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Abstract: This paper presents a practical application of discrete-time L2 loop-shaping control
to a Maglev system using the linear parameter-varying (LPV) framework. LMI-based conditions
are obtained for the synthesis of an output-feedback LPV controller that guarantees robust
stability and performance to the closed-loop system. Guidelines to design such controller are
given in a simple and transparent manner. In addition, detailed modeling of the didactic plant
manufactured by Quanserr is carried out and the process of embedding the nonlinear equations
into a discretized quasi-LPV (qLPV) model is described. Simulations and experimental results
show that the proposed procedure can be an advantageous alternative to handle nonlinear
systems in comparison to its linear time-invariant (LTI) version.
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1. INTRODUCTION

Magnetic levitation is the core concept in two fields of
application: Maglev transportation systems and active
magnetic bearings (AMBs). It allows the construction of
contactless and frictionless devices, which are highly ef-
ficient, reliable, flexible and sustainable, dispensing with
lubrication, repairment, and bearing changes (Tonoli et al.,
2012). The dynamics of these systems are open-loop unsta-
ble, multivariable and nonlinear, requiring sophisticated
control systems to operate. Numerous contributions have
been made on both areas, using a wide range of control
techniques. In particular, parameter-dependent controllers
have proved a nice tool to control AMBs, as in Lu et al.
(2008) and Balini et al. (2012). They adjust to the rapidly
varying operating conditions without the slowly-varying
parameters requirement of simpler gain-scheduling tech-
niques. Still, they are yet to be explored for Maglev sys-
tems, perhaps due the high gains commonly obtained in
continuous-time syntheses, which are not appropriate for
implementation. To the best of the authors’ knowledge,
McCloy et al. (2018) is the only published work to explore
LPV controllers for Maglev systems. The authors designed
a discrete-time, estimate-based state-feedback, but this
technique can be quite cryptic to tune from the designer’s
point of view . In the present paper, we opt for a robust
output-feedback loop-shaping synthesis using the LPV
paradigm. The method relies on simple and established
notions of control, resulting in straightforward tuning and
implementation. In addition, it provides better robustness
margins to the closed-loop system.

LPV systems were introduced by Shamma (1988) to
provide a framework to the design of inherently gain-
scheduled controllers. The idea is to design a parameter-

?

dependent controller that automatically adjusts to plant
variation, described in terms of exogenous scheduling pa-
rameters available in real time. In a second effort, Shamma
and Athans (1990) extended this notion to nonlinear sys-
tems, by hiding nonlinearities as varying parameters. This
contribution greatly increased the method’s potential,
since the majority of gain-scheduling applications feature
endogenous signals as scheduling parameters. Besides, it
enabled the utilization of powerful linear tools for analysis
and control design of the class of nonlinear systems known
today as qLPV.

In the following years, LPV systems received a lot of
attention due to the emergence of powerful computational
tools such as linear matrix inequalities (LMIs). Shahruz
et al. (1992) investigated the extension of stability with
frozen parameters to that of the global system; Balas
and Apkarian (1992) introduced qLPV systems with a
linear fractional dependence on the scheduling parameters.
Becker et al. (1993) dealt with LPV controllers recover-
ing the notion of quadratic stability in Barmish (1985),
using inequalities; Packard (1994) tackled discrete-time
LPV systems; Becker and Packard (1994) obtained con-
ditions for induced L2-norm performance for parameter-
dependent systems; Apkarian et al. (1995) first used sys-
tems with an affine dependence on the varying parame-
ters, now commonly known as polytopic systems. Since
then, a vast number of theoretical and practical works
regarding LPV systems have been published. Efforts have
been made, for example, to reduce conservatism employ-
ing parameter-dependent Lyapunov (PDL) functions (Wu,
1995) (Gahinet et al., 1996) (Wang and Balakrishnan,
2002), improve LPV modeling and identification tech-
niques Lovera et al. (2011), extend its application to
particular classes of nonlinear systems (Lescher et al.,
2006), and obtain conditions for established LTI synthesis
procedures in the LPV framework.
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The synthesis used in this work consists of an LPV ver-
sion of the famed H∞ loop-shaping design methodology
from McFarlane et al. (1990). Now widely popular, the
method combines intuition from classical tools with ro-
bustness stabilization and guaranteed performance from
H∞ optimization. Hence, the designer can easily tune and
implement controllers with a transparent trade-off between
performance and robust stability objectives. This semi-
nal work has triggered a number of contributions which
further improved the method and expanded its scope of
applicability. Whidborne et al. (1994) developed a new ap-
proach via LMIs; Apkarian and Gahinet (1995) extended
its application to LPV systems and LTI systems subject
to parametric uncertainty; Gu et al. (2002) obtained LMI
conditions for discrete-time LTI systems; Prempain (2004)
developed the static approach via LMIs; Pereira et al.
(2017b) derived the conditions for a discrete-time version,
which was then extended to LPV systems in Pereira et al.
(2017a).

