
Comparing Action Aggregation Strategies in

Deep Reinforcement Learning with

Continuous Action

Renata Garcia Oliveira ∗ Wouter Caarls ∗∗

∗ Pontifical Catholic University of Rio de Janeiro, RJ, (e-mail:
renatargo2@aluno.puc-rio.br; renata.garcia.eng@gmail.com).

∗∗ Pontifical Catholic University of Rio de Janeiro, RJ (e-mail:
wouter@ele.puc-rio.br)

Abstract: Deep Reinforcement Learning has been very promising in learning continuous control
policies. For complex tasks, Reinforcement Learning with minimal human intervention is still a
challenge. This article proposes a study to improve performance and to stabilize the learning
curve using the ensemble learning methods. Learning a combined parameterized action function
using multiple agents in a single environment, while searching for a better way to learn, regardless
of the quality of the parametrization. The action ensemble methods were applied in three
environments: pendulum swing-up, cart pole and half cheetah. Their results demonstrated that
action ensemble can improve performance with respect to the grid search technique. This article
also presents as contribution the comparison of the effectiveness of the aggregation techniques,
the analysis considers the use of the separate or the combined policies during training. The
latter presents better learning results when used with the data center aggregation strategy.

Keywords: Machine Learning, Reinforcement Learning, Deep Reinforcement Learning,
Hyperparameter Optimization, Ensemble Algorithms

1. INTRODUCTION

Reinforcement Learning (RL) is a mathematical frame-
work that trains the control policy of an intelligent agent
by interacting with world learning through trial and error.
The agents seek to learn with minimal human intervention,
autonomous, with no knowledge of robot or environment,
which is the way to scalable reinforcement learning systems
(Gu et al., 2017; Ha et al., 2020). This motivated research
on the effectiveness of reinforcement learning and its com-
bination with neural network and deep learning, besides
pursuing the direct use in real robots (Popov et al., 2017).

The efficiency of RL in complex real-world scenarios de-
pends on the efficient representation of the environment
from high-dimensional observation inputs. In addition,
learning an efficient policy (a mapping of observations to
actions) for new events depends on the past experiences
generalization. Efficient learning in the real world demands
that the algorithm be stable and efficient. This is a chal-
lenge that addresses the security and automation of the
process, which requires continuous data collection.

Deep reinforcement learning has been used to solve many
problems of continuous control. The Deep Q network
(DQN) (Mnih et al., 2013) learns policies using end-to-
end reinforcement learning receiving as inputs direct visual
information (pixels), using high-dimensional continuous
state space and discrete actions. DQN is the first artificial
agent capable of learning a diverse array of challenging
tasks (Mnih et al., 2015).

Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2016) is an actor-critic algorithm which learns Q-
function (reward-to-go) and control policy. This algorithm
and its variants (e.g. TD3 (Fujimoto et al., 2018)) are in
the state of the art in Deep Continuous Reinforcement
Learning. It is a model-free, supports high-dimensional
states space and continuous actions space. It performs
very well, even though it presents a great need to fine-
tune the hyperparameters involved. Another challenge is
the difficult to maintain stability of learning.

The use of continuous actions ensemble, which is the object
of study in this article, aims at improving performance and
reducing learning variance, conducting a comprehensive
study among the action aggregation techniques presented
in the literature for RL (Wu and Li, 2020; Anschel et al.,
2017; Duell and Udluft, 2013; Faußer and Schwenker,
2011), furthermore, this article investigates an analysis
of the quality of the hyperparameters that participate in
the learning process. This article presents analysis and
experiments of ensemble methods from different instances
of DDPG.

Studies of policy ensembles started with majority vote
decision (Wiering and Van Hasselt, 2008) and average
decision (Faußer and Schwenker, 2011). As for Deep RL,
there are some studies using DQN (Anschel et al., 2017)
and DDPG (Wu and Li, 2020) algorithms. Besides these,
Density Based (based Majority Voting) and Data Center
strategies were used in neural networks combined with RL
(Duell and Udluft, 2013) and they presented promising

creacteve_michele
Texto digitado
DOI: 10.48011/asba.v2i1.1547

results. All these strategies will be explained later, as well
their performance.

