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Abstract: This work addresses novel Linear Matrix Inequality (LMI)-based conditions for the
design of discrete-time state derivative feedback controllers. The main contribution of this work
consists of an augmented discretized model formulated in terms of the state derivative, such that
uncertain sampling periods and parametric uncertainties in polytopic form can be propagated
from the original continuous-time state space representation. The resulting discrete-time model
is composed of homogeneous polynomial matrices with parameters lying in the Cartesian product
of simplexes, plus an additive norm-bounded term representing the residual discretization error.
Moreover, the referred condition allows for the closed-loop poles allocation of the augmented
system in a D-stable region. Finally, numerical simulations illustrate the effectiveness of the
proposed method.
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1. INTRODUCTION

Accelerometers are one of the most used sensors either in
field or in laboratory scale experiments. It turns out that
the displacement estimation from this sensors tends to be
biased (Rossi et al. (2018) and references). Therefore, in
engineering applications instead of using a state feedback
control law based on displacements and velocities, it may
be more convenient to use a state derivative feedback
control law.

Regarding contributions concerning state derivative feed-
back, it is important to highlight that most research ef-
forts have been devoted to the design of continuous-time
controllers (Duan et al. (2005), Faria et al. (2009), Tseng
and Hsieh (2013), Beteto et al. (2018), among others).
On the other hand, several methods treat the problem
of discretization of uncertain systems through of the first
order Taylor series expansion to circumvent the difficulty
of dealing with the exponential of an uncertain matrix
(Cardim et al. (2009), Rossi et al. (2018)). To the author’s
knowledge, in context of state derivative feedback, there
exists a lack of methods that allows to handle systematic
treatment of the high order terms in the discretization
procedure, specially when the sampling period is not suf-
ficiently small such that the quadratic and higher-order
terms in the Taylor series expansion can not be neglected
in the uncertain representation.

? The second author acknowledges partial support from CNPq
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In this context, the main contribution of this work consists
of an augmented discretized model formulated in terms of
the state derivative, such that uncertain sampling period
and parametric uncertainties in polytopic form can be
propagated from the original continuous-time state space
representation. The resulting discrete-time model is com-
posed of homogeneous polynomial matrices with parame-
ters lying in the Cartesian product of simplexes, plus an
additive norm-bounded term representing the residual dis-
cretization error. Moreover, LMIs relaxations that include
a scalar parameter search are employed for the design of a
convenient robust state derivative feedback gain.

Controllers designs involving LMIs have the advantage of
including performance indexes in approaching the prob-
lem. This work uses a disc region as regional closed-loop
pole placement to obtain better transient response sup-
pressing the oscillations and reducing the settling time.

The remainder of this paper is organized as follows. Section
2 introduces definitions and preliminary results. Section 3
brings definitions for a systematic discretization through
Taylor series expansion. Section 4 describes the proposed
condition based on state derivative feedback control law.
Section 5 presents a numerical example. Finally, conclud-
ing remarks are shown in Section 6.

1.1 Notation

N∗: denotes the set of non-zero natural numbers. Z: de-
notes the set of integer numbers. R+: denotes the set of all
positive real numbers. I(0): identity (null) matrix of appro-
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priate dimension; diag: a diagonal matrix of appropriate
dimension; MT : matrix M transpose; He{M}: denotes
MT + M ; ? : denotes the elements or symmetrical blocks
with respect to the diagonal of a symmetric matrix; T :
denotes the sampling period.

2. PRELIMINARIES

Consider the following uncertain continuous-time invariant
model:

ẋ(t) = E(α1)x(t) + F (α1)u(t), (1)

where E(α1) ∈ Rnx×nx , F (α1) ∈ Rnx×nu . Suppose that
matrices E(α1) and F (α1) belong to polytope Ω defined
by:

Ω =

(E,F )(α1)|(E,F )(α1) =

N1∑
j=1

α1j(E,F )j

 , (2)

where α1 = (α11, . . . , α1N1
) is a time-invariant parameter

vector, taking values in a unit simplex ΛN1
:

ΛN1
=

ζ ∈ RN1 |
N1∑
j=1

ζj = 1, ζj ≥ 0,∀j ∈ {1, ..., N1}

 . (3)

Moreover, consider the input signal to be sampled with
uncertain sampling period, such that T (α2) lies inside
the interval [T1, T2] and can be written as a convex
combination of N2 = 2 vertices:

T (α2) =

2∑
i=1

α2iTi, α2 ∈ Λ2, (4)

such that Λ2 is defined in (3). In this sense, consider
an uncertain parameter vector, where α = (α1, α2) ∈
(ΛN1×Λ2), which is a so-called multi-simplex domain (see
Oliveira et al. (2008)).

