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Abstract: This paper presents novel LMI-based conditions to address the discrete-time left-
coprime factorization problem for linear parameter-varying (LPV) systems using linear fractional
representation (LFR). The conditions have been derived using a special structure for the output
injection approach, which from a given observation law allows to synthesize left-coprime factors
via H2 filtering problem. An important characteristic of the proposed method is the ability
to recovery the normalized coprime factorization notion as a particular case and obtain less
conservative coprime factorizations. A numerical example demonstrates the effectiveness of the
proposed conditions in comparison to similar approaches.
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1. INTRODUCTION

Coprime factorization descriptions have been playing a
significant role in modern control theory. In a practi-
cal application sense, the distinguished book Vidyasagar
(1985) and the papers Glover and McFarlane (1989);
McFarlane and Glover (1992); Verma and Hunt (1993)
present the main contributions, attesting to the relevance
of this factorization class and justifying its study. These
seminal works have been used as the basis for some fun-
damental problems, such as model reduction realization
(Meyer, 1990; McFarlane et al., 1990), fault detection
(Marx et al., 2003) and synthesis of robust stabilizing
controllers for linear (Prempain and Postlethwaite, 2005;
Pereira et al., 2017) and nonlinear systems (Guanrong
Chen and Zhengzhi Han, 1998; Bu and Deng, 2012).

The coprime factorization description has basically two
forms: right-coprime factors and left-coprime factors for
both continuous- and discrete-time domains. For each
structure, an extensive research line can be found. Con-
cerning left-coprime factors, many of the proposed ap-
proaches deal with the synthesis of robust controllers
(McFarlane and Glover, 1992; Gu et al., 2002). In this
sense, it stands out the application in linear parameter-
varying (LPV) systems, which has received great attention
in recent years (Prempain and Postlethwaite, 2008; Li,
2014). An interesting feature of such class is the ability
to represent nonlinear systems using a finite set of linear
models on a convex hull. In the LPV structure, system
dynamics depend on a time-varying parameter vector mea-
sured in real time and may be represented either in a
polytopic form or through linear fractional representations
(LFR). The contribution that introduced the synthesis
of LPV controllers using both the LFR framework and
left-coprime factors comes from Prempain (2006), where

?

a special structure was used to obtain the left-coprime
factors.

However, so far there has been no reference to a discrete-
time version of this approach. Typically, the left-coprime
factorization has been calculated and then discretized
with some available method (e.g. Tustin) for computer
implementation. Nevertheless, it is known that the direct
representation ensures better performance than an indirect
approach relying on discretization methods. Thus, moti-
vated by the results in (Prempain, 2006), the contribu-
tion of this paper consists in extending his procedure to
obtain discrete-time left-coprime factors for LPV systems
using LFR. The existence conditions are given in an LMI
framework, where the quadratic stability concept is used
to provide the Lyapunov matrix. The effectiveness of the
conditions proposed in this paper is evaluated by means of
a numerical example, featuring a comparative study with a
similar approach. The numerical results demonstrate that
the proposed LMI-based conditions are an efficient alter-
native to obtain less conservative coprime factorizations
for LPV systems.

This paper is organized as follows. In Section 2, the prob-
lem statement and some preliminary results concerning
the description of discrete-time LPV systems using LFR
are derived. Section 3 presents the main results of this
paper: LMI-based conditions that allow the synthesis of
left-coprime factors for discrete-time LPV/LFR systems.
Section 4 is dedicated to show the effectiveness of the
proposed approach using a numerical example. Section 5
concludes the paper.

1.1 Notation

The following notation is used throughout the paper.
Rn×m denotes the set of real n ×m matrices, M � 0 (or
M≺ 0) meansM is symmetric and positive (or negative)
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definite, Tr(.) represents the trace of a matrix and ?
indicates symmetric blocks in the matrices. Moreover, the

notation G :=

[
A B
C D

]
is used to denote a realization

of system G and Fl (G,H) is the lower linear fractional
transformation of matrices G and H.

