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Abstract: This work addresses the allocation of closed-loop poles of a discretized system from
a continuous-time one with multiple input delays, aiming at its control through a computer. In
order to handle a practical challenge presented in Network Control System (NCS) approaches,
uncertain sampling period, distinct input time delays and parametric uncertainties in polytopic
form can be propagated from the original state space representation to the discretized state
model. The resulting discrete-time time-delay system has a very specific feature, so that it can
be converted into an augmented linear system without time-delay. In this context, the main
contribution of the present paper consists of a Linear Matrix Inequality (LMI) based control
synthesis condition composed of homogeneous polynomial matrices of arbitrary degree, which
ensures the continuous-time system stability and simultaneously the allocation of the closed-
loop poles of the augmented system in a D-stable region. Numerical simulations illustrate the
exposed.

Keywords: robust control; multi-input system; D-stability; discretized linear systems; linear
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1. INTRODUCTION

An Network Control System (NCS) is a control system
in which plants, sensors, controllers, and actuators are
connected through communication networks. In design
of NCS, one considers important issues, e.g., uncertain
sampling period, network-induced delay, communication
constraints, and so on. In this context, this paper addresses
the modelling of an NCS with different time-delays in each
individual input channel, such that a discrete-time system
with multiple input delays is transformed into a delay free
one by using state augmentation techniques (Lian et al.
(2003), Zhou et al. (2010)). In order to handle a practical
challenge presented in NCS approaches, in addition to
distinct multiple input time delays an uncertain sampling
period is also considered.

In the context of multiple input delays, it is worth noting
that most research efforts have been devoted to design
of continuous-time feedback controllers. To the author’s
knowledge, there exists a lack of methods to design a
digital controller that assures the stability of the closed-
loop hybrid system (continuous-time plant and digital
controller).
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This work proposes a condition based on a set of Linear
Matrix Inequalities (LMIs) defined in terms of homoge-
neous polynomial parameter-dependent matrices of arbi-
trary degree (Oliveira and Peres (2007)) and the main aim
is to guarantee the stability of the continuous-time plant
with multiple input delays and closed-loop poles allocation
of the discretized system in a D-stable region.

In order to handle performance requirements, this work
uses a cardioid (region formed by the geometric locus with
the same damping ratio) approximation, defined as a disc
region D(δ, %) , centered in δ + j0, with radius %, where
|δ| + % < 1 (Furuta and Kim (1987)). In addition, both δ
and % were parameterized from a given region in the left
half-plane (Leandro and Kienitz (2019)).

Polytopic uncertainties are considered, and additional
challenges are imposed to circumvent the difficulty of deal-
ing with exponential of matrices in the presence of poly-
topic algebraic structures, namely in cases where sampling
period is not sufficiently small so that the quadratic and
higher-order terms in the Taylor series expansion can’t be
neglected in the uncertainty representation. Therefore, this
work extends the results present by Braga et al. (2014),
who addressed the problem of uncertain sampling dis-
cretization of uncertain continuous-time systems without
considering multiple input delays and closed-loop poles
allocation to handle performance requirements.
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The remainder of this paper is organized as follows. Section
2 introduces definitions and preliminary lemmas. Section
3 brings definitions for a systematic discretization through
Taylor series expansion. Section 4 describes the state feed-
back control design condition for augmented model de-
rived from that proposed in Braga et al. (2014). Section 5
presents numerical examples. Finally, concluding remarks
are shown in Section 6.

1.1 Notation

N∗: denotes the set of non-zero natural numbers. I(0):
identity (null) matrix of appropriate dimension; diag: a
diagonal matrix of appropriate dimension; MT : matrix
M transpose; He{M}: denotes MT + M ; ? : denotes
the elements or symmetrical blocks with respect to the
diagonal of a symmetric matrix; T : denotes the sampling
period.

2. PRELIMINARIES

Consider the following continuous-time uncertain system
with distinct multiple input delays:

ẋ(t) = E(α1)x(t) +

r∑
i=1

Fi(α1)ui(t− τi), (1)

where E(α1) ∈ Rnx×nx , Fi(α1) ∈ Rnx×nu and the ith
control channel ui(t) ∈ Rnu×1 is delayed by τi > 0,
i ∈ { 1, · · · , r }. Suppose that matrices E(α1) and Fi(α1)
belong to polytope Ω with N vertices defined by:

Ω =

(E,F )(α1)|(E,F )(α1) =

N∑
j=1

α1j(E,F )j

 , (2)

where α1 = (α11, . . . , α1N ) is a time-invariant parameter
vector, taking values in a unit simplex ΛN :

ΛN =

ζ ∈ RN |
N∑
j=1

ζj = 1, ζj ≥ 0,∀j ∈ {1, ..., N}

 .(3)

Moreover, consider the delayed input signal to be sampled
with uncertain sampling period, such that T (α2) lies inside
the interval [Tmin, Tmax] and can be written as a convex
combination of N = 2 vertices:

T (α2) =

2∑
i=1

α2iTi, α2 ∈ Λ2, (4)

such that Λ2 is defined in (3). For simplicity, the multiple
input delays τi, i ∈ { 1 , · · · , r }, are supposed to be
constant and known, in accordance with the exposed by
Braga et al. (2014) and references. In this context, consider
an uncertain parameter vector, where α = (α1, α2) ∈
(ΛN1

× ΛN2
), N2 = 2, which is a so-called multi-simplex

domain (see Oliveira et al. (2008)).