A recent study in DDPG, Bootstrapped aggregated multi-
DDPG (BAMDDPG) (Wu and Li, 2020), is structured
with Multiple DDPG networks for optimizing controllers
(policies) in continuous actions space. It uses three DDPG
networks each one with a different simulation environment.
The limitation of this approach is the difficulty in carrying
out training in the real world, which is a single environ-
ment, with minimal intervention.

The main contribution of this work is the comparison
between the different action aggregation strategies used
in DDPG ensembles. This work is organized in 6 sections.
Section 2 introduces the background. An explanation of
the approach in ensemble DDPG and presentation of
experiments can be found in Sections 3 and 4. Section 5
presents the results and discussion and Section 6 is the
conclusion.

2. BACKGROUND

This section presents in more detail the Deep Deterministic
Policy Gradient (DDPG) and action ensemble aggregation
strategies.

2.1 Deep Deterministic Policy Gradient (DDPG)

Reinforcement Learning (RL) is a Machine Learning area
used for optimizing controllers in complex technical sys-
tem. RL learns by interacting with the environment. Given
a state s, an action a is performed in the environment,
which return a reward r and the next state s′.

Actions selection is modeled as a map called policy π(s),
the choice depends on the current state. The policy is
trained to maximize the expected return, for example,
from the start state distribution E : J = Eri,si∼E,ai∼π [R].

The challenge in solving real world tasks with reinforce-
ment learning is finding the optimal policy π∗ using a
continuous action space and high-dimensional states space.
The RL’s goal is to learn π∗ that maximizes the expected
sum of discounted future rewards Q∗ (1). The discounting
factor γ ∈ [0, 1) guarantees finite sums in infinite-horizon
tasks:

Q∗(s, a) = max
π

E

[∞∑
k=0

γkrt+k+1|st = s, at = a

]
, (1)

where t is a time step.

DDPG is a type of Deep Learning (Silver et al., 2014;
Lillicrap et al., 2016), it is an actor-critic algorithm based
on the DPG algorithm. The implementation uses a target
network, to stabilize the learning, and the replay buffer,
which not only breaks the correlation of the acquired data
but also avoids forgetting already learned behavior.

The target network θ′ is a copy of main network θ and
its output is used as a target value to measure the mean
square error. The network weights θ′ are updated (time
delayed) according to the soft target update rate τ (2).
In addition, the soft update is performed every number of
steps (interval parameter).

θ′(t) = τθ(t−1) + (1− τ)θ′(t−1) with τ ∈ [0, 1] (2)

The DDPG critic Q(s, a) is optimized by minimizing the
loss (3) of the mean square error of the main and target
network critics. The current policy is parameterized by
the function µ(s) and the Q function approximation is
parameterized by θQ.

L(θQ) = E(s,a,r,s′)

[(
yt −Q(s, µ(s)|θQ)

)2]
(3)

where

yt = rt + γQ(s′, µ(s′)|θQ
′
) (4)

This actor function µ(s|θµ) deterministically maps states
to a specific action. The actor update occurs in the
direction of the positive gradient criteria of the critic with
respect to the actor parameters (5). ρβ is the distribution
of the (stochastic) behavior policy ρπ and J represents the
expected return E from the start distribution.

∇θµJ =

Est∼ρβ

[
∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ|s=st)

] (5)

As this is an off-policy algorithm, the learning environment
does not have to follow the policy, so experiences (s, a, r, s′)
are stored in a replay buffer. Samples of the buffer, known
as minibatches, are selected and used to train in order
to avoid forgetting throughout learning, and they are
randomly sampled to ensure no correlation between the
data, avoiding over or under fitting.