2. PRELIMINARIES

Consider the following discrete-time LPV system G(ρ)[
x (k + 1)
z (k)

]
=

[
A (ρ) B (ρ)
C (ρ) D (ρ)

] [
x (k)
w (k)

]
(1)

where x(k) ∈ Rn is the state, w(k) ∈ Rv is the exogenous
input and z(k) ∈ Rq is the exogenous output. The state-
space matrices ofG(ρ) are fixed functions of a time-varying
parameter vector ρ(k) that can be rewritten using the LFR
framework as

x(k + 1) = Ax+Bqq +Bww (2)

p = Cpx+Dpqq +Dpww (3)

z = Czx+Dzqq +Dzww (4)

q = ∆(ρ)p, ∆(ρ) = diag(ρ1Is1 , ..., ρmIsm), (5)

where A ∈ Rn×n, Bq ∈ Rn×nq , Bw ∈ Rn×nw , Cp ∈ Rnp×n,
Dpq ∈ Rnp×nq ,Dpw ∈ Rnp×nw ,Cz ∈ Rnz×n,Dzq ∈ Rnz×nq

and Dzw ∈ Rnz×nw . Typically, the time-varying parameter
vector ρ(k) is available in real-time and belongs to

∆ = ∆(ρ), ρ ∈ P. (6)

Since P is a polytope, then ∆ is also a polytope and can be
described from their vertices ∆i, i = 1, ..., r such that the
quantity max(s1, ..., sm) corresponds to the LFR degree of
the system. In this representation, p and q are assumed to
have the same dimensions np = nq and the system G(ρ)
to be well posed, i.e.,

det(I −Dpq∆(ρ)) 6= 0, ∀ ρ ∈ P.

For a concise notation, the dependence of the signals on k
and the dependence of ∆ on ρ will be dropped whenever
it is clear.

Based on system (2-5), some definitions and lemmas on
quadratic performance with convex solvability conditions
for discrete-time LPV systems are presented below.

Definition 1. The discrete-time LPV system (1) is quadrat-
ically stable if there exists a symmetric positive definite
matrix P ∈ Rn×n such that the following condition holds

A(ρ)TPA(ρ)− P ≺ 0, ∀ρ ∈ P. (7)

This definition of stability holds for discrete-time LPV
systems in general form. However, in this paper we re-
strict our attention to systems that have linear fractional
representation of the form (2-5). In this sense, a quadratic
stability condition for this class of systems may be given
by the following lemma.

Lemma 2. Consider the LFR system given in (2-5) when
w(k) = 0. If there exist matrices P = PT � 0, M = MT �
0 ∈ Rn×n such that the following condition holds[
ATPA− P + CTpMCp A

TP (Bq∆i) + CTpM(Dpq∆i)
? Γ

]
≺ 0

(8)

where Γ = (Bq∆i)
TP (Bq∆i) + (Dpq∆i)

TM(Dpq∆i) −M
for i = 1, ..., r. Then the system is said to be quadratically
stable over P.

Proof. Using Lyapunov’s direct method for x(k + 1) =
A(ρ)x, we can show that

[Ax+ (Bq∆)p]TP [Ax+ (Bq∆)p]− xTPx < 0 (9)

or in matrix form[
x
p

]T [
ATPA− P ATP (Bq∆)
(Bq∆)TPA (Bq∆)TP (Bq∆)

] [
x
p

]
< 0. (10)

For any real matrices G∆ and H∆ of compatible dimen-
sions, we get

xTG∆p = xTG∆Cpx+ xTG∆(Dpq∆)p
pTH∆p = pTH∆Cpx+ pTH∆(Dpq∆)p

(11)

or, equivalently,[
x
p

]T [
CTpMCp CTpM(Dpq∆)

(Dpq∆)TMCp (Dpq∆)TM(Dpq∆)−M

] [
x
p

]
= 0.

(12)
for G∆ = CTpM and H∆ = [(Dpq∆)T + I]M . More
details about this uncertainty modeling can be found in
(Fan Wang and Balakrishnan, 2002). Finally, using the
S-procedure to combine (10) and (12) into a single LMI
condition, the proof is complete.