Assumption 1. For the multiple network-induced delay τi,
i ∈ { 1 , · · · , r }, and T (α2) ∈ [ Tmin, Tmax ], the following
relation holds:

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τr ≤ Tmin ≤ Tmax. (5)

Considering a zero order hold, the value of state x(t) at
sampling instants kT (α2), k = 1, 2, . . . , is given by:

x(k+1) = A(α)x(k)+

r∑
i=1

{Bdi(α)ui(k− 1) +Bi(α)ui(k)},

(6)
where instant kT (α2) is denoted by k for simplicity, and
the uncertain parameter-dependent matrices A(α), Bi(α)
and Bdi(α) are:

A(α) = eE(α1)T (α2),

Bdi(α) = eE(α1)(T (α2)−τi)
(∫ τi

0

eE(α1)ςdς

)
Fi(α1),

Bi(α) =

(∫ T (α2)−τi

0

eE(α1)ςdς

)
Fi(α1), i = {1, · · · , r}.

(7)
The aim of this work is to propose a condition based on a
set of LMIs defined in terms of homogeneous polynomial
parameter-dependent matrices of arbitrary degree, which
allows to guarantee the stability of (1) and the closed-loop
pole allocation in (6). The following lemmas were used in
the proof of the proposed condition.

Lemma 1. (Gahinet and Apkarian, 1994). Given a matrix
H = HT ∈ Rn×n, and two matrices V and U of column
dimension n, consider the problem of finding some matrix
X of compatible dimensions such that:

H + V TXTU + UTXV < 0. (8)

Denote by NU and NV any matrices whose columns form
bases of the null spaces of U and V , respectively. Then (8)
is feasible for X if and only if

NT
VHNV < 0 and NT

UHNU < 0. (9)

In the context of this work, Lemma 1 is used such that the
LMIs in (9) certify the existence of a solution of (8). This
strategy will be used to demonstrate Theorem 3, presented
in section 4.

Lemma 2. (as cited by Boyd et al. (1994)). Given a scalar
λ > 0 and any real matrices O and U of compatible
dimensions, then

OU + UTOT ≤ λOOT + λ−1UTU . (10)

3. DISCRETIZATION OF UNCERTAIN SYSTEMS
WITH UNCERTAIN SAMPLING PERIOD AND

MULTIPLE INPUT DELAYS

The parameter-dependent matricesA(α),Bi(α) andBdi(α)
described in (7), can be rewritten in terms of homogeneous

polynomial matrices A[g](α), B
[g]
i (α) and B

[g]
di

(α), formed
by a Taylor series expansion of degree g ∈ N∗ × N∗
and the residual discretization error ∆A[g](α), ∆B

[g]
i (α)

and ∆B
[g]
di

(α). Such reasoning was based on main ideas
presented in Braga et al. (2014), as follows:

A(α) = A[g](α) + ∆A[g](α), Bi(α) = B
[g]
i (α) + ∆B

[g]
i (α),

Bdi(α) = B
[g]
di

(α) + ∆B
[g]
di

(α).
(11)

The homogeneous polynomials are



A[g](α) =

g∑
n=0

2∏
j=1

 Nj∑
z=1

αjz

g−n
E(α1)

n

n!
T (α2)n,

B
[g]
i (α) =

g∑
n=1

2∏
j=1

 Nj∑
z=1

αjz

g−n
E(α1)

n−1

n!
×

ψi(α2)nFi(α1),

B
[g]
di

(α) =

g∑
n=0

g∑
s=1

(
N1∑
z=1

α1z

)2g−s−n 2∑
j=1

α2j

g−n

×

τsi
s!

ψi(α2)
n

n!
E(α1)n+s−1Fi(α1),

(12)
where ψi (α2) = T (α2)−τi, i ∈ { 1 , · · · , r }. The residual
discretization errors are

∆A[g](α) = eE(α1)T (α2) −A[g](α),

∆B
[g]
i (α) =

(∫ ψi(α2)

0

eE(α1)ςdς

)
Fi(α1)−B[g]

i (α),

∆B
[g]
di

(α) = eE(α1)ψi(α2)

(∫ τi

0

eE(α1)ςdς

)
Fi(α1)−B[g]

di
(α).