Assume that the system is to be controlled by using
sampled measurements of the state derivative ẋ(kT (α2)),
k ∈ Z.

Assumption 1. The control is updated immediately after
the state derivative ẋ(kT (α2)) is measured at each sam-
pling time (Rossi et al. (2018)).

Moreover, consider that zero order hold is employed to
keep the control u(t) constant between sampling times,
i.e.:

u(t) = K(kT (α2))+, t ∈ [(kT (α2))+, (k + 1)T (α2)], (5)

where K denotes the gain matrix and the superscript + is
employed to denotes Assumption 1.

Additionally, given that the control is supposed constant
between [(kT (α2))+, (k + 1)T (α2)], the system described
by (1) can be discretized as

x((k + 1)T (α2)) = A(α)x(kT (α2)) +B(α)u(kT (α2))+, (6)

and the uncertain parameter-dependent matrices A(α),
B(α) are:

A(α) = eE(α1)T (α2), B(α) =

(∫ T (α2)

0

eE(α1)ςdς

)
F (α1).

(7)
Then following the results presented in Braga et al. (2014)
and Rossi et al. (2018), the main aim consists in providing

an LMIs-based condition that guarantees the stability of
(1) and the closed-loop pole allocation of an augmented
system formulated from (1) in terms of the state derivative
feedback at the sampling time t = kT (α2)+, ∀α2 ∈ Λ2,
immediately after the control is updated. Moreover and in
context of state derivative feedback control, the condition
proposed in this work was defined in terms of homogeneous
polynomial parameter dependent matrices of arbitrary
degree, which allows to handle systematic treatment of the
high order terms in the discretization procedure, specially
when the sampling period is not sufficiently small such
that the quadratic and higher-order terms in the Taylor
series expansion can not be neglected in the uncertain
representation.

The following lemmas were used in the proof of the
proposed condition.

Lemma 1. (Gahinet and Apkarian, 1994). Given a matrix
H = HT ∈ Rn×n, and two matrices V and U of column
dimension n, consider the problem of finding some matrix
X of compatible dimensions such that:

H + V TXTU + UTXV < 0. (8)

Denote by NU and NV any matrices whose columns form
bases of the null spaces of U and V , respectively. Then (8)
is feasible for X if and only if

NT
VHNV < 0 and NT

UHNU < 0. (9)

Notice that the Lemma 1 is used such that the LMIs in (9)
certify the existence of a solution of (8). This strategy will
be used to demonstrate Theorem 3, presented in section 4.

Lemma 2. (as cited by Boyd et al. (1994)). Given a scalar
λ > 0 and any real matrices O and U of compatible
dimensions, then

OU + UTOT ≤ λOOT + λ−1UTU . (10)

3. DISCRETIZATION OF UNCERTAIN SYSTEMS
WITH UNCERTAIN SAMPLING PERIOD

The parameter-dependent matrices A(α) and B(α) de-
scribed in (7) can be rewritten in terms of homogeneous
polynomial matrices A[g](α) and B[g](α), formed by a
Taylor series expansion of degree g ∈ N∗ × N∗ and the
residual discretization error ∆A[g](α) and ∆B[g](α). Such
reasoning was based on main ideas presented in Braga
et al. (2014), as follows:

A(α) = A[g](α) + ∆A[g](α), B(α) = B[g](α) + ∆B[g](α).
(11)

The homogeneous polynomials are

A[g](α) =

g∑
n=0

2∏
j=1

 Nj∑
z=1

αjz

g−n
E(α1)

n

n!
T (α2)n,

B[g](α) =

g∑
n=1

2∏
j=1

 Nj∑
z=1

αjz

g−n
E(α1)

n−1

n!
T (α2)nF (α1),

(12)

where N2 = 2. Then the residual discretization errors can
be written as

∆A[g](α) = eE(α1)T (α2) −A[g](α),

∆B[g](α) =

(∫ T (α2)

0

eE(α1)ςdς

)
F (α1)−B[g](α).

(13)



Definitions that allow for a systematic representation of
Taylor series terms are presented in Appendixes A and B
for more clarity.

Bounds on the discretization errors described in (13) are
defined as

θA
∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆A[g](α)
∥∥∥

2
, θB

∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆B[g](α)
∥∥∥

2
,

(14)
where ‖.‖2 represents the 2−norm. An approximation for
(θA, θB) can be obtained by a (N1 + 2)−dimensional off
line search in a grid of values of α ∈ (ΛN1

× Λ2).