Building on these approaches, the L2 loop-shaping con-
troller proposed here is formulated using the observer-
based controller structure in Sefton and Glover (1990) for
LPV systems. In this sense, the objective of this paper is to
evaluate the practical application of a discrete-time LPV
controller to a Maglev system. The LPV controller syn-
thesis is given from LMI conditions, which ensure closed-
loop robust stability and performance. The nonlinear plant
is described in terms of a discrete-time qLPV model,
featuring some state variables as scheduling parameters.
It is shown that, by choosing a proportional-integral (PI)
compensator as a pre-filter to shape the open-loop model,
the L2 optimization is able to provide a fine response.
Finally, the effectiveness of the proposed design is assessed
in a Maglev system manufactured by Quanser.

This paper is organized as follows. Section 2 offers some
preliminaries definitions; Section 3 describes the synthesis
procedure, consisting of two steps: loop shaping design and
L2 optimization. In Section 4, the dynamical equations of
the Maglev System are developed and embedded into a
discrete-time qLPV model. Section 5 presents the design
procedure and results, with a brief comparison to the LTI
synthesis. Section 6 contains the conclusions.

The notation used is standard. Rn×m denotes the set of
real n × m matrices; I is an identity matrix and AT

represents the transpose of a matrix. For square matrices,
det(A) is the determinant and Tr(A) the trace of A. If
A = AT , A � 0 (A � 0) means that A is positive (semi-
)definite and A ≺ 0 (A � 0) that it is negative (semi-
)definite. Symmetric blocks in matrices are occasionally
indicated by ? and ‖•‖i,2 stands for the induced-L2 norm.

The notation G ,

[
A B
C D

]
is used to represent a state-

space realization. Co(ξ1, ξ2, ..., ξr) is a convex hull with
vertices ξi. For a concise notation, the dependence of the
signals on k will be dropped whenever it is clear.

2. PRELIMINARIES

Discrete-time LPV systems can be represented in state-
space as

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) (1)

y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) (2)

where x(k) ∈ Rn denotes the state vector; y(k) ∈ Rny

the vector of measurement outputs and u(k) ∈ Rnu

the control inputs. A, B, C, D are real-valued rational
functions of the time-varying parameter vector ρ(k) =
[ρ1(k), ..., ρm(k)]T ∈ Rm, which are available in real-time
and belong to the unit simplex

Ψ =

{
α ∈ RN+ :

N∑
i=1

αi(k) = 1, i = 1, . . . , N

}
. (3)

The state-space representation for a generalized plant is
given by x(k + 1)

z(k)
y(k)

 =

 A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12(ρ)
C2 D21(ρ) D22

 x(k)
w(k)
u(k)

 .
(4)

where z(k) ∈ Rnz represents a vector with outputs of
interest and w(k) ∈ Rnw the exogenous inputs. In this
paper, the state-space matrices are assumed to be affine
in Ψ , Co(ξ1, ξ2, ..., ξr). In addition, only A(ρ(k)) is
considered to be dependent on the varying parameters,
whereas B2 and C2 are fixed and D22 is null. This can be
always achieved with loop transformation and addition of
filters (Prempain and Postlethwaite, 2008).