(13)
Considering that the matrix product is non commutative,
one can note the need for a notation that allows for a con-
venient generalization to represent the matrix coefficients
originated by such representation. Definitions that allow
for a systematic representation of Taylor series terms can
be found in Appendices A and B.

Bounds on the discretization errors described in (13) are
defined as

θA
∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆A[g](α)
∥∥∥

2
, θBi

∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆B
[g]
i (α)

∥∥∥
2
,

θBdi
∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆B
[g]
di

(α)
∥∥∥

2
, i = {1, · · · , r} ,

(14)
where ‖.‖2 represents the 2−norm, sup is the supremum
and

ᾱ
∆
= arg sup

α∈ΛN1
×Λ2

‖.‖2, (15)

which is defined for each one of the norms in (14). An
approximation for (θA, θBi , θBdi ) can be obtained by a

(N1 + 2)−dimensional off line search in a grid of values
of α ∈ (ΛN1

× Λ2).

4. STABILIZATION

In this section, a new design condition is proposed to
allocate closed-loop system poles inside a desired disc
region in the z -plane.

Assumption 2. Consider F (α1) = [ F1(α1), · · · , Fr(α1) ] ∈
Rnx×rnu , assume that the pair (E(α1), F (α1)) is stabiliz-

able and there exists a matrix K =
[
K1

T, · · · , Kr
T
]T ∈

Rrnu×nx , such that (E(α1) + F (α1)K) is Hurwitz.

From (11), the discrete time model (6) can be rewritten
as:

x(k + 1) = (A[g](α) + ∆A[g](α))x(k) +

r∑
i=1

{
(B

[g]
di

(α)+

∆B
[g]
di

(α))ui(k− 1) + (B
[g]
i (α) + ∆B

[g]
i (α))ui(k)

}
,

(16)
which can then be recast into the following augmented
form:

z(k + 1) = (Â[g](α) + ∆Â[g](α))z(k) + (B̂[g](α)+

∆B̂[g](α))u(k),
(17)

where:

z(k) =


x(k)

u1(k− 1)
...

ur(k− 1)

 , Â[g](α) =

[
A[g](α) B

[g]
d (α)

0 0

]
,

B
[g]
d (α) = [B

[g]
d1

(α) · · · B[g]
dr

(α) ],

∆Â[g](α) =

[
∆A[g](α) ∆B

[g]
d (α)

0 0

]
,

∆B
[g]
d (α) = [ ∆B

[g]
d1

(α) · · · ∆B
[g]
dr

(α) ],

B̂[g](α) =

[
B[g] (α)

I

]
, B[g] (α) =

[
B

[g]
1 (α) · · · B[g]

r (α)
]
,

∆B̂[g](α) =

[
∆B[g](α)

0

]
,

∆B[g](α) = [ ∆B
[g]
1 (α) · · · ∆B[g]

r (α) ].

(18)
Therefore, the state feedback control law is given by:

u(k) = Kz(k) =

K1x K1u1 · · · K1ur
...

... · · ·
...

Krx Kru1
· · · Krur




x(k)
u1(k− 1)

...
ur(k− 1)

 ,
(19)

where K ∈ Rrnu×(nx+rnu).

In face of augmented system matrices, an estimate for

the upper bounds of
∥∥∥∆Â[g](α)

∥∥∥
2

and
∥∥∥∆B̂[g](α)

∥∥∥
2

in the

same way as in (14) can be defined respectively as:

θ̂A
∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆Â[g](α)
∥∥∥

2
, θ̂B

∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆B̂[g](α)
∥∥∥

2
.

(20)
In order to allocate closed-loop system poles in the z -plane,
a disc region D(δ, %) was adopted as approximation to
cardioid (characterized by a constant damping ratio locus).
This region D(δ, %) is centered in δ + j0, with radius %,

i.e., D =
{
z = (χ+ jυ)|(χ− δ)2

+ υ2 < %2
}

(Chilali and

Gahinet (1996)). The parametrization of δ and % from a
conic sector subregion in the s-plane closely follows that
presented in Leandro and Kienitz (2019), such that:

δ = e( −φ
tan(φ)

) cos(−φ), % = e( −φ
tan(φ)

) sin(−φ), (21)

where φ is the internal angle of the cone region in the left
half-plane. The allocation of the closed-loop poles of (17)
in such a region D(δ, %) guarantees a transient response
limited by decay rate in the interval [δ − |%| , δ + |%|].
The following theorem guarantees system poles of the
augmented system in (17) inside the region D(δ, %) and the
stabilization of the continuous time system with r input
delays described in (1).