Model Architecture The network has two hidden layers
with 400 and 300 units respectively. The neural network
learns using AdamOptimizer (Kingma and Ba, 2014), the
actor and the critic learning rate are 10−4 and 10−3

respectively. The discount factor is γ = 0.99, reward scale
is rs = 0.1 and the soft target updates used is τ =
0.01. The exploration noise uses an Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930), which is specific
to explore physical environments that have momentum.
The parameterized values are θN = 0.15 and σN = 1.0
for all simulations discussed in this work. The importance
of this technique is to avoid temporally correlate the
exploration, because pure white noise would not lead to
significant deviation. From these DDPG initial values,
some modifications were made in order to improve the
performance in each environment, this will be detailed in
Section 3 below. The input of the neural network consists
of the number of observations from each environment, this
is described in the environment details in Section 4.1.

2.2 Ensemble Aggregation Strategies

This section presents a recent article that uses the mean for
action aggregation (Wu and Li, 2020) and details others
aggregations proposed for continuous actions (Duell and
Udluft, 2013).

BAMDDPG A recent study in DDPG, Bootstrapped
aggregated multi-DDPG (BAMDDPG) (Wu and Li, 2020),
uses DDPG instances for optimizing controllers (policies)

in continuous actions space. In particular, it uses three
DDPGs using a single or multiple environments. When
using a single environment, at each episode an alternate
different DDPG is chosen to interact with the environment,
for multiple environment interaction occurs independently
at each step for all environments. Average actions ensem-
ble were evaluated in the reacher and in the car racing
simulation in multiple environments. After experiments,
three algorithms composing the ensemble demonstrated to
be more effective. In all cases, the replay buffer (sample
experiences) is shared between the DDPG instances.

Below, aggregation approaches for continuous learning
policies will be listed.

Mean Aggregation It is simple arithmetic mean of the
actions proposed by different algorithms.

Data Center Aggregation The algorithm is based on the
idea of using the data group weighted average. Instead of
the mean aggregation, the action that is the farthest of
the group average is removed in an iterative process, until
only two actions remain and its average is used. Algorithm
1 presents the data center pseudo code that uses Euclidean
distance as measure. Note that each ai can be a vector of
multiple action dimensions.

Algorithm 1. Datacenter Pseudocode.

A = (a1 + a2 + · · ·+ an)
while |A| > 2 do

µ = (
∑

ai)/|A|
for each element ai in |A| do

di = ||ai − µ||

end
j = argmax

i
di

A ← A \ {aj}
end
data center = (a1 + a2)/2

Density Based Aggregation Created as an extension of
majority voting to continuous actions space. The density
of each action di is a sum of Gaussian functions as showed
in Figure 1. The final chosen action has the highest density
in the actions space.

Equation (6) calculates the density action, the exponent
of e is the sum of the difference between the N others
actions of the ensemble and the actual action ai, consider-
ing k dimension (k actions required by the environment
in each steps). Considering an environment with more
than 1 action, the actions space probably will not have
same scale and because that they are normalized for the
interval [−1, 1]. The distance parameter r = 0.025 was
chosen empirically. This is therefore not a parameter-free
algorithm.

di =

N∑
j=1

e
−
∑k

l=1
(ail−ajl)

2

r2 (6)

Figure 1. Illustration of density action.

3. ENSEMBLES IN DDPG

Despite the BAMDDPG (Section 2.2) considering the al-
ternately policy selection during training when using single
environment, it is not clear the performance behavior,
once the tests presented uses multiple environment. So
this section presents the policy selection during training
and testing group to benchmark the ensemble methods
performance.

3.1 Policy Selection in Training Phase

The Alternately Persistent and Online Training are the
policy selection used during the training phase of algo-
rithm. The mode of policy selection using DDPG ensemble
can lead to a better convergence of the learning curve.
Considering the use of a single environment, in Reinforce-
ment Learning, it is important to pursue its self-adaptation
feature of the algorithm during learning the environment.

Alternately Persistent The selected policy is alternated
every episode between the DDPG ensemble in training.
In the testing phase, at each step, the action aggregation
technique is applied.

Online Training In ever training episode, at each step,
the action aggregation technique is applied. The idea is
taking advantage from a time-related learning actions,
once all DDPG are learning together.