Moreover, some definitions for discrete-time LPV systems
regarding performance criteria will be used throughout
this paper. Typically, such criteria are used for closed-loop
systems. Herein, the closed-loop system Tzw adopting a
control law given by u(k) = −K(ρ)y(k) in (4) will be
addressed.

Definition 1. Suppose that the closed-loop system Tzw is
exponentially stable. Then its H2 norm is defined by

‖Tzw‖22 := lim
T→∞

E

{
1

T

T∑
k=0

zT (k)z(k)

}
(5)

when ωk is a stationary, zero-mean, white noise process
with identity covariance matrix.

Definition 2. Suppose that the closed-loop system Tzw is
exponentially stable. Then its induced L2 norm is defined
by

‖Tzw‖i,2 = sup
‖w‖2 6=0

‖z‖2
‖w‖2

(6)

where z ∈ `2 and w ∈ `2 for all ρ ∈ Ψ.

3. L2 LOOP-SHAPING SYNTHESIS FOR LPV
SYSTEMS

3.1 Loop-Shaping Concept

The methodology consists of two steps. First, the open-
loop plant is shaped with the addition of pre- and post-
compensators in order to achieve desirable closed-loop
performance. In this step, classical control rules of thumb
can be used to select the filters. Usually, high gains are
desirable in lower frequencies to achieve good reference
tracking and disturbance rejection, while low gains are
preferable in higher frequencies to attenuate noise. At this
point, the nominal model G(ρ) is replaced with the shaped
model given by



GS(ρ) = W2(ρ)G(ρ)W1(ρ). (7)

Still, the shaped plant is not necessarily stable once the
loop is closed, because this property cannot be inferred
from the open-loop system. Thus, the second step is to
solve a robust stabilization problem, which ensures closed-
loop stability.

3.2 Robust Stabilization Problem

Consider the following representation of the shaped plant

GS(ρ) = [M̃(ρ) + ∆M̃ ]−1[Ñ(ρ) + ∆Ñ ]. (8)

M̃(ρ) and Ñ(ρ) are left-coprime factors of the plant and
∆M̃ and ∆Ñ are stable and unknown mappings of the
uncertainties associated to them, defined as

∆ = [∆Ñ ,∆M̃ ], ‖∆‖i,2 ≤ ε. (9)

The robust stabilization problem consists in finding the
maximum value of ε for which all of the models can
be stabilized by the controller K(ρ). Figure 1 shows the
topology of the problem.

Figure 1. Coprime factor robust stabilization problem.

Taking into account the exogenous outputs z(k) with
relation to exogenous inputs w(k), we have

z1 =K(ρ)[I −G(ρ)K(ρ)]−1M̃−1(ρ)w (10)

z2 =[I −G(ρ)K(ρ)]−1M̃−1(ρ)w. (11)

Therefore, the robust stabilization problem can be stated
as an optimization problem, as follows

Definition 3. Let(Ñ(ρ), M̃(ρ)) be a contractive left-coprime
factorization of G(ρ). Then, the robustness specification,

ε, such that G∆(ρ) = (M̃(ρ) + ∆M̃ )−1(M̃(ρ) + ∆Ñ ) can
be stabilized by a single controller, K(ρ), for all ∆ is given
by(

inf
K(ρ)

∥∥∥∥∥
[
K(ρ)
I

]
(I −G(ρ)K(ρ))−1M̃(ρ)−1

∥∥∥∥∥
i,2

)−1

< ε

(12)
where K(ρ) is chosen over all stabilizing controllers.