4. STABILIZATION

In this section, a new design LMI-based condition is
proposed to allocate closed-loop system poles inside a
desired disc region in the z -plane. The system covered is
an augmented discretized model formulated in terms of
the state derivative, such that uncertain sampling period
and parametric uncertainties in polytopic form can be
propagated from the original continuous-time state space
representation. To this end, consider:

Assumption 2. Matrix E(α1), ∀α1 ∈ ΛN1
, is non-singular.

This assumption has been considered in the linear state
derivative designs, as can be seen for instance in Rossi
et al. (2018), Beteto et al. (2018) and references.

From (11), the discrete-time model (6) can be rewritten
as:

x((k + 1)T (α2)) = (A[g](α) + ∆A[g](α))x(kT (α2))+

(B[g](α) + ∆B[g](α))u(kT (α2))+.
(15)

From Theorem 1 in Rossi et al. (2018), the model (15) can
be recast in terms of state derivative feedback ẋ(kT (α2))
as follows

ẋ((k + 1)T (α2)) = A(α)ẋ(kT (α2))−
A(α)F (α1)u((k− 1)T (α2))+ +A(α)F (α1)u(kT (α2))+,

(16)
which can be formulated as augmented model given by:

z(k + 1) = (Â(α))z(k) + (B̂(α))u(k)+, (17)

such that Â(α) = Â[g](α)+∆Â[g](α) and B̂(α) = B̂[g](α)+

∆B̂[g](α) and

z(k) =

[
ẋ(k)

u(k− 1)
+

]
, Â[g](α) =

[
A[g](α) −A[g](α)F (α1)

0 0

]
,

∆Â[g](α) =

[
∆A[g](α) −∆A[g](α)F (α1)

0 0

]
,

B̂[g](α) =

[
A[g](α)F (α1)

I

]
,∆B̂[g](α) =

[
∆A[g](α)F (α1)

0

]
,

(18)
where instant kT (α2) is denoted by k for simplicity.
Therefore, the state feedback control law is given by:

u(k) = Kz(k) = [Kẋ Ku ]

[
ẋ(k)

u(k− 1)
+

]
. (19)

The homogenization of A[g](α) and A[g](α)F (α1), as well

as of the augmented matrices Â[g](α) and B̂[g](α) can be
found in Appendix B.

In face of augmented system matrices, an estimate for

the upper bounds of
∥∥∥∆Â[g](α)

∥∥∥
2

and
∥∥∥∆B̂[g](α)

∥∥∥
2

in the

same way as in (14) can be defined respectively as:

θ̂A
∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆Â[g](α)
∥∥∥

2
, θ̂B

∆
= sup
α∈ΛN1

×Λ2

∥∥∥∆B̂[g](α)
∥∥∥

2
.

(20)

In order to allocate closed-loop system poles in the z -plane,
a disc region D(δ, %), centered in δ + j0, with radius %,
was adopted. This region approximates cardioids formed
by the geometric locus with the same damping ratio. The
parametrization of δ and % from a conic sector subregion
in the s-plane closely follows that presented in Leandro
and Kienitz (2019), such that:

δ = e( −φ
tan(φ)

) cos(−φ), % = e( −φ
tan(φ)

) sin(−φ), (21)

where φ is the internal angle of the left half-plane cone
region. Moreover, the allocation of the closed-loop poles
of (17) in a region D(δ, %) guarantees a transient response
limited by decay rate in the interval [δ − |%|, δ + |%|].
Considering state derivative feedback, the following the-
orem proposes robust conditions for the stabilization of
(17).

Theorem 3. Consider a positive definite symmetric ma-
trices Wk ∈ R(nx+nu)×(nx+nu), k ∈ K2(N, q), q ∈ N2,
G ∈ R(nx+nu)×(nx+nu), Z ∈ Rnu×(nx+nu), a discretization
degree g ∈ N∗ ×N∗, a Pólya’s relaxation degree p ∈ N2,

w
∆
= max{q + p, g + p}, the pair (λA, λB) ∈ R+ ×R+ and

Θ̂
∆
=
(
λAθ̂

2
A + λB θ̂

2
B

)
, a disc D(δ, %) centered in δ + j0

and with radius %, where |δ| + % < 1 and a given scalar
parameter ξ ∈ (−%, %), such that the LMIs in (22) and (23)
are feasible.

Xk =
∑

k′∈K2(N,p)

L∈L(p)

2∏
n=1

pn!

k′!
WL > 0, ∀k ∈ K2(N, q + p), (22)

Mk =

2∏
n=1

wn!

k!
M +

∑
k′∈K2(N,w−g)

L∈L(w−g)

2∏
n=1

(wn − gn)!

k′!
M̃+

∑
k′∈K2(N,w−q)

L∈L(w−q)

2∏
n=1

(wn − qn)!

k′!