3.2 Testing group to benchmark

Hyperparameters influences the speed of learning and the
ability to generalize the algorithm, they are variables of
network structure and related to the trained network.
The value possibilities ranges used to compose the trained
DDPG are shown in the Table 1.

Each environment was extensively executed to find the
best performance. For this, a narrow grid search for
each hyperparameter value was performed, in which when
finding high performance for one variable, it is frozen and
a grid variation is performed on another variable, until the
process ends. This is quite computationally costly, yet it

Table 1. Table with the hyperparameters’ description used to build each algorithm that is part
of the ensemble.

Hyperparameters Value Description

discount factor 0.98 or 0.99 Discount factor used in the Q-learning update.

reward scale 0.001, 0.1 or 1 Scaling factor applied to the rewards received from the environment.

soft target update rate 0.01 Update rate of the target network weights.

target network update interval 10 or 100 Steps number, or frequency, with which the target network parameters are
updated.

learning rate 0.001 and 0.0001 Update rate used by AdamOptimizer.

replay steps 32 to 512 Number of minibatches used in a single step.

minibatch size 32 to 512 Number of transitions from the environment used in batch to update the
network.

layer size 50 to 400 Number of neurons in regular densely-connected NN layers

activation layer relu or softmax Output function of the final network layer.

replay memory size 1000000 Size of the replay memory array that stores the agent’s experiences in the
environment.

observation steps 1000 Observation period in which the policy is chosen at random and the result
of the experiment is used to initialize the replay memory.

is important to find the best single DDPG baseline for
comparisons.

Below are presented three groups designed to evaluate the
performance behavior information when the DDPG hyper-
parameters of the ensemble are not fine tuning specifically
to the environment. Adding the best DDPG hyperparame-
ters performance for each environment is used in analysis.
It is important to note that the best fine tuning for one
environment may not be the best for another. Table 2
summarizes the composition of formed groups.

Table 2. Groups of algorithm parameteriza-
tions.

parameterizations 3 best mostly good mostly bad

best 3 12 4

worst 0 4 12

3 Best The three best configurations of the DDPG
hyperparameters of the environment.

Mostly good Ensemble is composed by 16 DDPGs, the
idea is to gather 12 good parameterizations of the algo-
rithm, that is 75% of the group and reserve 25%, that
is, 4 bad parameterizations, that are not well configured
and result in a non-convergence of learning. The idea is
to verify the behavior of the ensemble’s learning strategy
when there are not always good parameterizations, and
thus, to verify the learning resilience.

Mostly bad Similar to the composition previously pre-
sented. So 75% is composed by bad parameterizations and
25% of good parameterizations. As most are composed of
bad parameterized algorithms, which do not converge, it
becomes an immense challenge to carry out learning based
on those good algorithms.

4. EXPERIMENTS

The experiments with DDPG were performed using the
action aggregation techniques, training mode and testing
group as benchmark in the environments previously pre-
sented.

4.1 Environments

The environments are Inverted Pendulum Swing-up, Cart
Pole and Half Cheetah v2. Generic Reinforcement Learn-
ing Library (GRL) 1 provides the first two environments.
The last one is used from the OpenAI Gym framework
(Brockman et al., 2016) with the MuJoCo environments
(Todorov et al., 2012). The training environments consider
random initialization so as not to bias the learning.

Inverted Pendulum Swing-up (PD) It is a free pole
attached only by an axis that, if there is no external force,
remains down immobile, as shown in Figure 2. The goal is
to learn the necessary torque to swing the pole, rotate
it on the axis and maintain balanced on top (Busoniu
et al., 2017). The observation variable considers derived
information of the angle, sine and cosine, in order to avoid
the [−π, π] wrapping problem, more details of training
and variables characteristics can be found in Table 3.
The reward function is represented by (7), where x is the
observation variables, pendulum position α and pendulum
velocity α̇, and u is the control action.

ρ(x, u) = −xTQrewx−Rrewu
2 (7)

where

Qrew =

[
5 0
0 0.1

]
, Rrew = 1

Table 3. Variables of Inverted pendulum swing-
up training.

condition values

init: random position of pole.

goal: swinging pendulum up so it maintain upright.

observation (1) pendulum position sin(α).
variables: (2) pendulum position cos(α).