If the left-coprime factors are normalized, ε can be in-
terpreted as an upper bound on the nonparametric un-
certainties, i.e., the maximum allowable perturbation to
the left-coprime factors of the shaped plant. Conversely,
γ = ε−1 is an upper bound on the induced-L2 norm from

w to z. For LPV systems, normalized coprime factors are
very hard if not impossible to obtain, and are not even
guaranteed to exist (Beck and Doyle, 1993). The solution
lies in the concept of contractiveness (Li and Paganini,
2005), which allows a relaxation of the Riccati equations
that ensures stability on the factorization while preserving
the convexity of the overall problem. Despite inserting a
certain degree of conservatism onto the problem, it pro-
vides nice flexibility to accommodate structure constraints
and enables the solution via LMIs (Li, 2014).

3.3 LMI-based Solutions

The first step to solve the robust stabilization problem
is to find a stabilizing observer gain to construct con-
tractive and parameter-dependent left-coprime factoriza-
tions. Prempain (2006) showed that, for continuous-time
systems, this gain can be obtained by solving the H2

filtering problem applied to the output injection open-loop
interconnection. This notion was extended to discrete-time
systems in the theorem that follows.

Theorem 4. If the pair (C,A(ρ)) is detectable in a quadratic
sense, then, for any given µ > 0, there is a contractive left-
coprime factorization[

M̃(ρ) Ñ(ρ)
]
,

[
A(ρ) +HC H B

Z2C Z2 0

]
(13)

with H = P−1Y and Z2 = (I+CPCT )−1/2 if there exist a
symmetric matrix P ∈ Rn×n and matrices Y ∈ Rn×ny and
X ∈ Rn×n that satisfy the following optimization problem:

µ2 = min trace (X) , (14a)(
X I
? P

)
� 0 , (14b) P PAi + Y C Y PB

? P 0 0
? ? I 0
? ? ? I

 � 0 , (14c)

for i = 1, ..., N . The H2 norm can be calculated from
µ <

√
trace (X).

Proof. The proof is straightforward using the same pro-
cedure presented in (Pereira et al., 2017a) for robust case.

After this step, the generalized plant is given by (15) (Gu
et al., 2013), which corresponds to the full information
structure for LPV systems.

Gz(ρ) ,

A(ρ) −H B
0 0 I

Z2C Z2 0
C I 0

 . (15)

Next, a state-feedback problem should be solved to satisfy
the performance criteria in (12). The LMI-based conditions
are given by the following theorem .

Theorem 5. Consider the system (15). There exists a ro-
bust state-feedback gain F = ZW−1 such that the closed-
loop system is stable and the induced-L2 norm is mini-
mized if there exist W = WT � 0 ∈ Rn×n and Z = ZT ∈
Rnu×n that satisfy the following optimization problem:



min γ2
W AW +BZ 0 0 −H

WAT + ZTBT W ZT WCTZT2 0
0 Z I 0 0
0 Z2CW 0 I Z2

−HT 0 0 Z2 γ2I

 � 0

(16)

Proof. Consider the feedback control law u(k) = Fx(k)
for the generalized plant (15). Then, after applying the
Bounded Real Lemma for discrete-time LPV systems, as
presented in (Apkarian et al., 1995), and some mathemat-
ical manipulations to avoid nonlinear terms, we obtain
condition (16). Hence, the proof is complete.

3.4 Controller Construction

In the previous section, a state-feedback controller is de-
signed for a left-coprime factorization of the shaped plant.
The output-feedback loop-shaping controller is given by
(Prempain and Postlethwaite, 2008) as an observer-based
controller structure,

K(ρ) ,

[
A(ρ) +BF +HC H

−F 0

]
(17)

However, it depends on ρ and thus can only be computed
in real time. From Apkarian and Gahinet (1995), the
controller is given by

K(ρ) ,
r∑
i=1

αiKi =

r∑
i=1

αi

([
AKi BKi
CKi DKi

])
(18)

where α1, ..., αr is a solution of the convex decomposition
problem and Ki represent the vertex controllers

