
ref
l , (13a)

s.t. : |v(t)|2 + |vn(t)|2 ≤ v2max, (13b)

|v̇(t)|2 + |v̇n(t)|2 ≤ a2max, (13c)

|ωa(t)| ≤ ωmax, (13d)

|ω̇a(t)| ≤ aωmax, (13e)

where vmax, amax, ωmax, and aωmax will be selected from
the analysis of the double integrator model. Finally, the
parameters of interest of this scenario are the PM the
BW , which can be calculated post-analysis using the
formulas (Ogata and Yang, 2010)

BW = ωn

√
1− 2ξ2 +

√
1 + (1− 2ξ2)2, (14a)

PM = arctan

(
2ξ
√

2(1− 2ξ2)

1− 4ξ2

)
. (14b)

2.2 Case Sampling

The case of interest in this work consists of the interception
of the ball after it has been shot by an adversary robot.
The defending robot is considered to move in a trajectory
of constant radius rd in relation to the center of the goal.
Two cases are considered to select rd: (a) the first one
considers rd = 1 m, which is the maximum value such
that the robot remains in the defense area; (b) the other
one considers rd = 0.5 m, which is the minimum value
such that the robot covers the entire goal.

Then, a sample case (S) of the problem consists of an
initial position error of the robot in relation to the inter-
ception point in the trajectory (e0), and the arriving time
of the ball (tball). An example of a sample case is shown in
Figure 6. In this figure, vball represents the linear velocity
of the ball, and e0 represents the position error of the robot
right after the ball has been shot. In this work, the initial
position of the ball is sampled using the random variable
defined by

B = [l cos(θball) l sin(θball)]
T
, (15)

where l is uniformly distributed between rB1 = 2 m and
rB2 = 3 m and θball is uniformly distributed between 0
and π. Then, the target position T is sampled by using
the random variable

T = G1 + α(G2 −G1), (16)

where G1 and G2 are the corners of the goal and α is
a scalar uniformly distributed between 0 and 1. The ball
velocity vball = 8 m/s is considered constant in all cases
and the friction loss is ignored.

The initial position of the robot when the shot occurs is
given by

R = [rd cos(θ0) rd sin(θ0)]
T
, (17)



Case (i) Case (ii)

Figure 7. Examples of sampling used during analysis.

where θ0 = θ(0), and θ(t) is the angle formed by the robot
in relation to the origin of the goal (O) at instant t.

Two approaches are used to select the initial angle θ0:
(i) the initial position of the robot is independent of the
initial position of the ball and θ0 is a uniformly distributed
variable between 0 and π; (ii) the robot is aligned with the
ball right before the shot, then θ0 = θball. Case (i) does not
assume any particular relationship between the position
of the robot and the ball, and the results are expected
to be more conservative in terms of the requirements.
On the other hand, case (ii) assumes that the robot
follows the ball and successfully positions itself to mitigate
the chance of a goal, as a consequence, less demanding
requirements are expected to be derived. The use of these
two opposed “pessimistic” and “optimistic” cases aims at
finding a compromise to define the requirements. Both
cases are illustrated in Figure 7.

2.3 Simulation

Initially, θT is defined as the angle formed the intersection
point between the ball trajectory and the robot trajectory,
the goal origin, and G2. Then, choosing one of the models
previously proposed and a test case S, the position error
e(t) = rd(θ(t) − θT ) can be determined by including the
conditions

p(t) = rdρ̂(t), (18a)

ṗ(0) = p̈(0) = 0, (18b)

where p(t) ∈ R2 is the robot position, ρ̂ and θ̂ are the polar
coordinates, according to the global convention shown in
Figure 4. Equation (18a) guarantees that the robot stays
in the circular trajectory of radius rd in relation to the goal
origin O, and (18b) is the resting initial condition (IC) of
the robot. Then, differentiating (18a) with respect to time

ṗ(t) = rdθ̇(t)θ̂ (19)

is a necessary condition for the robot to remain in the
trajectory. To reduce the problem to one degree of freedom,
we assumed that the robot front faces the normal direction
of the trajectory. Then, defining φ as the angle that the
front of the robot forms with the x̂ axis, and assuming
φ = θ. Finally, using (19), vl becomes

vl = [v vn ωa]
T

=
[
0 rdθ̇ θ̇

]T
. (20)

Double integrator model Using (5), the derivative of (20)
with respect to time becomes

v̇l = aref
l =

[
0 rdθ̈ θ̈

]T
. (21)

Then, substituting (20) and (21) in (6)

rdθ̈ = aref , (22a)

s.t.: |rdθ̇| ≤ vmax, |rdθ̈| ≤ amax, (22b)

|θ̇| ≤ ωmax, |θ̈| ≤ aωmax, (22c)

where aref ∈ R. Since (22b) and (22c) differ only by a
rd term, the latter can be omitted and the constraints
determined by

ωmax =
vmax

rd
, (23a)

aωmax =
amax

rd
, (23b)

which reduce the number of analyzed parameters from 4
to 2. Finally, including the IC and rewriting the equations
in terms of e(t)