Theorem 3. Consider a positive definite symmetric matri-
ces Wk ∈ R(nx+rnu)×(nx+rnu), k ∈ K2(N, q), q ∈ N2, G ∈
R(nx+rnu)×(nx+rnu), Z ∈ Rrnu×(nx+rnu), a discretization
degree g ∈ N∗ ×N∗, a Pólya’s relaxation degree p ∈ N2,

w
∆
= max{q+p, g+p}, w ∈ N2, the pair (λA, λB) ∈ R×R

and Θ̂
∆
=
(
λAθ̂

2
A + λB θ̂

2
B

)
, a disc D(δ, %) centered in δ+j0

and with radius %, where |δ| + % < 1 and a given scalar
parameter ξ ∈ (−%, %), such that the LMIs in (22) and (23)
are feasible.

Xk =
∑

k′∈K2(N,p)

L∈L(p)

2∏
n=1

pn!

k′!
WL > 0, ∀k ∈ K2(N, q + p), (22)

Mk =

2∏
n=1

wn!

k!
M +

∑
k′∈K2(N,w−g)

L∈L(w−g)

2∏
n=1

(wn − gn)!

k′!
M̃+

∑
k′∈K2(N,w−q)

L∈L(w−q)

2∏
n=1

(wn − qn)!

k′!

^

M < 0, ∀k ∈ K2(N,w),

(23)
where

M =


Θ̂I −ξGT ξZT ξGT

? −G−GT ZT GT

? ? −λBI 0
? ? ? −λAI

 , (24)

M̃ =


ξHe

{
ÂLG− δG+ B̂LZ

}
ÂLG− δG+ B̂LZ 0 0

? 0 0 0
? ? 0 0
? ? ? 0

 ,
(25)

^

M = diag(−%2WL WL 0 0 ). (26)

Expressions for ÂL and B̂L can be found in Appendix B,
namely in (B.1) - (B.6) and (B.7) - (B.10). Under the above
assumptions the gain K = ZG−1 ensures the allocation of
the closed-loop poles of (17) in the region D(δ, %) and the
stabilization of the continuous time system with multiple
delays described in (1).

Proof : The matrix WL in (22) can then be recast into the
following form:(

N∑
n=1

α1n

)p( 2∑
n̄=1

α2n̄

)p
W [g](α) =

∑
k∈K2(N,q+p)

αkXk.

(27)
Given that α1 ∈ ΛN and α2 ∈ Λ2, ΛN defined in (3),
if Xk > 0 ∀k ∈ K2(N, q + p), then W [q](α) > 0 holds
∀α ∈ (ΛN1

× Λ2).

Now, define Ā(α) = Â[g](α) − δI + B̂[g](α)K and use
Lemma 1 for the following choice of matrices:

NU =

 I 0 0
ĀT(α) KT I

0 I 0
0 0 I

 , NV =

 I 0 0
−ξI 0 0

0 I 0
0 0 I

 ,
U =

[
ĀT(α) −I KT I

]
, V = [ ξI I 0 0 ] .

(28)

One observes that (8) is equivalent to multiplying (23)
by αk and to sum up for k ∈ K2(N,w). In or-
der to do that, In order to do that, assume H =
diag

(
−%2W (α) W (α) 0 0

)
, X = G in (8) and consider

KG = Z.

From matrices in (28) and considering NT
VHNV < 0 in

(9), one has (Θ̂I − %2W [q](α) + ξ2W [q](α)) 0 0
0 −λBI 0
0 0 −λAI

 < 0.

(29)

For W [q](α) > 0 and Θ̂ > 0, then |ξ| < %.

Additionally from (28) the condition NT
UHNU < 0 in (9)

can be written as Θ̂I − %2W [q](α) 0 0
0 −λBI 0
0 0 −λAI

+ ΞTW [q](α)−1Ξ < 0,

Ξ =
[
W [q](α)ĀT(α) W [q](α)KT W [q](α)

]
.

(30)
For W [q](α) > 0, using Schur’s complement and changing
the second and fourth columns, and doing the same for the
second and fourth lines, yields:

Θ̂I − %2W [q](α) Ā(α)W [q](α) 0 0

W [q](α)ĀT(α) −W [q](α) W [q](α) W [q](α)KT

0 W [q](α) −λAI 0

0 KW [q](α) 0 −λBI

 < 0.

(31)
Multiplying by −I, applying Schur’s complement with

respect to λBI and given that Θ̂ = (λAθ̂
2
A + λB θ̂

2
B),

inequality (31) results in: %2W [q](α)− λAθ̂2
AI −Ā(α)W [q](α) 0

? W [q](α) −W [q](α)
? ? λAI

−
λB

−θ̂BI0
0

 [−θ̂BI 0 0
]
− 0

−W [q](α)KT

0

λ−1
B

[
0 −KW [q](α) 0

]
> 0.

(32)
Considering Lemma 2 with

OT =
[
−θ̂BI 0 0

]
,U =

[
0 −KW [q](α) 0

]
, λ = λB ,

(33)
and the upper bounds defined in (20), then inequality (32)

can be modified replacing θ̂BI by ∆B̂[g](α) to obtain the
more stringent, but more useful condition %2W [q](α)− λAθ̂2

AI −Ā(α)W [q](α) 0

? W [q](α) −W [q](α)
? ? λAI

− 0 ∆B[g](α)KW [q](α) 0
? 0 0
? ? 0

 > 0.