ρ =

r∑
i=1

αiξi (19)

such that ξi can be defined as in the following example.
Let us examine a system with two varying parameters
constrained to lie in a polytope with four vertices

ξ1 , [ρ1min ρ2min ], ξ2 , [ρ1max ρ2min ], (20)

ξ3 , [ρ1max ρ2max ], ξ4 , [ρ1min ρ2max ]. (21)

Then, we have

α1 = ξ1ξ2, α2 = (1− ξ1)ξ2, (22)

α3 = ξ1(1− ξ2), α4 = (1− ξ1)(1− ξ2), (23)

where

ξ1 =
ρ1max − ρ1(k)

ρ1max
− ρ1min

, ξ2 =
ρ2max − ρ2(k)

ρ2max
− ρ2min

. (24)

Notice that αi satisfy 0 ≤ αi ≤ 1 and
∑4
i=1 αi = 1. Hence,

they are convex. Such characteristic is given by vertex
properties. Now, all that is required is the combination
of this controller and the shaping functions to construct
the final controller

KF (ρ) = W1(ρ)K(ρ)W2(ρ). (25)

3.5 Design procedure

Finally, a design control procedure to obtain the L2 loop
shaping controller with guaranteed robustness properties
can be summarized as follows:

(1) Initially, select the pre- and post-filters W1 and W2

to model the shaped plant GS(ρ) as in (7).
(2) Determine the observer gain H that composes the

left-coprime factorization (13) using Theorem 4.
(3) Determine the robust state-feedback gain F from

Theorem 5 to obtain the L2 controller K(ρ) described
in (17) as an observer-based controller structure.

(4) Finally, the feedback controller for implementation
KF (ρ) is given by x (k + 1)

xw1
(k + 1)

xw2
(k + 1)
u(k)

 = KF (ρ)

 x (k)
xw1 (k)
xw2 (k)
y (k)

 (26)

such that

KF (ρ) =

 AK(ρ) 0 BKCw2
BKDw2

Bw1
CK Aw1

Bw1
DKCw2

Bw1
DKDw2

0 0 Aw2
Bw2

Dw1CK Cw1 Dw1DKCw2 Dw1DKDw2


(27)

where the pre- and pos-compensators are described as

W1 =

[
Aw1 Bw1

Cw1
Dw1

]
,W2 =

[
Aw2 Bw2

Cw2
Dw2

]
, (28)

respectively.

4. LPV MODELING FOR THE MAGLEV SYSTEM

4.1 Dynamical Model Description

The system features a steel ball that should levitate due to
the electromagnetic force generated by an electromagnet.
The objective is to manipulate the voltage applied to the
electromagnet coil in order to control the ball vertical
position. Measurements of ball position and coil current
are provided by a photosensitive sensor and a resistor,
respectively. Figure 2 shows a schematic of the system
taken from Quanser’s workbook.

Figure 2. Didactic plant scheme (Quanser, Inc., 2012)

The coil current can be computed using Ohm’s and Fara-
day’s laws

vS(t) = RSiC(t), (29)



where iC(t) is the current, RS is the resistance, and vS(t) is
the voltage sense at the current sensing resistor. Faraday’s
and Kirchoff’s laws can then be applied to yield

vC(t) = (RC +RS)iC(t) +
dΦ(t)

dt
(30)

where vC(t) is the voltage applied to the coil, RC is the
resistance, and Φ(t) is the magnetic flux linkage at the coil.

Following the guidelines in (McCloy et al., 2018), the
inductance dependence on the ball position is modeled as

L(xb(t)) = LC +
Lba

a+ xb(t)
(31)

where LC is the coil inductance alone, Lb is the ball
inductance, and a is a positive constant obtained with
experiments. The magnetic flux can be expressed as

Φ(t) = L(xb(t)) · iC(t), (32)

so the differential equation relating coil current and induc-
tance is

diC(t)

dt
=

d

dt

Φ(t)

L(xb(t))
. (33)

The next step is to equate the forces acting on the ball.

