DOI: 10.48011/asba.v2i1.1571

Calibration of a Triaxial, Consumer-grade
Magnetometer via an Extended Two-step
Methodology

Rogério P. Menezes Filho' Felipe O. Silva®
Leonardo A. Vieira® Lucas P. S. Paiva* Gustavo S. Carvalho®

Department of Automatics, Federal University of Lavras, MG (emails:
rogeriofilho03@gmail.com®, felipe.oliveira@ufla.br?,
laviera1992@hotmail.com?, paiva.lucasps@gmail.com?,

guhcarv9d3@gmail.com? ).

Abstract: Humans have always had the necessity of estimating their location in space for
various reasons, e.g. hunting, traveling, sailing, battling, etc. Today, many other areas also
demand that information, such as aviation, agriculture, multiple smartphone applications, law
enforcement, and even film industry, to mention but a few. Estimating position and orientation
is known as navigation, and the means to achieve it are called navigation systems. Each
approach has its pros and cons, but sometimes it is possible to combine them into an improved
architecture. For instance, inertial sensors (i.e. accelerometers and gyroscopes) can be integrated
with magnetometers, producing an Attitude and Heading Reference System (AHRS); this
process is referred to as sensor fusion. However, before sensors can be used to produce the
navigation solution, calibration is often necessary, especially for low-cost devices. In this study,
we perform the calibration of a triaxial consumer-grade magnetometer via an extended two-step
methodology, correct small mistakes present in the original paper, and evaluate the technique
in a restricted motion scenario. This technique can be implemented in-field, simply by rotating
the sensors to multiple orientations; the only external information necessary is the local Earth’s
magnetic field density, easily estimated through reliable models. The error parameters, i.e. biases,
scale factors, and misalignments, are indirectly estimated via a least squares algorithm. The
calibration is first performed through software simulation, followed by hardware implementation

to validate the results.
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1. INTRODUCTION

Magnetometers are versatile sensors that can operate in a
variety of applications, with different working principles.
For instance, they are used as speedometers for some kinds
of motors, as digital compasses for navigation, or for other
applications that require measurements of magnetic field
density. For the purpose of this work, we are interested in
magnetometers used as part of navigation systems, which
fall into four categories: fluxgates, Hall-effect, magnetoin-
ductive, or magnetoresistive sensors (Groves, 2013).

Humans have relied on Earth’s magnetic field for navi-
gation since ancient times; Chinese people developed one
of the first compasses, with a floating plate containing a
magnetic lodestone (Renaudin et al., 2010). Since then,
technology has greatly evolved; and today we can buy a
consumer-grade digital magnetometer, such as the Honey-
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well HMC5883L, for only a few dollars. These sensors are
especially useful for integrated navigation, which combines
multiple technologies in order to produce a more precise
and reliable navigation solution with a low budget (Gebre-
Egziabher et al., 1996; Sheng and Zhang, 2015). AHRSs
(Attitude and Heading Reference Systems) are one of
the many approaches for integrated navigation, combining
magnetic and inertial sensors.

However, and as particularly discussed in Section 2, mag-
netometers are affected by a number of error components
that corrupt its measurements, especially in low-cost de-
vices. If not handled, these errors can deeply compro-
mise or even preclude navigation. The usual approach to
manage this problem is calibration, i.e., estimating error
parameters and correcting measurements. This topic has
been broadly addressed and many techniques have been
developed throughout the years. On the other hand, such
procedures may not be so trivial, and deserve a closer look.

One of the most popular methods for magnetometer cali-
bration is known as compass swinging (Bowditch, 1995). Tt
consists of rotating magnetometers to multiple directions,
while an external, reliable source of orientation is used to
track the movements; finally, a non-linear parameter esti-
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mation is performed to map the relation between measured
and ground-truth orientations. Nevertheless, depending on
an external source of orientation is an undesirable short-
coming, as stated by Alonso and Shuster (2002a), who pre-
sented a technique based on the work of Gambhir (1975)
to overcome this issue. The same authors extended their
work for a more extensive calibration, estimating more
error parameters (Alonso and Shuster, 2002b); Crassidis
et al. (2005) also claimed relevant improvements to this
work.

Afterwards, Gebre-Egziabher et al. (2006) also addressed
some issues involving compass swinging, namely: (a) the
need for an external attitude source, (b) the requirement
for the sensor to be horizontally leveled, and (c) the
location dependency. Their so-called two-step technique
is based on the idea that if a perfect, uncorrupted triaxial
magnetometer (also applies for 2D) is rotated around itself,
the magnitude of the sensors readings would lie on a sphere
manifold, with radius equal to the local Earth’s magnetic
field density. However, as measurements are corrupted,
the sphere becomes a rotated, shifted ellipsoid. Therefore,
the error parameters can be derived from the ellipsoid
estimation, performed via a straightforward least squares
algorithm.