ë(t) = aref (t), (24a)

s.t. : e(0) = e0, ė(0) = 0, (24b)

|ė(t)| ≤ vmax, (24c)

|aref (t)| ≤ amax. (24d)

This model is intended to be used in an optimal defense
reference when compared to the second order model sce-
narios, so the designed controller shall minimize the final
position error. Therefore, an adequate control law that
minimizes e(tball) is described by the following relationship

aref (t) =



amax, ė(t) < vmax and

e(t) < −∆ep(t),

−amax, ė(t) > −vmax and

e(t) > −∆ep(t),

0, otherwise,

(25)

where ∆ep(t) = ė(t)(tball − t) is the expected error
variation if the robot remains with the same velocity.

Underdamped second order model Similar to the double
integrator model, using (20) in (13), the second order
model becomes

rd
...
θ + 2ξωnrdθ̈ + ω2

nrdθ̇ = ω2
nvref , (26a)

s.t.: |rdθ̇| ≤ vmax, |rdθ̈| ≤ amax, (26b)

where vref ∈ R, and vmax and amax are previously deter-
mined using the double integrator model. Then, including
the IC and using e(t) = rd(θ(t)− θT )

...
e (t) + 2ξωnë(t) + ω2

nė(t) = ω2
nvref (t), (27a)

s.t. : e(0) = e0, ė(0) = 0, ë(0) = 0, (27b)

|ė(t)| ≤ vmax, |ë(t)| ≤ amax, (27c)

|vref (t)| ≤ vmax, (27d)

where (27d) is included so that the controller does not
command velocities higher than what is achievable by the
robot.

Finally, an adequate feedback controller shall be used to
steer the position error to zero. In this work, two con-
trollers were developed for this task. The first controller
was implemented using a minimum time control law(Kirk,
2004) and the second one was implemented using a pro-
portional control law(Ogata and Yang, 2010).

Minimum time control law The first controller was
chosen so that the best performance was achieved. Then,
a control law that minimizes the time to arrive the final



state is derived by solving the optimization problem (Kirk,
2004)

vref (.) = arg min tf , (28a)

s.t. : (27),

e(tf ) = 0, ė(tf ) = 0, ë(tf ) = 0. (28b)

Equation (28) requires a solution such that the final
velocity and acceleration are zero. Although not required,
this constraint is important to ensure that the robot
reaches the position to intercept the ball in minimal time
and remains there. Otherwise, the minimal time trajectory
might yield a result that quickly achieves zero error, but
at a high speed, which would make the robot overshoot
and not be able to defend the shot. Then, (28) was solved
by using the optimal control tool Falcon.m (Rieck et al.,
2020) for MATLAB.

Proportional control law The second controller was cho-
sen such that it is similar to the ones actually implemented
in the robotic system. Then, modeling the robot as in (13),
for each ξ and ωn, the proportional control law is

vref (t) = −kp(ξ, ωn)e(t), (29)

where kp(ξ, ωn) is the solution of the optimization problem

kp(ξ, ωn) = arg minE[e(tball)
2], (30)

where E[e(tball)
2] is the expected value of e(tball)

2, consid-
ering e0 and tball distributed as modeled in subsection 2.2,
and e(t) modeled as in (27). E[e(tball)

2] was computed
using the following approximation

E[e(tball)
2] =

∑
e0∈E0

∑
tball∈Tball

e(tball)
2p(e0, tball), (31)

where E0 and Tball are representative sets of the continuous
variables e0 and tball, and p(e0, tball) is the joint probability
of the set {e0, tball} ∈ {E0, Tball}.
Note that (27a) leads to the transfer function

G(s) =
ω2
n

s3 + 2ξωns2 + ω2
ns
, (32)

which in turn leads to the closed-loop transfer function

T (s) =
kpω

2
n

s3 + 2ξωns2 + ω2
ns+ kpω2

n

, (33)

that requires, from the Routh-Hurwitz criterion (Ogata
and Yang, 2010), that kp < 2ξωn to be stable.

2.4 Task success check

To determine if the task was successful, the defense success
function f : S 7→ {Success, Failure} is defined

f(S) =

{
Success, |e(tball)| ≤ tol,
Failure, otherwise,

(34)

where tol = 0.04 m is a tolerance parameter selected by
considering the maximum diameter of the robot (0.18 m).

3. RESULTS AND DISCUSSION

The first step of the analysis is to propose limits to
the velocity and acceleration of the robot. These limits
were produced by using the double integrator model to
find regions such that the probability of defense reaches
saturation. Figure 8 shows the probability of defense for

Figure 8. Probability p of defense for the double integrator
model varying amax and vmax.

the double integrator for the cases: (a) rd = 0.5 m and
θ0 uniformly distributed between 0 and π; (b) rd = 0.5 m
and θ0 = θball; (c) rd = 1 m and θ0 uniformly distributed
between 0 and π; (d) rd = 1 m and θ0 = θball.