^

M < 0, ∀k ∈ K2(N,w),

(23)
where

M =


Θ̂I −ξGT ξZT ξGT

? −G−GT ZT GT

? ? −λBI 0
? ? ? −λAI

 , (24)

M̃ =


ξHe

{
ÂLG− δG+ B̂LZ

}
ÂLG− δG+ B̂LZ 0 0

? 0 0 0
? ? 0 0
? ? ? 0

 ,
(25)

^

M = diag(−%2WL WL 0 0 ). (26)



Expressions for ÂL, B̂L and WL can be found in Ap-
pendixes A and B, namely in (A.8), (B.1), (B.4) and (B.6)
- (B.9). Under the above assumptions the gain K = ZG−1

ensures the allocation of the closed-loop poles of (17) in the
region D(δ, %) and the stabilization of the continuous-time
system described in (1).

Proof : Considering (A.8) and L ∈ L(.) in Appendix A,
the matrix WL in (22) can then be recast into the following
form:

(
N1∑
n=1

α1n

)p( 2∑
n̄=1

α2n̄

)p
W [g](α) =

∑
k∈K2(N,q+p)

αkXk. (27)

Given that α1 ∈ ΛN1 and α2 ∈ Λ2, ΛN1 defined in (3),
if Xk > 0 ∀k ∈ K2(N, q + p), then W [q](α) > 0 holds
∀α ∈ (ΛN1

× Λ2).

Now, define Ā(α) = Â[g](α) − δI + B̂[g](α)K and use
Lemma 1 for the following choice of matrices:

NU =

 I 0 0
ĀT(α) KT I

0 I 0
0 0 I

 , NV =

 I 0 0
−ξI 0 0

0 I 0
0 0 I

 ,
U =

[
ĀT(α) −I KT I

]
, V = [ ξI I 0 0 ] .

(28)

One observes that (8) is equivalent to multiplying (23) by
αk and to sum up for k ∈ K2(N,w). In order to do that,
assume H = diag

(
−%2W (α) W (α) 0 0

)
, X = G in (8)

and consider KG = Z.

From matrices in (28) and considering NT
VHNV < 0 in

(9), one has

 Θ̂I − %2W [q](α) + ξ2W [q](α) 0 0
0 −λBI 0
0 0 −λAI

 < 0. (29)

For W [q](α) > 0 and Θ̂→ 0+, then |ξ| < %.

Additionally from (28) the condition NT
UHNU < 0 in (9)

can be written as Θ̂I − %2W [q](α) 0 0
0 −λBI 0
0 0 −λAI

+ ΞTW [q](α)−1Ξ < 0,

(30)
where Ξ =

[
W [q](α)ĀT(α) W [q](α)KT W [q](α)

]
. Using

Schur’s complement and changing the second and fourth
columns, and doing the same for the second and fourth
lines, yields:

Θ̂I − %2W [q](α) Ā(α)W [q](α) 0 0

W [q](α)ĀT(α) −W [q](α) W [q](α) W [q](α)KT

0 W [q](α) −λAI 0

0 KW [q](α) 0 −λBI

 < 0.

(31)
Multiplying by −I, applying Schur’s complement with

respect to λBI and given that Θ̂ = (λAθ̂
2
A + λB θ̂

2
B),

inequality (31) results in:

 %2W [q](α)− λAθ̂2
AI −Ā(α)W [q](α) 0

? W [q](α) −W [q](α)
? ? λAI

−
λB

−θ̂BI0
0

 [−θ̂BI 0 0
]
−

 0

−W [q](α)KT

0

λ−1
B

[
0 −KW [q](α) 0

]
> 0. (32)

Considering Lemma 2 with OT =
[
−θ̂BI 0 0

]
, U =[

0 −KW [q](α) 0
]
, λ = λB and the upper bounds defined

in (20), then inequality (32) can be modified replacing θ̂BI

by ∆B̂[g](α) to obtain the more stringent, but more useful
condition %2W [q](α)− λAθ̂2

AI −Ā(α)W [q](α) 0

? W [q](α) −W [q](α)
? ? λAI

−
 0 ∆B[g](α)KW [q](α) 0
? 0 0
? ? 0

 > 0. (33)

Now, consider the same procedure from (32), apply Lemma

2, proceed in the same way for θ̂A and ∆Ā[g](α), replace

Ā(α) by Â[g](α)− δI + B̂[g](α)K, then one finds:[
%2W [q](α) (Â(α)− δI + B̂(α)K)W [q](α)

? W [q](α)

]
> 0, (34)

where Â(α) and B̂(α) are defined in (11) and (18). In-
equality (34) can then be recast into the following form:[

−%2W [q](α) Â(α)W [q](α)− δW [q](α)

? −W [q](α)