Although Gebre-Egziabher et al. (2006) were successful
with their method, they did not consider some relevant
error parameters. In order to include these parameters,
Foster and Elkaim (2008) presented one of the most cited
calibration algorithms, an extended version of the two-step
technique that estimates the most important systematic
error components of a magnetometer. Other methods
were presents in sequence, such as (Vasconcelos et al.,
2011), (Springmann and Cutler, 2012), (Pang et al., 2013),
(Zhang and Yang, 2014), (Kok and Schén, 2016), (Sarkké
et al., 2017), and (Crassidis and Cheng, 2020). Even
though other techniques were proposed more recently,
Foster and Elkaim’s algorithm can still be used today,
since it offers great accuracy and convenience for in-field
applications.

In this study, we implement the calibration method pro-
posed by Foster and Elkaim (2008) for both simulated
and real sensor data. In addition, small mistakes from
Foster and Elkaim (2008) are corrected, and the tech-
nique is evaluated for a limited motion scenario. The
procedure performed here enhances the consumer-grade
sensor HMC5883L’s performance, intended primarily for
integrated navigation use, by suitably compensating its
systematic errors.

This paper is organized as follows. Section 2 introduces
the adopted magnetometer error model; Section 3 com-
prehensively describes the calibration method by Foster
and Elkaim (2008); in Sections 4 and 5, simulated and
experimental results are displayed, respectively; Section 6,
lastly, summarizes the paper and presents final thoughts
and conclusions.

2. MEASUREMENT ERROR MODEL

The measurement error model adopted here, as in Foster
and Elkaim (2008), includes the main systematic compo-
nents that affect magnetometers: biases, scale factors, mis-

alignments, hard/soft iron errors, and random noise. Each
one of them is addressed in sequence. It is important to
define the scope of the calibration performed here; different
classes of errors affect magnetometers, namely: constant,
temperature-varying, run-to-run, and in-run contributions
(Groves, 2013). The first two are often deterministic and
can be compensated by the manufacturer. Run-to-run er-
rors are those that change every time the sensor is turned
on, and remain the same until it is turned off; this is
the class of errors addressed here. Lastly, in-run errors
appear during sensor use, and require stochastic/filtering
approaches to be suitably handled.

e Biases

Often referred to as null shifts, biases are the most common
error components in any sensor. They corrupt the signal
by shifting it, as exemplified in Figure 1. In the context of
this paper, biases move the aforementioned measurement
sphere away from the origin. They are represented here as
the nx 1 vector Cp, whose rows are the biases b,, b,, and b,
of each sensor, where n is the number of axes considered.

e Scale Factors

The next error components described here are the scale
factors. They corrupt the measurements by scaling them
at a certain factor, as displayed in Figure 2. They are
represented here as the n x n diagonal matrix Cs¢, whose
entries are the scale factors for each sensor, sf,, sf,, and

sf..
e Misalignments

The third error component that affects magnetometers
is the misalignments, or nonorthogonalities, between the
three sensors’ axes due to manufacturing inaccuracies.
They corrupt the measurements as sensors start sensing
the magnetic field from each other’s axes, as shown in
Figure 3, where y-axis sensor is not aligned with its
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Figure 3. An example of misalignment. (Adapted from
(Foster and Elkaim, 2008))

respective body axis, causing it to sense some of z-axis’
magnetic field. They are represented here by the n x n
matrix C,,, whose elements are trigonometric functions
of the misalignment angles, namely p, from y-sensor to y-
axis, ¢, from z-sensor to z-z plane, and )\, from z-sensor
to y-z plane.

e Random Noise

Another error that corrupts magnetometers’ measure-
ments is the random noise. In this paper, noise is con-
sidered to have a zero-mean Gaussian distribution. It is
expressed as the n x n vector C,,.

e Hard and Soft Iron

The above mentioned error components are also present
in other sensors, such as accelerometers and gyroscopes.
However, two other elements appear when dealing with
magnetometers, namely, hard and soft iron errors, Ch;
(n x 1) and Cs; (n x n), respectively. The first is caused
by undesired magnetic fields produced by materials in
the sensor surroundings, such as electric circuits attached
to the same casing, or the navigation equipment itself.
In order to be considered a hard iron effect, the source
must be attached to the same frame as the sensor, so it
produces a constant contribution. On the other hand, soft
iron effects are produced by ferromagnetic materials, also
attached to the sensor frame, that interact with existing
magnetic fields, generating another magnetic field; this
relation is assumed to be linear.