Fan Wang and Balakrishnan (2002) also presented relaxing
conditions for the case when the LFR degree of (5) is
one, i.e., no varying parameter appears more than once
in the diagonal of ∆(ρ). Then, instead of a single matrix
M , it suffices to find different scaling matrices Mi for the
different vertices i = 1, ..., r. This is referred to as vertex
scaling.

Another important definition and characterization to ob-
tain left-coprime factors is the detectability concept.

Definition 3. The pair (A(ρ), C(ρ)) is said to be quadrati-
cally detectable over P if there exist matrices P = PT > 0
and the observer gain H such that the following condition
holds

[A(ρ)+HC(ρ)]TP [A(ρ)+HC(ρ)]−P ≺ 0, ∀ρ ∈ P. (13)

A systematic way to determine such characteristic of this
class of systems is given by the following lemma.

Lemma 4. Consider the LFR system given in (2-5). If
there exist matrices S = ST � 0, M = MT � 0 ∈ Rn×n
and 

−S 0 ATS + CTz Y
T CTpM

? −M (Bq∆i)
TS (Dpq∆i)

TM
? ? −S 0
? ? ? −M

 ≺ 0 (14)

for i = 1, ..., r. Then the pair (A(ρ), C(ρ)) is said to be
quadratically detectable over P and the observer gain is
given by H = S−1Y .

Proof. Herein, a generalization of the stability condition
given in (8) will be used adopting Q = P−1. Taking into
account that

−Q 0 QAT QCTp
0 −N N(Bq∆)T N(Dpq∆)T

AQ (Bq∆)N −Q 0
CpQ (Dpq∆)N 0 −N

 ≺ 0 (15)



ensures stability of (2-5). Then, substituting A + HCz in
condition above, we have

−Q 0 Q(A+HCz)
T QCTp

0 −N N(Bq∆)T N(Dpq∆)T

(A+HCz)Q (Bq∆)N −Q 0
CpQ (Dpq∆)N 0 −N

 ≺ 0.

(16)
This inequality has nonconvex terms, since the unknown
variables Q and H are coupled. In order to solve this
problem, a congruence transformation may be used. Mul-
tiplying (16) by diag{Q−1, I, Q−1, I} on the left and its
transpose on the right, results in −Q−1 ? ? ?

0 −N ? ?
Q−1A+Q−1HCz Q

−1(Bq∆)N −Q−1 ?
Cp (Dpq∆)N 0 −N

 ≺ 0 (17)

Again, multiplying (17) by diag{I,N−1, I,N−1} on the
right and its transpose on the left, yields

−Q−1 ? ? ?
0 −N−1 ? ?

Q−1A+Q−1HCz Q−1(Bq∆) −Q−1 ?
N−1Cp N−1(Dpq∆) 0 −N−1

 ≺ 0

(18)
Finally, applying an appropriate change of variables M =
MT = N−1, S = ST = Q−1 and Y = SH, we obtain

−S 0 ATS + CTz Y
T CTpM

0 −M (Bq∆)TS (Dpq∆)TM
SA+ Y Cz S(Bq∆) −S 0
MCp M(Dpq∆) 0 −M

 ≺ 0

(19)
where S = ST � 0 and M = MT � 0, concluding the
proof of Lemma 4.

Given these preliminaries results, the problem of obtaining
left-coprime factorizations for discrete-time LPV systems
in the LFR framework can be addressed.

3. DISCRETE-TIME LEFT-COPRIME FACTORS
FOR LPV/LFR SYSTEMS

Extending the procedure provided by Prempain (2006) for
discrete-time LPV systems, the left-coprime factorization
may be obtained from a particular description of the out-
put injection problem depicted in Figure 1. This problem

Figure 1. Open-loop interconnection for discrete-time LPV
systems.

can be cast from a given observation law u(k) = Hy(k)
for the closed-loop system defined by the lower linear
fractional transformation Fl (GOI (ρ) , H), where

GOI (ρ) :=

A (ρ) 0 B (ρ) I
I 0 0 0

C (ρ) I D (ρ) 0

 (20)

represents a particular output structure. By doing so, we
can obtain the observer gain H from ‖Fl (GOI (ρ) , H)‖2
that corresponds to an H2 filtering problem. To the best of
the authors’ knowledge, so far there has been no reference
in the literature to a discrete-time version of this approach.
Therefore, the contribution of this paper is to provide
new conditions to obtain left-coprime factorizations for
discrete-time LPV/LFR systems.