The cases in which the robot is aligned with the ball ((b)
and (d)) show higher defense probability than otherwise
((a) and (c)), as would be expected, since e0 tends to be
smaller in absolute value. To a lesser extent, a smaller
rd ((a) and (b)) suggests a better performance when
compared to the larger rd cases ((c) and (d)), due to
a higher tball and, usually, smaller e0. Moreover, the
defense probability seems to saturate for vmax > 1 m/s,
while still increasing for amax. However, (Purwin and
D’Andrea, 2005) shows for a typical SSL robot that
amax > 4 m/s2 may not be achievable due to the limited
friction between the wheel and the surface. Then, the
velocity and acceleration requirements chosen are amax =
4 m/s2 and vmax = 5 m/s, where the velocity requirement
was selected as a value high enough to saturate but
still under typical specifications (Maranhão et al., 2019).
Then, the defense probability for each case of the double
integrator model with chosen requirements is shown in
Table 1. Furthermore, p 6= 0 is observed even if vmax or
amax equals 0. This phenomenon also occurs in the other
scenarios and happens because the robot may intercept
the ball even if it stays still.

Then, using amax = 4 m/s2 and vmax = 5 m/s in the sec-
ond order model (27) with minimum time control law, Fig-
ure 9 shows a comparison of the defense probability for dif-
ferent values of natural frequency ωn and damping ratio ξ.
Table 1 shows the maximum defense probability achieved
in each case of this comparison. Since the minimum time
control law is optimal, it manipulates the system such that
every feasible acceleration can be achieved instantly by
the robot. Then, the performance is virtually equal for
every natural frequency and damping ratio. Besides, lower
defense probabilities are observed for some cases when
compared to the double integrator analysis. This is likely
due to the constraint of zero velocity and acceleration
at the final instant imposed by (28b). Nevertheless, the
probability decrease is below 5% for all cases, suggesting



Figure 9. Probability p of defense for the underdamped
second order model using the minimum time control
law.

Figure 10. Probability p of defense for the underdamped
second order model using the proportional control
law.

Table 1. Probability defense of each scenario:
(i) double integrator; (ii) minimum time con-

trol; (iii) proportional control.

Case (i) (ii) (iii)

(a) 0.21 0.19 0.21
(b) 0.67 0.63 0.67
(c) 0.08 0.07 0.08
(d) 0.63 0.62 0.64

that this requirement does not excessively over-constrain
the analyzed task.

Although the minimum time control law provides a
promising result, it is usually not implementable, due to
the high computational cost required to solve the opti-
mization in real-time. A more practical control law is
proportional control. Figure 10 shows the comparison for
this control law, and Table 1 shows the maximum defense
probability achieved in each case of the comparison. In
particular, a higher defense probability was observed for
the case (d) when compared to the double integrator. This

Table 2. Minimum robot requirements.

Parameter Minimum value Units

vmax 5 m/s
ωmax 5 rad/s
amax 4 m/s2

aωmax 4 rad/s2

PM 33 o

BW 22 Hz

effect is likely due to numeric imprecision but requires
more investigation. Since the defense probability is mostly
uniform, an achievable set of requirements were selected
to compensate for unmodeled effects, such as camera time
delay, controller discretization, and measurement noise of
the sensors. Then, ωn > 15 Hz and ξ > 0.2 were selected,
and using rd = 1 m to minimize the angular velocity
and acceleration requirements, the gathered results are
summarized in Table 2.

4. CONCLUSION AND FUTURE WORK

The method developed in this work provides the robot
designer with relevant information to the robot synthesis.
Due to the competitive nature of the game, we avoided
considering a minimum desired defense probability for the
requirement derivation. Instead, the requirements herein
derived propose to the design engineer a compromise be-
tween maximizing the defense probability and restricting
the demand of the system to viable constructions.

Two possibilities to improve the calculated defense prob-
ability are: (i) to design a more complex test case genera-
tion since the current assumptions are too generic; (ii) to
derive other requirements that are assumed ideal in the
current analysis, such as time delay of the camera, control
discretization, and measurement noise.

Finally, this method can be extended to different tasks
of the SSL competition, such as trajectory tracking and
shoot to the goal. Moreover, emerging areas can use this
method for open problems, such as automated parking
in autonomous driving systems, and the development of
urban air mobility vehicles.
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M., Dias, M., and Lima, R. (2019). Itandroids small
size league team report 2019. URL http://www.
itandroids.com.br/en/publications/.

Ogata, K. and Yang, Y. (2010). Modern control engineer-
ing, volume 5. Prentice hall Upper Saddle River, NJ.
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M.R.O.A., and Viana, N.L. (2016). Performance re-
quirements derivation for ieee very small size competi-
tion. In 2016 XIII Latin American Robotics Symposium,
109–114.

Purwin, O. and D’Andrea, R. (2005). Trajectory gen-
eration for four wheeled omnidirectional vehicles. In
Proceedings of the 2005, American Control Conference,
2005., 4979–4984 vol. 7.

Rieck, M., Bittner, M., Grüter, B., Diepolder, J., and
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