(34)
Now, consider the same procedure from (32), apply Lemma

2, proceed in the same way for θ̂A and ∆Ā[g](α), replace

Ā(α) by Â[g](α)− δI + B̂[g](α)K, then one finds:



[
%2W [q](α) (Â(α)− δI + B̂(α)K)W [q](α)

? W [q](α)

]
> 0, (35)

where Â(α) and B̂(α) are defined in (11) and (18). In-
equality (35) can then be recast into the following form:[

−%2W [q](α) Â(α)W [q](α)− δW [q](α)

? −W [q](α)

]
< 0, (36)

where Â(α) = Â[g](α) + B̂[g](α)K. As show in Chilali and

Gahinet (1996), the augmented matrix Â(α) is D-stable if
and only if there exist W [q](α) > 0 such that

γ⊗W [q](α)+β⊗(Â(α)W [q](α))+βT⊗(Â(α)W [q](α))T < 0.
(37)

(the symbol ⊗ denotes the Kronecker product of matrices).
For a particular case where region D is a circle of radius %
and centre (δ, 0), then γ and β are

γ =

[
−ρ −δ
−δ −ρ

]
, β =

[
0 1
0 0

]
. (38)

Thus (37) is equivalent to (36), which ensures the closed-

loop pole allocation of the augmented matrix Â in a region
D(δ, %) ∀α ∈ (ΛN1

× Λ2). 2

Remark 1. It is import to emphasize that for high values
of Θ̂ and values of ξ very close to %, it is unlikely to find
W [q](α) satisfying condition (29).

Remark 2. Considering the Theorem 3 and Polya’s re-
laxation, as degree p increases, the condition converges
towards a solution whenever it exits, exploiting a gener-
alization of the Pólya’s theorem for the case of positive
polynomials with matrix-valued coefficients (Oliveira and
Peres (2007)).

Remark 3. The proposed approach can be generalized to
inputs with different dimensions.

5. NUMERICAL EXPERIMENTS

Numerical experiments were implemented in MATLABr

Software, version 7 (R2010b), using YALMIP (Lofberg
(2004)) and SeDuMi (Sturm (1999)).

Example 1. Consider a mass-spring continuous-time sys-
tem given by Iwasaki (1996) and described by (1). The
system matrices are:

E(β) =

 0 0 1 0
0 0 0 1
−β/2 β/2 0 0
β/3 −β/3 0 0

 , F =

 0
0

1/2
0

 , (39)

where β ∈ [ 3.6, 5.4 ]. Consider both an uncertain sampling
period, such that T varies inside the interval [ 0.4, 0.6 ] s
and a network-induced time-delay τi = 0.2 s, i ∈ {1}. This
example addresses the flexibility of Theorem 3 to handle
performance requirements. Thus, a damping factor of 0.2
is proposed.

In order to apply Theorem 3, the following parameters
were adopted: g = ( 6, 6 ), q = ( 1, 1 ), p = ( 0, 0 ), ξ = 0.
Considering g = ( 5, 5 ), Theorem 3 provides no feasible
solution for ξ = 0 and φ = arccos(0.2). Considering g =
( 6, 6 ), the bounds on the discretization errors according
to (20) are:

θ̂A = 0.0023, θ̂B = 1.0588× 10−5. (40)

The result obtained for φ = arccos(0.2) is presented in
(41):

K = [−3.9290 0.0247 −6.2386 −3.6061 −0.5676 ] . (41)

Now, considering the same parameters and φ = 90◦, the
following gain was obtained:

K = [ 0.0864 −1.2266 −2.3358 −1.790 −0.2415 ] . (42)

Figure 1 shows the closed-loop pole allocation with two
diferents gains (41) and (42), assuming φ = arccos(0.2)
and φ = 90◦, respectively. As can be seen, all the closed-
loop poles associated with gain in (41) are inside the disc
region of radius % = 0.7409 and centered at (0, 0.1512),
which aproximates the cardioid related to damping factor
0.2.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.2

Figure 1 ∗: Open-loop system eigenvalues. •: Closed-loop
system eigenvalues of (17) settings φ = 90◦ in (21).
+: Closed-loop system eigenvalues of (17) settings φ =
arccos(0.2) in (21). - -: Region D(0.1512, 0.7409). � �: Car-
dioid corresponding to damping factor 0.2. The eigenvalues
corresponding to polytope vertices are represented by ◦, �
and �.