]
< 0, (35)

where Â(α) = Â[g](α)+B̂[g](α)K. As shown in Chilali and

Gahinet (1996), the augmented matrix Â(α) is D-stable if
and only if there exist W [q](α) > 0, ∀α ∈ ΛN1

× Λ2, such
that

γ⊗W [q](α)+β⊗(Â(α)W [q](α))+βT⊗(Â(α)W [q](α))T < 0.
(36)

Herein the symbol ⊗ denotes the Kronecker product of
matrices. For a particular case where region D is a circle
of radius % and centre (δ, 0), then γ and β are

γ =

[
−% −δ
−δ −%

]
, β =

[
0 1
0 0

]
. (37)

Thus (36) is equivalent to (35), which ensures the closed-

loop pole allocation of the augmented matrix Â in a region
D(δ, %) ∀α ∈ (ΛN1 × Λ2). 2

Remark 1. The proof of the stabilization of the continuous-
time system described in (1) can be found in Appendix C.

Remark 2. In the context of continuous-time case, the pole
regions defined by the geometric locus with the same decay
rate, a minimum damping ratio and a maximum damped
natural frequency, are convex (Chilali and Gahinet, 1996).
The discrete-time regions defined from this regions are not
necessarily convex. An alternative could be derived taking
into account inner-approximations by well known LMI
regions, as proposed in Wisniewski et al. (2019). However,
the approach adopted herein leads to simpler design and



can be appropriate to handle closed-loop specifications, as
will be illustrated in Section 5.

5. NUMERICAL EXPERIMENTS

The numerical experiment in what follows was imple-
mented in MATLABr Software, version 7 (R2010b), using
YALMIP (Lofberg (2004)) and SeDuMi (Sturm (1999)).

Consider an active suspension system for a car seat plant
described by Faria et al. (2009), whose model is described
by (1). The corresponding system matrices are:

E(µ) =


0 0 1 0
0 0 0 1

−c1 − c2

M

c2

M

−b1 − b2

M

b2

M
c2

µ
−
c2

µ

b2

µ
−
b2

µ

 , F (µ) =


0 0
0 0

−
1

M
−

1

M

0
1

µ


(38)

and the state vector x(t) = [ x1(t) x2(t) ẋ1(t) ẋ2(t) ]
T

.
The states x1 and x2 denote the vertical displacements
of masses M and µ, respectively, and ẋ1 and ẋ2 represent
the corresponding velocities. The model consists of a car
mass M and driver-plus-seat mass µ. Vertical vibrations
caused by a street may be partially attenuated by shock
absorbers (stiffness c1 and damping b1). Undesirable vi-
brations can also be reduced by appropriately mounted
car seat suspension elements (stiffness c2 and damping
b2). Finally, damping of vibration of the masses M and
µ can be increased by changing the control inputs u1(t)
and u2(t). The parameters values are: M = 1500 kg,
c1 = 4 × 104 N/m, c2 = 5 × 103 N/m, b1 = 4 × 103

Ns/m and b2 = 5×102 Ns/m. Consider both an uncertain
seat-plus-driver mass, such that µ ∈ [70, 120] kg, and an
uncertain sampling period, such that T , defined in (4),
varies inside the interval [ 0.1, 0.25 ] s. In this quarter car
model, the acceleration ẍ2(kT (α2)) is used to measured
the driver comfort.

Notice that the system whose matrices are described in
(38) is stable. However, the augmented matrix Â(α) pre-
sented in (17) becomes unstable for g ≤ (3, 3). Figure 1 (a)
illustrates the open-loop transient response in accordance
with different g. The discretization degrees g ≥ (4, 4) are
shown in Figure 1 (b) with more details for better clarity.
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Figure 1 Open-loop transient response for α11 = 0.4,

α12 = 0.6, α21 = 0.8, α22 = 0.2 and x0 = [ 0.2 0.1 0 0 0 ]
T

.

Although this is not the point of this work, the Figure
2 illustrates the use of the Pólya’s relaxation, according
to which as degree p increases, the condition converges
towards a solution whenever it exits.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1
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0.5

1

Damping factor

ξ

Figure 2 ∗: Feasible cases associated with q = (4, 4) and
p = (4, 4). 2 : Feasible cases associated with q = (1, 1) and
p = (0, 0). In both g = (10, 10) was considered.

The main objective of this example is to design a state
derivative feedback control law as described in (19), in
order to place the closed-loop poles of the system (38) in
a desired region D-stable for any values of the uncertain
parameters µ and T . This approach dispenses with the
need for a preliminary synthesis of a state feedback con-
trol law, so that the resulting controller can be readily
implemented to assure the stability of the continuous-time
plant by means of the digital controller.