Notice that the first step to determine the left-coprime fac-
torization consists in solving an H2 problem for discrete-
time LFR systems. In this sense, a quadratic H2 perfor-
mance condition for this class of systems may be given by
Theorem 5.

Theorem 5. (Quadratic H2 performance). Consider the LFR
system (21-24),

x(k + 1) = Ax+Bqq +Bww (21)

p = Cpx+Dpqq +Dpww (22)

z = Czx (23)

q = ∆(ρ)p, ∆(ρ) = diag(ρ1Is1 , ..., ρmIsm). (24)

If there exist matrices W = WT � 0, N = NT � 0 ∈
Rn×n, and Y ∈ R such that

ν2
2 := minTr(Y ), (25)[
Y CzW

WCTz W

]
� 0, (26)

−W 0 0 WAT WCTp

? −N Dpw

2
N(Bq∆i)

T N(Dpq∆i)
T

? ? −I BTw
DT
pw

2
? ? ? −W 0
? ? ? ? −N


≺ 0, (27)

for i = 1, ..., r. Then, the quadratic H2 norm of the system
(21-24) exists for all values of the parameter ρ ∈ P and

can be calculated as ν2 <
√
Tr (Y ).

Proof. Taking into account a discrete-time version of
the generalized quadratic H2 norm condition provided by
Scherer et al. (1997),[

Y Cz
CTz P

]
� 0, ∆V (x)− wTw ≺ 0 (28)

and developing the second part of (28), we have

(Ax+Bq∆p+Bww)
T
P (Ax+Bq∆p+Bww)− xTPx

< wTw (29)

or in matrix form,[
x
p
w

]T ATPA− P ATP (Bq∆) ATPBw
(Bq∆)TPA (Bq∆)TP (Bq∆) (Bq∆)TPBw
BTwPA BTwP (Bq∆) BTwPBw − I

[xp
w

]
< 0. (30)

Next, Schur complement and the change of variable P =
W−1 are applied, so that (30) can be recast as




−W−1 0 0 AT

0 0 0 (Bq∆)
T

0 0 −I BTw
A Bq∆ Bw −W

 ≺ 0 (31)

Now, using the same procedure done in the previous sec-
tion to describe the parametric uncertainties, one obtains[

x
p
w

]T 
CTpMCp ? ?

(Dpq∆)TMCp (2, 2) ?

DT
pw(

CTpM

2
)T (3, 2) 0


[
x
p
w

]
= 0,

where

(2, 2) =−M + (Dpq∆)TM(Dpq∆) (32)

(3, 2) =DT
pw(

(MDpq∆ +M)T

2
)T . (33)

Again, application of the S-procedure to conditions (31)
and (32) results in
CTpMCp −W−1 ? ? ?

(Dpq∆)TMCp −M + (Dpq∆)TM(Dpq∆) ? ?

DT
pw(

CTpM

2
)T DT

pw(
(MDpq∆ +M)T

2
)T −I ?

A Bq∆ Bw −W


≺ 0.
(34)

As such inequality has nonconvex terms, an appropriate
congruence transformation is also used. Multiplying (33)
by diag{W, I, I, I} on the left and its transpose on the
right yields
WCTpMCpW −W ? ? ?

(Dpq∆)TMCpW −M + (Dpq∆)TM(Dpq∆) ? ?

DT
pw(

CTpM

2
)TW DT

pw(
(MDpq∆ +M)T

2
)T −I ?

AW Bq∆ Bw −W


≺ 0.
(35)

Using some mathematical manipulations, (34) can be
rewritten as

−W 0 0 WAT WCTp

0 −M MDpw

2
(Bq∆)T (Dpq∆)T

0
DT
pwM

2
−I −

DT
pwMDpw

4
BTw

DT
pw

2
AW Bq∆ Bw −W 0

CpW Dpq∆
Dpw

2
0 −M−1


≺ 0

(36)
Applying the congruence transformation
diag{I,M−1, I, I, I} and the change of variable M−1 =
N = NT , we have

−W ? ? ? ?
0 −N ? ? ?