F = Fg + Fv + FC (34)

where Fg is the gravity force, Fv is the drag force, and
FC is the force generated by the electromagnet. Fg can be
readily obtained as

Fg = Mbg (35)

where Mb is the ball mass and g is the standard gravity.
Fv can be modeled via Stokes law as

Fv = −bvẋb(t) (36)

where bv = 6πrbµv, rb is the ball radius and µv is magnetic
permeability constant. The attractive force exerted by the
electromagnet on the ball can be characterized in terms of
coenergy

FC =
∂WL(iC(t), L(xb(t)))

∂xb(t)
. (37)

Since the coenergy is given by

WL(iC(t), L(xb(t))) =
1

2

(
LC +

Lba

a+ xb(t)

)
i2C(t), (38)

the force can be expressed as

FC = − Lba

2(a+ xb(t))2
i2C(t). (39)

At last, Newton’s second law gives the equation of motion
for the ball

Mbẍb(t) = Mbg − bvẋb(t)−
Lba

2(a+ xb(t))2
i2C(t) (40)

The total inductance will be considered as constant, since
the effect of the ball is insignificant in this case. So, a
state-space representation of the system is given by

ẋ1(t) =ẋb(t) (41)

ẋ2(t) =g − bv
Mb

x2(t)− Lba

2Mb(x1(t))2
x2

3(t) (42)

ẋ3(t) =
1

LC
[u(t)− (RC +RS)x3(t)]. (43)

where x1(t) = a + xb(t), x2(t) = ẋb, x3(t) = iC(t), and
u(t) = vC(t). System parameters of the didactic plant

are given in Table 1 The limitations imposed by physical
constraints on states and input excursions are given by

10.1 mm ≤ x1(t) ≤ 24.1 mm (44)

0 A ≤ x3(t) ≤ 3 A (45)

0 V ≤ u(t) ≤ 24 V (46)

More technical details about the didactic plant manufac-
tured by Quanserr can be viewed in (Quanser, Inc., 2012).

4.2 LPV Model

The objective of using an LPV model is to approximate
or even match the mapping of the nonlinear model in a
framework where several linear tools are still applicable.
In this work, a linearization-based approach is used to
obtain an LPV model (Packard, 1994; Toth, 2010). The
idea is to obtain Taylor approximations of state and output
evolution at a number of equilibrium points. Then, this set
of LTI systems can be described as polynomials in terms
of the scheduling parameters. The equilibrium points are
given by

x̄2 = 0 (47)

x̄3 =

√
2Mbg

Lba
x̄1 (48)

ū = (RC +RS)x̄3. (49)

The varying parameters are chosen as ρ1(t) = x1(t) and
ρ2(t) = x3(t), as both states are available in real time.
This means the model is qLPV, since the parameters are
endogenous signals. To avoid complications due to hard
nonlinearities, xb was restricted to lie between 6 mm and
12 mm, which in turn imposes a restriction on iC excursion
as well. Then, we define the compact set for the varying
parameters to be

−3 mm ≤ ρ1(t) ≤ 3 mm (50)

−387 mA ≤ ρ2(t) ≤ 387 mA (51)

To synthesize the L2 controller, the model must be dis-
cretized. Exact discretization of LPV systems can be prob-
lematic, as the traditional zero-order hold method can
inflict loss of convexity, which is key for most controller
analysis and synthesis available. Though not exact, for-
ward Euler method is widely employed in the discretization
of such systems, since convexity properties are preserved
(Apkarian, 1997; Toth, 2010). For a given sampling time
T , the discrete-time LPV model is given by

x(k + 1) =


1 T 0

Tλ(ρ) 1− Tbv
Mb

Tβ(ρ)

0 0 1− TR

LC

x(k) +

 0
0
T

LC

u(k)

(52)