In order to apply Theorem 3, a damping factor of 0.2
is chosen. Additionally, the following parameters were
adopted: q = ( 1, 1 ), p = ( 1, 1 ), ξ = 0.6 and ξ = −0.6.
The choice q = ( 1, 1 ) implies in a homogeneous poly-
nomially parameter-dependent Lyapunov matrix, whose
monomials are presented in Appendix A, (A.9). From (20)
and using g = ( 13, 13 ), the bounds on the discretization
errors are:

θ̂Â = 2.2142× 10−6, θ̂B̂ = 7.6391× 10−9. (39)

Considering ξ = 0.6 and ξ = −0.5, two gain matrices
Kξ=0.6 and Kξ=−0.5, respectively, were obtained. The
result obtained for ξ = 0.6 is presented in (40):

Kξ=0.6 =

[
6181.9 391.4 −437.9 −75.1
−502.7 −391.1 −118.2 −39.9

−0.3 0.4
−0.1 0.4

]
.

(40)
Considering the same parameters above and ξ = −0.5, the
following gain matrix was obtained:

Kξ=−0.5 =

[
4207.9 331.2 72.5 −7.5
−755.8 −288.7 −137.6 −31.7

0.2 0.0
−0.1 0.3

]
.

(41)
Figure 3 shows the closed-loop pole allocation with
Kξ=−0.5 in (41). As can seen, all the closed-loop poles
associated with gain matrix in (41) are inside the disc
region of radius % = 0.7409 and centered at (0, 0.1512),
which approximates the cardioid related to damping factor
0.2.

Figures 4 shows the closed-loop transient response for
Kξ=−0.5 and Kξ=0.6, respectively, compared with open-
loop transient response. As can be seen both closed-loop
systems present better transient response when compared
with open-loop system.



Figure 5 illustrates the control input correspondent to
respective gain matrix, Kξ=−0.5 and Kξ=0.6. It is worth
mentioning the degree of freedom given by the search in
scalar parameter ξ, contributing to feasible conditions, as
well as a more convenient transient responses.
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Figure 3 •: Open-loop system eigenvalues. +: Closed-loop
system eigenvalues. ��: Region D(0.1512, 0.7409). ��: Car-
dioid corresponding to damping factor 0.2. The eigenvalues
corresponding to polytope vertices are represented by ◦
and �.
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Figure 4 Open-loop and closed-loop transient responses.
Case I: (Â(α) + B̂(α)Kξ=−0.5) and Case II: (Â(α) +
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Figure 5 Case I: Control input related to (Â(α) +

B̂(α)Kξ=−0.5). Case II: Control input related to (Â(α) +

B̂(α)Kξ=0.6).

6. CONCLUSION

This work addressed robust D-stability via state deriva-
tive feedback controllers for continuous-time uncertain

systems. Polytopic parameter uncertainties in the orig-
inal state space representation and uncertain sampling
period were propagated to the discretized model. An LMI-
based control synthesis condition composed of homoge-
neous polynomial matrices of arbitrary degree can be em-
ployed by means of a state derivative augmented model.

For illustration, a numerical example was presented. The
state derivative feedback was employed in order to improve
closed-loop transient response bringing more driver com-
fort, illustrated by means of the state ẍ(kT (α2)) transient
response. Moreover, the numerical example illustrated that
from the same region D-stable, different input controls
can be chosen by means of different values of the scalar
parameter ξ with better damping and settling time when
compared each other.

Future work is concerned with the design of robust state
derivative feedback control law taking into account un-
certain input delay and the validation of the proposed
condition in experimental settings.
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Appendix A. NOTATIONS AND DEFINITIONS

The following definitions allow the representation of a
Taylor series terms of an arbitrary degree.

Consider a vector of parameters ζs = (ζs1, ..., ζsNs) ∈ ΛNs ,
s ∈ {1, ..., ω} and ζ = (ζ11, ..., ζ1N1 , ..., ζω1, ..., ζωNω ) ∈
(ΛN1 × ... × ΛNω ). For the sake of generality, a degree
g = (g1, ..., gω), gs ∈ N∗ was adopted.

• Set K(Ns, gs) is given by

K(Ns, gs) ,
{
ks = (ks1 · · · ksNs) ∈ NNs |ks1 + · · ·

· · ·+ ksNs = gs} .
(A.1)

To exemplify, for ω = 1 consider a dynamic matrix E(α1)
in (1), such that

E(α1) =

N1∑
i=1

α1iEi, α1 ∈ ΛN1
, (A.2)

and a case with N1 = 2 and g1 = 3, then

E(α1)E(α1)E(α1) = α0
11α

3
12E2E2E2 + α1

11α
2
12(E1E2E2+

E2E1E2 + E2E2E1) + α2
11α

1
12(E1E1E2 + E1E2E1+

E2E1E1) + α3
11α

0
12E1E1E1.