Finally, accounting for each component, the measurement
error model is described as follows:

B = C,,,Cs5Cs;i(B + Chi) + Cp + C,, (1)

where B and B are the measured and uncorrupted mag-
netic field densities, respectively.

3. EXTENDED TWO-STEP CALIBRATION
METHOD

The calibration method implemented here, which is an
extension of Gebre-Egziabher et al. (2006), can be used
both for two- or three-axial magnetometers. Since there

are applications for 2D compasses, such as in maritime
navigation, both cases will be presented, starting with the
simplest.

3.1 Two-dimensional Calibration

The extended two-step technique is based on the idea
that a pair of leveled, uncorrupted magnetometers rotated
about the z-axis would produce outputs that, if plotted
together, would have the shape of a centered circle with
radius of Bj (total horizontal magnetic field density).
Equation 2 describes this relation:

Bj = B. + B}, (2)

where B, and B, are the uncorrupted (true) magnetic field
densities at z- and y-axes, respectively. However, the errors
described in Section 2 reshape that circle into a shifted,
rotated ellipse. Each effect can be observed in Figure 4,
where §Bj, stands for the combined effect of both biases
and hard iron errors Foster and Elkaim (2008). Notice,
however, that Gebre-Egziabher et al. (2006) attribute the
shifting effect exclusively to hard iron errors.

Therefore, it is clear that the ellipse parameters are di-
rectly related to the errors. Nevertheless, notice that some
error parameters are mathematically indistinguishable in
that sense, since they produce the same distortions on the
plotted ellipse. The shifting effect, for instance, is caused
by both biases and hard iron effects. Thus, in this paper,
they will be treated simply as biases (Cp). Conversely, the
distortions caused by soft iron effects are the same as those
produced by misalignments and scale factors. Therefore,
soft iron effects will be represented here as part of C,,, and
C,y. Lastly, as noise is considered to have a zero-mean,
Gaussian distribution, whose effect is smoothed over the
progression of the calibration method, it is not considered
in the estimation model.

Based on the preceding assumptions, the measured out-
puts are described as follows, where the x-sensor is con-
sidered to be aligned with body axis:
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Figure 4. Effects of error components on original circle.
(Adapted from (Gebre-Egziabher et al., 2006))



By = sfy(Bycos(p) + Bysin(p)) + by, (4)

The first step in the extended two-step calibration method-
ology consists of estimating the parameters that define the
shifted, rotated ellipse. Without loss of generality, geomet-
rical shapes can be represented by parametric models. In
this case, the ellipse is represented as a conic section. The
relation can be found, starting by solving (3) and (4) for
B, and B,, respectively, and plugging the results into (2),
yielding:

AB2+ BB,B,+ CB}+ DB, + EB,+ F =0, (5)

Notice that (5) is linear in terms of A, B,C, D, E, and
F, but not in terms of the actual error parameters
by, by, sfz, sfy, and p. Estimates of the former parameters
are found via a least squares algorithm, which requires
some adjustments to (5), as follows:

AT
C
B
C
(B2 B,B, B, B, 1] | 2 | = B2 (6)
E
C
F
L C

Next, all measurements are combined into matrix H, as
follows:

HxX=Y, (7)
with
ABDEF]"
X=|2_ == = , (8)
cCcccc
- - ~ 5 T
Y = [_Bil _Bgz Bik} ) 9)

H= (10)
B2, BuxBys Box By 1
where k is the epoch of each measurement taken.
Lastly, (11) is the least squares solution:
X =MH"H)'HTY (11)

where X are the estimated parameters that best fit the
ellipse. Notice that, in (Foster and Elkaim, 2008), there is
an error in the least squares equation, and the matrices H,
X, and Y are defined slightly differently. Finally, b, by,
5[z, Sfy, and p, are functions of A, B,C, D, E, and F', and
can be calculated either algebraically or numerically, as

long as By, is known. The latter is easily computed through
world magnet field models, as the US/UK World Magnetic
Model (WMM) and International Geomagnetic Reference
Field (IGRF) (Chulliat et al., 2015; Thébault et al., 2015).