Table 1. Maglev system parameters.(Quanser,
Inc., 2012)

Parameter Value

Mb 68 g
µv 4π · 10−7 H/m
rb 12.7 mm
a 10.1 mm
RC 10 Ω
RS 1 Ω
LC 412.5 mH
Lb 31.7 mH



where R = RC +RS and the parameters

λ (ρ) = 1027.14− 5.48× 104ρ1 + 4.48× 104ρ1ρ2

β (ρ) = −15.91 + 849.49ρ1 − 693.61ρ1ρ2
(53)

Notice that if the parameters are restricted to be ρ(k) = 0,
we get an LTI model at x̄b = 9 mm and ū = 13.5625 V .

5. DESIGN AND RESULTS

5.1 L2 Controller Design

The goal is to control the steel ball position with zero
steady-state error and mininum integral absolute error
(IAE), to get a fine trade-off between maximum overshoot
and settling time. In addition, robustness specification
dictates that the value of γ should be kept below 4.

The first step in the design procedure is to shape the open-
loop plant to achieve desired performance. For T = 2 ms,
the following pre- and post-compensators were able to
provide acceptable performance in the simulation level.
Therefore, they were chosen for implementation.

W1(z) =
20.2z − 19.8

z − 1
(54)

W2(z) = 3000. (55)

Notice that W1(z) is a PI compensator, designed in
continuous-time for intuitive tuning purposes and dis-
cretized via Tustin method.

Then, the H2 optimization problem was solved. Applying
Theorem 4, matrices P and Y were found to be

P =

3.77 636.01 22.34 −41.93
? 4.09 · 107 −2.30 · 105 −1.82 · 104

? ? 2.27 · 103 −85.40
? ? ? 500.52

 , (56)

Y =

−5.74 · 10−4

−2.84 · 103

4.37
0.11

 , (57)

which means the observer gain H = P−1Y is given by

H =

 0.59
−1.72 · 10−4

−0.020
0.040

 (58)

and Z2 = 0.77. The optimization yielded an upper bound
of 2.84 on the H2 norm. At this point, the stabilizing gain
H was used to form a left-coprime factorization as follows[

M̃(ρ) Ñ(ρ)
]

=
0.96 1.76 · 103 0 0 0.59 1

0 0.48 0.0020 0 −1.72 · 10−4 0
0 (3, 2) 0.99 (3, 4) −0.020 0

−0.0019 119.63 0 0.94 0.040 0.097
0 2312.40 0 0 0.77 0

 ,
(59)

where

(3, 2) = −57.36− 109.67ρ1(k) + 89.58ρ1(k)ρ2(k) (60)

(3, 4) = −0.031 + 1.69ρ1(k)− 1.38ρ1(k)ρ2(k). (61)

The values were truncated to two significant figures for
better visualization.

Next, the robust stabilization problem is solved by apply-
ing Theorem 5 to the system, described as a full informa-
tion interconnection. The resulting matrices are

W =


163.19 −3.12 · 10−6 0.0018 0.021
? 5.71 · 10−10 −6.00 · 10−8 −2.20 · 10−7

? ? 1.68 · 10−5 1.12 · 10−4

? ? ? 0.010

 ,
(62)

Z =
[
−0.73 2.88 · 10−5 −4.60 · 10−4 −0.12

]
. (63)

Thus, the state-feedback controller is given by

F = [0.042 5267.10 79.07 −9.78] (64)

An upper bound on the induced-L2 norm is given by
γ = 3.15, which means the robustness specification is met.

From the gains H and F , we can construct the controller
in (17),

KF (ρ) =
1.00 7.33 · 103 79.07 −9.78 0.59

0 0.48 0.0020 0 −1.72 · 10−4

0 (3, 2) −1.00 (3, 4) −0.020
0.0022 625.37 7.59 0.099 0.040
−0.042 −5.27 · 103 −79.07 9.78 0


(65)

where

(3, 2) = −57.36− 109.67ρ1(k) + 89.58ρ1(k)ρ2(k) (66)

(3, 4) = −0.031 + 1.69ρ1(k)− 1.38ρ1(k)ρ2(k). (67)

Finally, the controller must be combined with the pre- and
post-filters in (54) e (55), as explained in (27). Then, the
final controller is ready for implementation.