0
DT
pw

2
−I −

DT
pwMDpw

4
? ?

AW (Bq∆)N Bw −W ?

CpW (Dpq∆)N
Dpw

2
0 −N

 ≺ 0 (37)

Finally, expanding condition (36), we note that the second
term is positive semidefinite, resulting in



−W 0 0 WAT WCTp

0 −N Dpw

2
N(Bq∆)T N(Dpq∆)T

0
DT
pw

2
−I BTw

DT
pw

2
AW (Bq∆)N Bw −W 0

CpW (Dpq∆)N
Dpw

2
0 −N


≺ 0,

(38)
thus concluding the first part of Theorem 5. The last part
of the proof consists in submitting the inequality[

Y Cz
CTz P

]
� 0 (39)

to the congruence transformation diag{I, P−1} and the
change of variable P−1 = W , resulting in (26). Hence, the
proof is complete.

3.1 Left-coprime factorization synthesis

Definition 6. Suppose that (C (ρ),A (ρ)) is detectable in
a quadratic sense. Then, there exists the left-coprime
factorization G (ρ) = M̃ (ρ)

−1
Ñ (ρ)[

M̃ (ρ) Ñ (ρ)
]

:=

[
A (ρ) +HC (ρ) H B (ρ)

C (ρ) I 0

]
(40)

Note that the main problem of obtaining left-coprime
factorization for parameter-dependent systems consists in
determining a stabilizing gain H. As mentioned before,
such factorization may be described using the output
injection representation. In the LFR framework, GOI(ρ)
is given by

x(k + 1) =Ax+Bqq + [0 Bu]w + u (41)

p =Cpx+Dpqq + [0 Dpu]w (42)

z =x (43)

y =Cyx+Dyqq + [I Dyu]w (44)

q =∆(ρ)p, ∆(ρ) = diag(ρ1Is1 , ..., ρmIsm). (45)

Since q = ∆(ρ)p and adopting the observation law u = Hy,
the closed-loop system becomes

x(k + 1) =(A+HCy)x+ (Bq∆)p+ [H Bu]w (46)

p =Cpx+ (Dpq∆)p+ [0 Dpu]w (47)

z =x (48)

for Dyq = Dyu = 0. Then, the observer gain H that
composes the left-coprime factorization can be determined
from ‖Fl (GOI (ρ) , H)‖2. Such LMI-based condition may
be cast by the following theorem.

Theorem 7. Consider the LFR system given in (45-47). If
there exist matrices P = PT � 0 and M = MT � 0 ∈
Rn×n, Z ∈ Rn×ny and X ∈ Rn×n, such that

ν2
2 = minTr(X), (49)[
X I
I P

]
� 0, (50)





−P ? ? ? ? ?
0 −M ? ? ? ?
0 0 −I ? ? ?

0
DT
pu

2
M 0 −I ? ?

PA+ ZCy P (Bq∆i) Z PBu −P ?

MCp M (Dpq∆i) 0 M
Dpu

2
0 −M


≺ 0,

(51)
for i = 1, ..., r. Then the observer gain H = P−1Z for all
values of the parameter ρ ∈ P and the H2 norm can be
calculated as ν2 <

√
Tr (X).

Proof. Comparing systems (21-24) and (40-44), and
substituting the matrices in (45-47) to determine the
quadratic H2 performance, (27) becomes

−W ? ? ? ? ?
0 −N ? ? ? ?
0 0 −I ? ? ?

0
DT
pu

2
0 −I ? ?

AW +HCyW (Bq∆)NT H Bu −W ?

CpW (Dpq∆)NT 0
Dpu

2
0 −N


≺ 0

(52)
Notice that such condition has nonconvex terms, so an
appropriate congruence transformation should be used.
Multiplying (51) by diag{W−1, I, I, I,W−1, I} on the left
and its transpose on the right, and applying the change of
variables W−1 = P and Z = PH, yields

−P ? ? ? ? ?
0 −N ? ? ? ?
0 0 −I ? ? ?