(A.3)
The exponents of the parameters α1 ∈ ΛN1

are represented
as follows:

k1 ∈ K(2, 3) = {(03), (12), (21), (30)} . (A.4)

• Set Kω(N, g) is formed by the Cartesian product of
all Ns-tuples of the ω unit simplexes and is defined
by

Kω(N, g) , {N = (N1, · · · , Nω), g = (g1, · · · , gω),
k = (k11 · · · k1N1

· · · kω1 · · · kωNω) ∈ NN1×···×Nω |ks1+
· · ·+ ksNs = gs} .

(A.5)

To exemplify, consider T (α2) in (4) and (A.2). Then, for
N1 = 2 the following product can be written

E(α1)T (α2) = α1
11α

0
12α

1
21α

0
22E1T1 + α1

11α
0
12α

0
21α

1
22E1T2+

α0
11α

1
12α

1
21α

0
22E2T1 + α0

21α
1
22α

0
21α

1
22E2T2,

(A.6)
where

k ∈ {(1010), (1001), (0110), (0101)}. (A.7)

Herein, inspired by Oliveira and Peres (2007), the ho-
mogeneous polynomially parameter-dependent Lyapunov
matrix of arbitrary degree, q ∈ N × N, adopted in this
work is defined as

W [q](α) =
∑

k∈K2(N,q)

αkWk, α ∈ ΛN × Λ2. (A.8)

As an illustration, given N1 = 2, q = (1, 1), one has

W [q](α) = α1
12α

1
22W(0101) + α1

12α
1
21W(0110)+

α1
11α

1
22W(1001) + α1

11α
1
21W(1010).

(A.9)

• Set R(ks1...ksNs) is formed by

R(ks1 · · · ksNs) , {r = (r1 · · · rgs) ∈ Ngs |∀i ∈ {1, · · ·
· · · , Ns} , ki = # {j ∈ {1, · · · , gs} |rj = i}} ,

(A.10)
where # denotes the number of elements of a set.

To exemplify, consider (A.3) and from the tuples in (A.4),
one has the sets
R(03) = {(222)}, R(12) = {(122), (212), (221)},
R(21) = {(112), (121), (211)}, R(30) = {(111)}, (A.11)

which correspond to the matrices subindex in (A.3).

Now, consider the set Kω(N, ḡ), ḡ = (ḡ1, ..., ḡω), formed by
the following (N1+...+Nω)-tuples: (k′11...k

′
1N1

...k′ω1...k
′
ωNω

),
such that ḡs ∈ N, ḡs ≤ gs. For each k ∈ Kω(.), define:

• Set L(ḡ) is given by:

L(ḡ) ,
{L = (l11 · · · l1N1

· · · lω1 · · · lωNω ) ∈ NN1×···×Nω

|∀k′ ∈ Kω(N, ḡ),L = k− k′, lsi ≥ 0, i ∈ {1, · · · , Ns}} .
(A.12)

The set L(ḡ) also depends on k, which was omitted
to its notation for clarity.

To exemplify, from (A.4) consider k1 = (12). Assume
ḡ1 = 1, yielding k′ ∈ K(2, 1) = { (01), (10) }. Thus one
has

L ∈ L(ḡ1) = {(11), (02)}. (A.13)

• Set T (ks1...ksNs) is given by

T (ks1 · · · ksNs) , {is = (is1 · · · isNs) ∈ NNs |∀ksj > 0,
j ∈ {1, · · · , Ns} , isj = 1, isNs−j = 0}

(A.14)

To exemplify, from (A.13) set T is:

i1 ∈ T (11) = { (10), (01) } , i1 ∈ T (02) = {(01)} . (A.15)

Appendix B. HOMOGENEOUS POLYNOMIAL
DISCRETIZED MATRICES

Using what was described above, one can present ex-
pressions for homogeneous polynomial matrices of degree
g ∈ N∗×N∗. Factorizing the homogeneous polynomials in
(12) by αk, one has



A[g](α) =
∑

k∈K2(N,g)

αk


g∑

n=0

∑
k′∈K2(N,g−n)

L∈L(g−n)

T l211 T l222

l21!l22!