Due the inherent time-variant nature of the system, tradi-
tional LTI concepts such as transfer functions and poles do
not apply to problem at hand. However, as Apkarian et al.
(1995) points out, LPV systems can also be interpreted as
LTI systems with uncertainties. Using this notion, it we
can compute the poles of the stabilized system in (59) and
the final closed-loop system for different combinations of
the scheduling parameters. Figure 3 shows that for a large
set of parameters spanning the whole polytope, all poles
lie in the unit circle for both systems.

Figure 3. Stability assessment. a) pole locations for A(ρ)+
HC. b) poles locations for A(ρ) +HC +BF .

5.2 Simulation

In order to assess the design specifications, the system
was stabilized at position 9 mm and then subjected to



2 mm step inputs in both directions. As suggested by
the manufacturer, a rate limiter of 5m/s rate limiter was
used to slightly smooth the set-point changes. Figure 4
shows the ball position and applied voltage obtained in the
simulation. The IAE value is 88.09, while the maximum
overshoot is 5.83% and the settling time with 5% steady-
state criterion is 420 ms. Figure 5 shows the coil current
verified in the simulation.
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Figure 4. Simulation: ball position xb and voltage vC vs.
time.
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Figure 5. Simulation: coil current iC vs. time.

The results at the simulation level were satisfactory, so the
same controller gains were used to control the actual plant.

5.3 Experimental results

Figure 4 depicts the ball position and the voltage applied
to the coil during the actual experiment. Naturally, the
IAE value is much higher at 573.68. Part of this discrep-
ancy is caused by sensor noise and unmodeled dynamics.
Still, higher maximum overshoot at 11.75% and settling
time at 490 ms also contribute to this increase.
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Figure 6. Experiment: ball position xb and voltage vC vs.
time.

The coil current, which is a scheduling parameter, can be
seen in Figure 7.
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Figure 7. Experiment: coil current iC vs. time.

Finally, Figure 8 shows the polytope as well as the schedul-
ing parameters trajectories during the experiment. Notice
that both varying parameters lie inside the polytope at all
times.
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Figure 8. Experiment: parameter space and parameter
trajectory.

As pointed out in Section 4, by fixating the varying
parameters to be ρ(k) = 0 a reference LTI model at the
operating point is recovered. Then, the synthesis used in
this work should give a comparable result to the discrete-
time H∞ loop-shaping synthesis in Pereira et al. (2017b).
This synthesis was also applied to the Maglev System. The
graphs are omitted here for brevity, in favor of a numerical
comparison.

Naturally, the upper bounds on the norm values for the
LTI case are expected to be lower, since the polytope is
degenerated to a point. That was indeed the case, with
the H2 norm bounded by 2.61 and the H∞ norm by
2.33. The parameter-varying entries in the LPV model
feature a quadratic dependence on varying parameters,
described by the polynomials in (53). These surfaces are
rather flat within a certain range from the operating point,
so the linear model is a relatively good approximation of
the nonlinear dynamics. Still, the maximum overshoot is
higher at 17.1%, while the settling time was similar at
500 ms.

6. CONCLUSION

This paper has shown the application of discrete-time L2

loop-shaping control to a Maglev system. The design is car-
ried out in a simple and straightforward fashion, drawing
intuition from classical control. Results were considered
satisfactory both in terms of performance assessment and



robustness margins. Notwithstanding, quadratic stability
imposes conservative bounds. Discrete-time static L2 lop-
shaping for LPV systems with bounded parameter varia-
tion remains an open problem. Hence, it is a nice idea for
future works.
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