(3) velocity α̇ of the pole.

control action: (1) motor voltage u.

α range: [−π, π].

α̇ range: [−12π, 12π].

u range: [−3, 3] V.

1 GRL Library (Generic Reinforcement Learning Library)
(https://github.com/wcaarls/grl).

Figure 2. Illustration of the inverted pendulum swing-up
model.

Figure 3. Illustration of the cart pole model.

Cart Pole (CP) The car moves back and forth along
a no friction track with the task of balancing a pole
attached by an un-actuated joint as shown in Figure 3.
The goal is to learn how to swing and balance the pole
just by moving the car around the track (Barto et al.,
1983; Nagendra et al., 2017). The observation variable,
as in inverted pendulum swing-up environment, considers
derived information of the angle, below has more details
of training and variables characteristics in Table 4. The
reward function is represented in Equation (8).

Table 4. Variables Cart pole training.

condition values

init: car in middle and pole in a random position.

goal: swing pole up and maintain it upright.

observation (1) position of the cart on the track (x).
variables: (2) angle of the pole with the vertical (θ).

(3) cart velocity (ẋ).

(4) angular velocity (θ̇).

control action: (1) force u applied to the cart.

α range: [−π, π].

α̇ range: [−5π, 5π].

x range: [−2.4, 2.4].

ẋ range: [−10, 10].

u range: [−15, 15] V.

ρ(x, θ, ẋ, θ̇) = −2x2 − 0.1ẋ2 − θ − 0.1θ̇2 (8)

Figure 4. Illustration of the half cheetah model.

Half Cheetah (HC) Half cheetah is a walking animal in
2D environment (Todorov et al., 2012; Wawrzynski, 2007).
Figure 4 shows the six joint point of half cheetah which
receive torque to control a two-legged walking robot. For
each leg, the three degrees of freedom correspond to thighs,
shins and feet. The seventeen observation variables and six
actions are better described below in Table 5.

Table 5. Variables of Half Cheetah training.

condition values

init: random variables.

goal: learn to walk alone.

observation (1) x position, range [0, 1] meter.
variables: (2) y angle, range [−π, π].

(3) hind thigh (bthigh) angle, range [−π, π].
(4) hind shin (bshin) angle, range [−π, π].
(5) hind foot (bfoot) angle, range [−π, π].
(6) front thigh (fthigh) angle, range [−π, π].
(7) front shin (fshin) angle, range [−π, π].
(8) front foot (ffoot) angle, range [−π, π].
(9) x velocity, range [−1, 1] m/s.
(10) y angular velocity, range [−10, 10] m/s.
(11) z velocity, range [−1, 1] m/s.
(12) bthigh angular velocity, range [−10, 10] m/s.
(13) bshin angular velocity, range [−10, 10] m/s.
(14) bfoot angular velocity, range [−10, 10] m/s.
(15) fthigh angular velocity, range [−10, 10] m/s.
(16) fshin angular velocity, range [−10, 10] m/s.
(17) ffoot angular velocity, range [−10, 10] m/s.

control action: (1) torque hind thigh, range [−1, 1] N m.
(2) torque hind shin, range [−1, 1] N m
(3) torque hind foot, range [−1, 1] N m
(4) torque front thigh, range [−1, 1] N m
(5) torque front shin, range [−1, 1] N m
(6) torque front foot, range [−1, 1] N m

5. RESULTS AND DISCUSSION

The execution performance of all the experiments pro-
posed in this study are presented Table 6. The performance
of each experiment represents the average of the last 10
accumulated rewards in the learning runs. In table, the
final result is presented with an average performance of
30 runs and its confidence interval with 95% confiability,
except the half cheetah environment that always uses a
10 run average. The best DDPG algorithm is used as a
benchmark for performance comparison. So, the execu-
tions of the ensemble, which showed an intersection of the

Table 6. Action Ensemble performances.