Example 2. Consider the continuous-time system with
multiple input delays described by (1) and borrowed from
Tsubakino et al. (2016), whose system matrices are

E(η) =

[
0 1 0
−3 η 0
−6 2 3

]
, F1 =

[
0
1
0

]
, F2 =

[
0
−1
1

]
, (43)

where η ∈ [ 2, 4 ]. The system is sampled with a period
belonging to the interval [ 0.1, 0.4 ] s and with input
delays τ1 = 0.01 s and τ2 = 0.09 s, i ∈ {1, 2}. The
aim is to design a robust state feedback digital controller
in face of the uncertain sampling period, such that this
controller ensures the stability of the uncertain continuous-
time system with distinct input delays and guarantees the
closed-loop poles of the correspondent discretized system
in a arbitrary region D(δ, %).

In order to obtain θ̂A and θ̂B sufficiently small g = ( 7, 7 )
was adopted such that condition given by Theorem 3
results in a feasible solution. Bounds on discretization
errors are

θ̂A = 4.7541× 10−4, θ̂B = 6.2660× 10−5. (44)



Applying Theorem 3 with g = ( 7, 7 ), q = ( 1, 1 ), p =
( 0, 0 ), ξ = 0 and φ = 90◦ the following gain matrix K
was obtained:

K =

[
12.6578 −4.7023 −4.8667 −0.0056 −0.0199
13.8717 0.1297 −6.3435 −0.0016 −0.4928

]
.

(45)
Additionally for φ = 86.5◦ one obtains:

K =

[
2.5992 −8.5972 −2.8334 −0.0711 0.3912
6.1343 −3.0540 −4.7234 −0.0176 −0.1851

]
.

(46)
As an illustration, Figures 2 and 3 show the closed-loop
pole allocation in a region defined by φ = 86.5◦ and
transient response for (45) and (46), respectively. As can
be seen, the closed-loop responses for (46) presents better
transient responses with reduction in the settling time.
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Figure 2 +: Closed-loop system eigenvalues of (17) settings
φ = 86.5◦ in (21). - -: Region D(0.0557, 0.9101). � �:
Cardioid related to damping factor 0.06. The polytope
vertices are represented by �.
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Figure 3 Evolution of the system states in Example 2
for α11 = 0.2, α12 = 0.8, α21 = 0.9, α22 = 0.1 and

x0 = [1 0 2]
T

. Dotted line: transient response for φ = 90◦.
Continuous line: transient response for φ = 86.5◦

6. CONCLUSION

This work addressed robust D-stability via discrete con-
trollers for continuous-time uncertain systems. In this con-
text, multiple input delays and polytopic parameter un-
certainties in the original state space representation were

propagated to the discretized model, and LMI based con-
trol synthesis condition composed of homogeneous poly-
nomial matrices of arbitrary degree was used.

For illustration, two numerical examples were presented.
The first example highlighted the use of the proposed
condition in order to handle performance requirements.
In the second example, the closed-loop poles of the aug-
mented model were placed inside a desired disc region in
the presence of input delays.

Future work could be concerned with the design of robust
state derivative feedback control law taking into account
discretization employed herein.
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Appendix A. NOTATIONS AND DEFINITIONS

The following definitions allow the representation of a
Taylor series terms of an arbitrary degree.

Consider a vector of parameters ζs = (ζs1, ..., ζsNs) ∈ ΛNs ,
s ∈ {1, ..., ω} and ζ = (ζ11, ..., ζ1N1 , ..., ζω1, ..., ζωNω ) ∈
(ΛN1 × ... × ΛNω ), such that ζ! = ζ11! × · · · × ζ1N1 ! ×
· · ·× ζω1!×· · ·× ζωNω !. For the sake of generality, a degree
g = (g1, ..., gω), gs ∈ N∗ was adopted.

• Set K(Ns, gs) is given by

K(Ns, gs) ,
{
ks = (ks1 · · · ksNs) ∈ NNs |ks1 + · · ·

· · ·+ ksNs = gs} .
(A.1)

To exemplify, for ω = 1 consider a dynamic matrix E(α1)
in (1), such that

E(α1) =

N1∑
i=1

α1iEi, α1 ∈ ΛN1 , (A.2)

and a case with N1 = 2 and g1 = 3, then

E(α1)E(α1)E(α1) = α0
11α

3
12E2E2E2 + α1

11α
2
12(E1E2E2+

E2E1E2 + E2E2E1) + α2
11α

1
12(E1E1E2 + E1E2E1+

E2E1E1) + α3
11α

0
12E1E1E1.