0
DT
pu

2
0 −I ? ?

PA+ ZCy P (Bq∆)NT Z PBu −P ?

Cp (Dpq∆)NT 0
Dpu

2
0 −N


≺ 0 (53)

Nonetheless, the condition still has nonconvex terms. To
solve this problem, another congruence transformation is
required. Multiplying (52) by diag{I,N−1, I, I, I,N−1}
on the right and its transpose on the left and applying
the change of variable N−1 = M , we have

−P ? ? ? ? ?
0 −M ? ? ? ?
0 0 −I ? ? ?

0
DT
pu

2
M 0 −I ? ?

PA+ ZCy P (Bq∆i) Z PBu −P ?

MCp M (Dpq∆i) 0 M
Dpu

2
0 −M


≺ 0,

(54)
for i = 1, ..., r, concluding the first part of Theorem 7.
Using a similar procedure as done previously, condition
(26) becomes (49). Hence, the proof is complete.

Remark 1: If the LFR degree in (44) is one, the vertex
scaling method in (Fan Wang and Balakrishnan, 2002)
can be applied to relax the conditions on Theorem 7.
In this particular case, the single scaling matrix M � 0
can be replaced with matrices Mi, where i = 1, ..., r are
the vertices of the polytope P. Note that r − 1 decision

variables are added to the problem but conservatism is
reduced.

Corollary 8. Consider the LFR system G(ρ) given in (40),
which is by assumption quadratically detectable. Let P
and Y be the solutions of the optimization problem of
Theorem 7; let H = P−1Z and define ZT2 Z2 := (I +
CTy PCy)−1 and R1 := I + DyuD

T
yu . Then, there exists

a contractive left-coprime factorization

G(ρ) = M̃−1(ρ)Ñ(ρ) (55)

where η = M̃(ρ)y, for u = 0, and η = Ñ(ρ)u, for y = 0,
given by

ξ(k + 1) = (A+HCy)ξ + (Bq +HDyq)q+

(Bu +HDyu)u (56)

p =Cpξ +Dpqq +Dpuu (57)

η =Z2(Cyξ +Dyq + y +Dyuu) (58)

q =∆(ρ)p, ∆(ρ) = diag(ρ1Is1 , ..., ρmIsm). (59)

Proof. Following the proof for the continuous-time ver-
sion in Prempain (2006), the generalized Riccati inequality
associated with the H2 norm minimization problem for the
regularized GOI(ρ) plant is given by H2 = −(A(ρ)PCT +
BDT )ZT2 . H = H2Z2 solves the original H2 minimization
problem based on GOI(ρ). This optimal observer gain H is
also the gain required to form the contractive left-coprime
factors of the plant, solving the inequality given in Gu
et al. (2002)

ΨPΨT − P −ΨPCTZT2 Z2CPΨ +B(ρ)R−1
2 B(ρ)T < 0,

(60)
where

Ψ =A(ρ)−B(ρ)R−1
2 DTC (61)

R2 =I +DTD (62)

R1 =I +DDT (63)

ZT2 Z2 =(R1 + CPCT )−1. (64)

This completes the proof.

4. NUMERICAL EXAMPLE

In order to evaluate the effectiveness of the proposed
method, consider the following LPV/LFR system bor-
rowed from (Prempain, 2006). The model was adapted to
address the present problem using forward Euler method
(Toth, 2010), being described by

x(k + 1) =

[
1 −T
T 1− T

]
x+

[
0 0
T T

]
q +

[
T
0

]
u (65)

p =

[
0 1
0 −1

]
x+

[
0 0
−1 0

]
q +

[
1
−2

]
u (66)

y = [1 0]x+ [0 0] q + [0] , (67)

where q =

[
ρ1(kT ) 0

0 ρ2(kT )

]
p and ρ1 and ρ2 are time-

varying parameters constrained to the set

P =
(

(r(kT )cosφ, r(kT )sinφ) φ ∈
[
0,
π

4

]
∪
[
π,

5π

4

])
.