DDPG
Alternately Persistent Online Learning

3 best mostly good mostly bad 3 best mostly good mostly bad

P
D

Best −792± 14
Mean -839±43 −1613±174 −4041±118 −1786±369 −2836±280 −4252±109

Data Center -795±11 -804±10 −1784±406 -794±11 −854±24 −2221±326
Density -922±136 −1080±161 −2361±259 −1412±229 −1607±266 −2834±249

C
P

Best −344± 86
Mean -416±154 −962±273 −2550±334 −1333±336 −2103±243 −3409±290

Data Center -573±312 −901±228 −2472±347 -291±58 -484±167 −1760±345
Density -477±172 −1551±205 −2770±370 -344±120 −1110±193 −1378±194

H
C

Best 1419± 73
Mean 3474±822 2205±634 551±412 314±302 −53±17 −100±20

Data Center 2321±618 2040±423 1332±83 2159±342 1942±198 1284±294
Density 2205±459 1441±195 1041±110 1424±415 613±392 555±267

0 1000 2000 3000
seconds

-5000

-4000

-3000

-2000

-1000

re
w

ar
d

PD

Mean
Data Center
Density Based

0 2000 4000 6000
seconds

-10000

-8000

-6000

-4000

-2000

re
w

ar
d

CP

Mean
Data Center
Density Based

0 2000 4000 6000
seconds

0

1000

2000

3000

4000

re
w

ar
d

HC

Mean
Data Center
Density Based

Figure 5. Alternately Persistent learning the mostly good hyperparametrizations.

0 1000 2000 3000
seconds

-5000

-4000

-3000

-2000

-1000

re
w

ar
d

PD

Mean
Data Center
Density Based

0 2000 4000 6000
seconds

-10000

-8000

-6000

-4000

-2000

re
w

ar
d

CP

Mean
Data Center
Density Based

0 2000 4000 6000
seconds

0

1000

2000

3000

4000

re
w

ar
d

HC

Mean
Data Center
Density Based

Figure 6. Online learning the mostly good hyperparametrizations.

mean and its confidence interval with Best DDPG, are
highlighted in bold. The number of runs of the experiments
seeks to achieve an expected reliability for comparison
purposes (Triola, 2015).

Analysing Table 6, the 3 best in Alternately Persistent
performs very well in any chosen strategy. The mean
strategy works very well in this learning mode, but it does
not work for Online Learning. Note that the 3 best with the
Data Center strategy in Online Learning performs equal to
or better than Alternately Persistent, but with a narrower
confidence interval. This leads to more stable learning.
This stability becomes interesting when we compare the
mostly good and its results. For this case, the Data Center
Online Learning always converges, although the ensemble
has algorithms that are not capable of learning.

Besides that, the Data Center strategy in the 3 best
and mostly good ensembles shows very good results when
compared with best DDPG, the exception is mostly good of

Cart Pole in Alternately Persistent. Data Center strategy
good surprise is that the mostly bad of the half cheetah
environment has shown good results when compared to the
Best. On other side, Density based strategy seems to be a
good strategy, however it does not stand out in comparison
to the others, so some cases that have poor performance
struggle with the need for parameterization.

To show the learning behaviour, the mostly good group
is illustrated in all environments with the aggregation
techniques. The Alternately Persistent learning is pre-
sented in Figure 5, the inverted pendulum presents dis-
tinct performance for each aggregation, cart pole struggles
to reach a better performance and half cheetah showed
a huge performance leap in early seconds between the
Data Center and Mean, yet both ending with the equal
performance. Figure 6 presents the Online learning, Data
Center presents a better performance in all environments.
Note that, the other aggregations mostly present the worst
behavior compared to Figure 5.

0 2000 4000 6000

seconds

-500

0

500

1000

1500

2000

2500

3000

3500

re
w

ar
d

Mean
Data Center
Best

Figure 7. Half Cheetah performance for the mostly good
hyperparametrizations in Alternately Persistent.

Figure 7 compares the Best algorithm learning curve
with mostly good group trained with Alternately Persis-
tent learning in Half Cheetah environment. Data Center
presents an early learning convergence than others and
surpass the performance of Best algorithms. The mean
aggregation works well at the end, even though it presents
low capacity in the initial stage of learning.