(A.3)
The exponents of the parameters α1 ∈ ΛN1 are represented
as follows:

k1 ∈ K(2, 3) = {(03), (12), (21), (30)} . (A.4)

• Set Kω(N, g) is formed by the Cartesian product of
all Ns-tuples of the ω unit simplexes and is defined
by

Kω(N, g) , {N = (N1, · · · , Nω), g = (g1, · · · , gω),
k = (k11 · · · k1N1 · · · kω1 · · · kωNω) ∈ NN1×···×Nω |ks1+

· · ·+ ksNs = gs} .
(A.5)

To exemplify, consider T (α2) in (4) and (A.2). Then, for
N1 = 2 the following product can be written

E(α1)T (α2) = α1
11α

0
12α

1
21α

0
22E1T1 + α1

11α
0
12α

0
21α

1
22E1T2+

α0
11α

1
12α

1
21α

0
22E2T1 + α0

21α
1
22α

0
21α

1
22E2T2,

(A.6)
where

k ∈ {(1010), (1001), (0110), (0101)}. (A.7)

• Set R(ks1...ksNs) is formed by

R(ks1 · · · ksNs) , {r = (r1 · · · rgs) ∈ Ngs |∀i ∈ {1, · · ·
· · · , Ns} , ki = # {j ∈ {1, · · · , gs} |rj = i}} ,

(A.8)
where # denotes the number of elements of a set.

To exemplify, consider (A.3) and from the tuples in (A.4),
one has the sets
R(03) = {(222)}, R(12) = {(122), (212), (221)},
R(21) = {(112), (121), (211)}, R(30) = {(111)}, (A.9)

which correspond to the matrices subindex in (A.3).

Now, consider the set Kω(N, ḡ), ḡ = (ḡ1, ..., ḡω), formed by
the following (N1+...+Nω)-tuples: (k′11...k

′
1N1

...k′ω1...k
′
ωNω

),
such that ḡs ∈ N, ḡs ≤ gs. For each k ∈ Kω(.), define:

• Set L(ḡ) is given by:

L(ḡ) ,
{L = (l11 · · · l1N1

· · · lω1 · · · lωNω ) ∈ NN1×···×Nω

|∀k′ ∈ Kω(N, ḡ),L = k− k′, lsi ≥ 0, i ∈ {1, · · · , Ns}} .
(A.10)

The set L(ḡ) also depends on k, which was omitted
to its notation for clarity.

To exemplify, from (A.4) consider k1 = (12). Assume
ḡ1 = 1, yielding k′ ∈ K(2, 1) = { (01), (10) }. Thus one
has

L ∈ L(ḡ1) = {(11), (02)}. (A.11)

• Set T (ks1...ksNs) is given by

T (ks1 · · · ksNs) , {is = (is1 · · · isNs) ∈ NNs |∀ksj > 0,
j ∈ {1, · · · , Ns} , isj = 1, isNs−j = 0}

(A.12)

To exemplify, from (A.11) set T is:

i1 ∈ T (11) = { (10), (01) } , i1 ∈ T (02) = {(01)} . (A.13)

Appendix B. HOMOGENEOUS POLYNOMIAL
DISCRETIZED MATRICES

Using what was described above, one can present ex-
pressions for homogeneous polynomial matrices of degree
g ∈ N∗×N∗. Factorizing the homogeneous polynomials in
(12) by αk, one has

A[g](α) =
∑

k∈K2(N,g)

αk


g∑

n=0

∑
k′∈K2(N,g−n)

L∈L(g−n)

T l211 T l222

l21!l22!

︸ ︷︷ ︸
∑

(r11...r1g1 )∈R(l11...l1N1
)

((g − n)!)
2

k′!
Er11 ...Er1g1


︸ ︷︷ ︸

Ak

,

(B.1)
then, in a compact form

A[g](α) =
∑

k∈K2(N,g)

αkAk. (B.2)

From (12) and (18), B
[g]

(α) can be written as

B
[g]
i (α) =

∑
k∈K2(N,g)

αk


g∑

n=1

∑
k′∈K2(N,g−n)

L∈L(g−n)

ψi
l21
1 ψi

l22
2

l21!l22!

︸ ︷︷ ︸
∑

i1j∈T (l11...l1N1
)

∑
(r11...r1g1 )∈R(l11...l1N1

−i1)

((g − n)!)
2

k′!
ErFij


︸ ︷︷ ︸

Bik

,

(B.3)



then, in a compact form

B[g](α) =
∑

k2∈K(N,g)

αkBk, (B.4)

where Bk =
[
B1k

. . . Brk

]
. From (12) and (18), B

[g]

d (α)
can be written as

B
[g]
di

(α) =
∑

k∈K2((N1,2),(2g,g))

αk

(
g∑

n=0

g∑
n̄=1

τi
n̄

n̄!︸ ︷︷ ︸∑
k′∈K2((N1,2),(2g−n−n̄,g−n))

L∈L(2g−n−n̄,g−n)

∑
i1j∈T (I11...l1N1

)

ψi
l21
1 ψi

l22
2

l21!l22!