(68)
Note that the system features varying parameters in both
A(ρ) and B(ρ) matrices. Following the same procedure
done in (Prempain, 2006), let us define the parameter



β as the maximum value of |r (kT )|. Thus, ∆ can be
described from six vertices that compose the Cartesian
coordinates for points AEICGJA given by A = (−β, 0),

E =
(
−β,−β

√
2

2

)
, I =

(
−β
√

2
2 ,−β

√
2

2

)
, C = (β, 0), G =(

β, β
√

2
2

)
and J =

(
β
√

2
2 , β

√
2

2

)
. Adopting a sampling

time T = 100[ms] in (42) and a maximum value β = 0,
we obtain the normalized left-coprime factorization from
Theorem 7, given by[

M̃ Ñ
]

:=

 0.9336 −0.1 −0.0664 0.1
0.0700 0.9 −0.0300 0
0.9649 0 0.9649 0

 (69)

with ‖Fl (GOI (ρ) , H)‖2 = 0.3148. Now, for β = 1,
using Theorem 7 again with Remark 1 to obtain H and
then Corollary 8, one obtains the contractive left-coprime
factorization[

M̃ (ρ) Ñ (ρ)
]

=

 0.8368 −0.1 −0.1632 0.1
0.1383 (2, 2) 0.0383 (2, 4)
0.9177 0 0.9177 0

 ,
(70)

where (2, 2) = 0.9 + 0.1ρ1− 0.1ρ2− 0.1 (ρ1ρ2) and (2, 4) =
0.1ρ1 − 0.2ρ2 − 0.1 (ρ1ρ2) with a determined value for
‖Fl (GOI (ρ) , H)‖2 = 0.7296.

The contractiveness of the left-coprime factorization in
(70) may be evaluated using the results presented in
(Wood et al., 1996),

||
[
M̃(ρ) Ñ(ρ)

]
||i,2 = sup

ω∈L2
||ω||2≤1

sup
ρ∈ΩN

||
[
M̃(ρ) Ñ(ρ)

]
ω||i,2,

(71)
where ||(·)||i,2 is the maximum singular value over all

significant frequencies. As expected, ||
[
M̃(ρ) Ñ(ρ)

]
||i,2 ≈

1. This means that for all values of ρ in the parameter set,
the norm is constrained to be less than or equal to one.
Figure 2 shows the results for 1000 random values of ρ.
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Figure 2. ||
[
M̃(ρ) Ñ(ρ)

]
||i,2 for random values of ρ in the

parameter space.

The norm values are shown to be considerably close to one
over the whole parameter space. This proximity between
the normalized and contractive factorizations allows us to
use the latter as an approximation of the former for LPV
systems.

It is noteworthy that the left-coprime factorization prob-
lem for polytopic description was solved by Pereira et al.
(2017). In this sense, an interesting analysis consists in
comparing the performance and the contractiveness of the

left-coprime factors obtained. Figure 3 shows the relation
between ‖Fl (GOI (ρ) , H)‖2 values and their respective β
parameters such that the compared methods are feasible.
Note that in the region of interest, 0 ≤ β ≤ 1, the LFR ap-
proach provides less conservative results than its polytopic
counterpart. As it is well-documented in the literature,
there is a strong relation between the H2 norm of the
coprime factors and the contractiveness, such analysis will
be omitted here. Thus, we note that the proposed method
obtain less conservative left-coprime factorizations than a
traditional approach.
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Figure 3. Relation between ‖Fl (GOI (ρ) , H)‖2 values and
their respective β such that the compared methods
are feasible.

5. CONCLUSION

This paper presented novel LMI-based conditions to ad-
dress the discrete-time left-coprime factorization problem
for LPV/LFR systems. The main drawback of the LMI
conditions derived here stems from using a fixed Lyapunov
matrix to obtain the coprime factorization description.
However, such an assumption remains quite attractive
due to its low requirement of computational effort. The
numerical example has shown that the proposed conditions
provide an efficient and alternative procedure to solve
the problem stated and recovers the normalized coprime
factorization notion when the system reduces to a single
point. In future research, we intend to use such results
to provide new control strategies based on Youla-Kucera
parameterization.
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