︸ ︷︷ ︸
∑

(r11...r1g1 )∈R(l11...l1N1
)

((g − n)!)
2

k′!
Er11 ...Er1g1


︸ ︷︷ ︸

Ak

,

(B.1)
then, in a compact form

A[g](α) =
∑

k∈K2(N,g)

αkAk. (B.2)

Using the definitions above, A
[g]

(α)F (α1) can be written
as
A[g](α)F (α1) = F (α1) + T (α2)E(α1)F (α1)+

T 2(α2)

2!
E2(α1)F (α1) + ...+

T g(α2)

g!
Eg(α1)F (α1),

=

2∏
j=1

 Nj∑
n=1

αjn

g

F (α1)+

2∏
j=1

 Nj∑
n=1

αjn

g−1

×

T (α2)E(α1)F (α1) +
T g(α2)

g!
Eg(α1)F (α1),

=
∑

k∈K2((N,2),(g+1,g))

αk

 ∑
k′∈K2(N,g)

L∈L(g)

∑
i1j∈T (l11...l1N1

)

(g!)
2

k′!
×

Fj + ...+
∑

k′∈K2(N,g−n)
L∈L(g−n)

∑
i1j∈T (l11...l1N1

)

∑
r∈R(l11...l1N1

−i1)

×

((g − n)!)
2

k′!
T l21T l22

l21!l22!
ErFj + ...+

∑
k′∈K2(N,0)

L∈L(0)

∑
i1j∈T (l11...l1N1

)

×

∑
r∈R(l11...l1N1

−i1)

(0!)
2

k′!
T l21T l22

l21!l22!
ErFj

)
(B.3)

A[g](α)F (α1) =
∑

k∈K2((N1,2)(g+1,g))

αk×
g∑

n=0

∑
k′∈K2(N,g−n)

L∈L(g−n)

T l211 T l222

l21!l22!

︸ ︷︷ ︸
∑

i1j∈T (l11...l1N1
)

∑
(r11...r1g1 )∈R(l11...l1N1

−i1)

((g − n)!)
2

k′!
ErFj


︸ ︷︷ ︸

Ȧk

(B.4)
then, in a compact form

A(α)F (α1) =
∑

k∈K2((N1,2),(g+1,g))

αkȦk. (B.5)

Finally, polynomial augmented matrices Â[g](α) and B̂[g](α)
have different degrees, thus should be homogenized as

Â[g](α) =
∑

k∈K2((N1,2),(g+1,g))

αkÂk, (B.6)

where

Âk =


∑

k′∈K2((N1,2),(1,0))

L∈L(1,0)

1!0!

k′!
AL −Ȧk

0 0

 ; (B.7)

and

B̂[g](α) =
∑

k∈K2((N1,2),(g+1,g))

αkB̂k, (B.8)

where

B̂k =

 ȦL∑
k′∈K2((N1,2),(g+1,g))

(g + 1)!g!

k′!
I

 . (B.9)

Appendix C. CLOSED-LOOP UNCERTAIN
CONTINUOUS TIME SYSTEM STABILITY

Following the exposed in Braga et al. (2014), for any α ∈
(ΛN1×Λ2) and a given sampling period T (α2), the solution
of (16) over the interval t ∈

[
kT (α2)+, (k + 1)T (α2)

]
is

given by

x(t) = eE(α1)(t−kT (α2))ẋ(kT (α2))− (eE(α1)(t−kT (α2))F (α1)

)u((k− 1)T (α2))+ + (eE(α1)(t−kT (α2))F (α1))u(kT (α2))+

(C.1)
Taking the supremum of (C.1) and using triangle inequal-
ity, one has:

sup
t∈[kT (α2)+,(k+1)T (α2)]

‖x(t)‖ ≤ sup
t∈[kT (α2)+,(k+1)T (α2)]∥∥∥eE(α1)(t−kT (α2))

∥∥∥ ‖ẋ(kT (α2))‖+ sup
t∈[kT (α2)+,(k+1)T (α2)]∥∥∥eE(α1)(t−kT (α2))F (α1)

∥∥∥∥∥∥u(kT (α2))
+−

u((k− 1)T (α2))
+
∥∥∥

(C.2)
Thus, from (C.2) and using (13), it is possible to write

sup
t∈[kT (α2)+,(k+1)T (α2)]

‖x(t)‖ ≤
∥∥∥A[g](α) + ∆A[g](α)

∥∥∥
‖ẋ(kT (α2))‖+

∥∥∥Ȧ[g](α) + ∆Ȧ[g](α)
∥∥∥∥∥∥u(kT (α2))

+−

u((k− 1)T (α2))
+
∥∥∥

(C.3)

Where Ȧ[g](α) and ∆Ȧ[g](α) denotes A(α)[g]F (α1) and
∆A(α)[g]F (α1), respectively. From (C.3), as z(kT (α2)) in
(17), and equivalently, ẋ(kT (α2)), u(kT (α2))+ and u((k−
1)T (α2))+ converge to zero as k → ∞, then x(t) → 0 as
t → ∞, and the asymptotic closed-loop stability of the
continuous-time model (1) with state derivative feedback
control law (19) is ensured.