︸ ︷︷ ︸∑
(r11...r1g1 )∈R(l11...l1N1

−i1)

(2g − n− n̄)! (g − n)!

k′!
ErFij︸ ︷︷ ︸

Bdik

,

(B.5)
then in a compact form

B
[g]
d (α) =

∑
k∈K2((N1,2),(2g,g))

αkBdk, (B.6)

where Bdk =
[
Bd1k . . . Bdrk

]
. Finally, polynomial aug-

mented matrices Â[g](α) and B̂[g](α) have different de-
grees, thus should be homogenized as

Â[g](α) =
∑

k∈K2((N1,2),(2g,g))

αkÂk, (B.7)

where

Âk =


∑

k′∈K2((N1,2),(g,0))

L∈L(g,0)

g!0!

k′!
AL Bdk

0 0

 ; (B.8)

and

B̂[g](α) =
∑

k∈K2((N1,2),(2g,g))

αkB̂k, (B.9)

where

B̂k =


∑

k′∈K2((N1,2),(g,0))

L∈L(g,0)

g!0!

k′!
BL

∑
k′∈K2((N1,2),(2g,g))

(2g)!g!

k′!
I

 . (B.10)

Appendix C. CLOSED-LOOP UNCERTAIN
CONTINUOUS-TIME SYSTEM STABILITY

Following the exposed in Braga et al. (2014), for any α ∈
(ΛN1

×Λ2) and a given sampling period T (α2), the solution
of (1) over the interval t ∈ [ kT (α2), kT (α2) + T (α2) ] is
given by

x(t) = eE(α1)((k+1)T (α2)−kT (α2))x(kT (α2)) +

r∑
i=1

(∫ kT (α2)+T (α2)

kT (α2)

eE(α1)(kT (α2)+T (α2)−ς)Fi(α1)ui(ς − τi)dς

)
.

(C.1)

Signal ui(t) is piecewise constant over the sampling in-
terval, then the delayed signal ui(t − τi) is also piecewise
constant. Considering that ui(t− τi) varies between sam-
pling instants, to evaluate (C.1) it is then convenient to
split the integration limits into two parts such that

x(t) = eE(α1)((k+1)T (α2)−kT (α2))x(kT (α2))

r∑
i=1

(∫ kT (α2)+τi

kT (α2)

eE(α1)(kT (α2)+T (α2)−ς)dςFi(α1)ui((k− 1)T (α2))+∫
kT (α2)+T (α2)

kT (α2)+τi

eE(α1)(kT (α2)+T (α2)−ς)dςFi(α1)ui(kT (α2))

)
,

(C.2)
where ui(.) is constant in each part. By means of a change
in variables, such that ς = kT (α2)+τi−s and ς = kT (α2)+
T (α2)− s, equation (C.2) can be rewritten as

x(t) = eE(α1)T (α2)x(kT (α2)) +

r∑
i=1

(
eE(α1)(T (α2)−τi)

∫ τi

0

eE(α1)sdsFi(α1)ui((k− 1)T (α2)) +

∫ T (α2)−τi

0

eE(α1)sds

Fi(α1)ui(kT (α2)).
(C.3)

Taking the supremum of (C.3) and using triangle inequal-
ity, one has:

sup
t∈[ kT (α2), (k + 1)T (α2) ]

‖x(t)‖ ≤ sup
α∈ΛN

∥∥∥eE(α1)T (α2)
∥∥∥

‖x(kT (α2))‖+

r∑
i=1

sup
α∈ΛN

∥∥∥eE(α1)(T (α2)−τi)∫ τi

0

eE(α1)sdsFi(α1)

∥∥∥∥ ‖ui((k− 1)T (α2))‖+

r∑
i=1

sup
α∈ΛN

∥∥∥∥∥
∫ T (α2)−τi

0

eE(α1)sdsFi(α1)

∥∥∥∥∥ ‖ui(kT (α2))‖ ,

(C.4)
where ΛN = ΛN1

× Λ2. From (C.4) and using (13)-(15) is
it possible to write

sup
t∈[ kT (α2), (k + 1)T (α2) ]

‖x(t)‖ ≤
∥∥∥A[g](α) + ∆A[g](ᾱ)

∥∥∥︸ ︷︷ ︸
I

‖x(kT (α2))‖+

r∑
i=1

∥∥∥B[g]
di

(α) + ∆B
[g]
di

(ᾱ)
∥∥∥︸ ︷︷ ︸

II

‖ui(kT (α2)−

T (α2))‖+

r∑
i=1

∥∥∥B[g]
i (α) + ∆B

[g]
i (ᾱ)

∥∥∥︸ ︷︷ ︸
III

‖ui(kT (α2))‖ .

(C.5)
Given that z(kT (α2)) in (17) converge to zero, x(kT (α2)),
ui(kT (α2)) and ui(kT (α2) − T (α2)), i ∈ {1, · · · , r}, also
converges to zero when k → ∞. For any α ∈ (λN1

× Λ2),
I, II and III will be always be bounded. In this way, from
(C.5), x(t) → 0 when t → ∞ and asyntotic closed-loop
stability of the uncertain system (1) is ensured by control
law in (19).