6. CONCLUSION

This article proposes a comparison with the continuous ac-
tion ensemble techniques used in the literature. It demon-
strates that it is possible to improve the grid search per-
formance with the use of DDPG ensemble. When testing
an ensemble with 3 best DDPG it is not possible to high-
light the best strategy, however when we use mostly good
we realize that the Data Center strategy presents good
performance and the narrowest confidence interval. When
using algorithms with unreliable hyperparameter tuning,
mostly bad groups, the Data Center demonstrated capabil-
ity to learn as a fine-tuning single agent. Using Alternately
Persistent learning, with fine-tuning algorithms, the Mean
aggregation is an obvious choice for 3-algorithm ensemble.
As future work, other aggregation techniques can be used
in addition to other environments.

REFERENCES

Anschel, O., Baram, N., and Shimkin, N. (2017).
Averaged-dqn: Variance reduction and stabilization for
deep reinforcement learning. 176–185.

Barto, A.G., Sutton, R.S., and Anderson, C.W. (1983).
Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-13(5), 834–846. doi:
10.1109/TSMC.1983.6313077.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Openai
gym. CoRR.

Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D.
(2017). Reinforcement learning and dynamic program-
ming using function approximators. CRC press.

Duell, S. and Udluft, S. (2013). Ensembles for continuous
actions in reinforcement learning. In ESANN.

Faußer, S. and Schwenker, F. (2011). Ensemble methods
for reinforcement learning with function approximation.
In International Workshop on Multiple Classifier Sys-
tems. Springer.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Ad-
dressing function approximation error in actor-critic
methods. In J. Dy and A. Krause (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, 1587–1596. PMLR, Stockholmsmässan, Stock-
holm Sweden. URL http://proceedings.mlr.press/
v80/fujimoto18a.html.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017).
Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates. In 2017 IEEE
International Conference on Robotics and Automation
(ICRA), 3389–3396.

Ha, S., Xu, P., Tan, Z., Levine, S., and Tan, J. (2020).
Learning to walk in the real world with minimal human
effort. arXiv preprint arXiv:2002.08550.

Kingma, D.P. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning.
Proceedings of International Conference on Learning
Representations.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.A.
(2013). Playing atari with deep reinforcement learning.
CoRR, abs/1312.5602. URL http://arxiv.org/abs/
1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidje-
land, A.K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. Nature,
518(7540), 529–533.

Nagendra, S., Podila, N., Ugarakhod, R., and George,
K. (2017). Comparison of reinforcement learning algo-
rithms applied to the cart-pole problem. In Interna-
tional Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI). IEEE.

Popov, I., Heess, N., Lillicrap, T.P., Hafner, R., Barth-
Maron, G., Veceŕık, M., Lampe, T., Tassa, Y., Erez, T.,
and Riedmiller, M.A. (2017). Data-efficient deep rein-
forcement learning for dexterous manipulation. CoRR,
abs/1704.03073. URL http://arxiv.org/abs/1704.
03073.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
and Riedmiller, M. (2014). Deterministic policy gra-
dient algorithms. In Proceedings of the 31st Interna-
tional Conference on International Conference on Ma-
chine Learning, volume 32, 387–395. JMLR.org, Bejing,
China.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 5026–5033. IEEE.
Triola, M.F. (2015). Elementary Statistics Technology

Update. Pearson, 11th edition.
Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory

of the brownian motion. Physical review, 36, 823.
Wawrzynski, P. (2007). Learning to control a 6-degree-

of-freedom walking robot. In EUROCON 2007-The
International Conference on“Computer as a Tool”, 698–
705. IEEE, Warsaw, Poland.

Wiering, M.A. and Van Hasselt, H. (2008). Ensemble algo-
rithms in reinforcement learning. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics),
38, 930–936.

Wu, J. and Li, H. (2020). Deep ensemble reinforcement
learning with multiple deep deterministic policy gradi-
ent algorithm. Mathematical Problems in Engineering,
6, 1–12.