3.2 Three-dimensional Calibration

The three-dimensional calibration follows the ideas de-
scribed in Section 3.1. However, instead of calculating the
parameters of an ellipse, defined as a conic section, the
objective now is to estimate the parameters of a shifted,
rotated ellipsoid, defined as a quadric surface. Firstly, the
parametrization of the z-axis’ measurements is necessary:

B, = sf.[B.cos(¢)cos(A\) + Bysin(¢)cos(N) (12)
+Bysin(\)] + b,
In addition, instead of taking the horizontal magnetic field
magnitude B as a reference, the total magnetic field
intensity By is necessary. The relation described in (13)
suggests, analogously to (2), that the magnitude of the
vectors B, By, and B, always falls onto the surface of a
sphere with radius B;:

Bf = B2 + B, + B? (13)
The ellipsoid whose parameters are to be estimated is
described by the quadric surface general equation (14).
Notice again, that there is a small typing error in this
equation at the original work by Foster and Elkaim (2008).

AB2 + BB,By, + CB,B. + DB: + EB,B. (14)
+FB?+GB, + HB, +IB, +J =0,

Again, the ellipsoid parameters are functions of the sought
error parameters, and the relation between them can be
found algebraically (or numerically). Finally, the same
solution for the 2D case is employed here, adapting H,
X, and Y, and using them for solving the least squares
problem of (11).

4. SIMULATED EXPERIMENTS

Before actual hardware implementation, simulations were
performed in order to confirm that the algorithm was
properly running, and to analyze its performance in the
expected scenario. Corrupted data were generated based
on the model from (1); the error parameters were set
in accordance with Honeywell HMC5883L datasheet, the
triaxial magnetometer used in Section 5.

4.1 Two-dimensional Calibration

In the first tested scenario, a 2D calibration was performed.
As mentioned before, this version of the technique is useful
when only two axes are available (or required). In this
case, sensors must be horizontally leveled and are rotated
about the z-axis. Accordingly, 3600 samples of corrupted
magnetometer measurements were generated at frequency
of 15Hz, while rotating in yaw with constant rate of 10°/s
; the error parameters corrupting the signal are given



in Table 1. Noise was defined as a zero-mean Gaussian
distribution with variance of 2mG? throughout this entire
section. Figure 5 shows the corrupted and corrected data,
and a reference circle with radius Bj,. Notice that the
corrupted data assume the shape of a shifted, rotated
ellipse, while the calibrated data lies on top of the expected
circle.

The correction displayed in Figure 5 was preceded by
the error parameters estimation, whose results are given
in Table 1. As can be inferred, satisfactory accuracy
was obtained with Foster and Elkaim’s method for two-
dimensional case.

4.2 Three-dimensional Calibration

For the three-dimensional simulation, 60000 samples were
generated at the same conditions of Section 4.1, except for
the error parameters, which are summarized in Table 2. In
addition, instead of one, 17 rotations in yaw, with different
initial roll and pitch angles were carried out (Figure 6).

The three-dimensional algorithm by Foster and Elkaim
(2008) was used, and the estimated error parameters
(jointly with their MSEs) are given in Table 2. After
compensating for the estimated errors, the corrected mea-
surements lie on top of the reference sphere, confirming
the procedure’s effectiveness (Figure 7).

In conclusion, the algorithm worked appropriately for
both cases, which enabled us to proceed to hardware
implementation.

Table 1. Two-dimensional calibration results
for simulated data

Error

component

Original

Estimated

MSE

Unit

by

by
sfz
sfy

p

45
10
0.98
1.09
-6

-44.9938
9.9994
0.9801
1.0898

-6.0305

3.8703x10~°
3.5101x10~7
8.7677x109
4.2450x10~8
2.8316x10~7

mG
mG
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Figure 5. This figure shows corrupted and corrected data,
in red and green, respectively. In addition, the ex-
pected uncorrupted circle is plotted in dark green.

Table 2. Three-dimensional calibration results
for simulated data

Error
component  Original  Estimated MSE Unit
ba 50 50.0045 2.0370x10—° mG
by -40 -39.9946 2.8869x10~° mG
b 20 19.9932 4.6853x10~° mG
Sfx 0.96 0.9604 1.6561x10~7  unitless
sfy 1.15 1.1496 1.3744x10~7  unitless
sf 1.11 1.1102 3.0309x10~8  unitless
p 3 3.0032 1.0181x10~5 °
1) -2 -1.9927 5.3474x10° °
A 6 6.0067 4.4481x107° °
200
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Figure 6. Generated corrupted measurements, in red, plot-
ted with the reference sphere of radius Bj;.
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Figure 7. Corrected measurements, in green, plotted with
the reference sphere of radius B;.

5. HARDWARE IMPLEMENTATION

In this section, the Integrated Circuit (IC) HCMS5883L
by Honeywell, containing a consumer-grade, triaxial mag-



netometer was used to validate the extended two-step
calibration technique. The measurements were sampled
at a frequency of 15Hz, which is the default option. The
IC built-in Analog-to-Digital Converter (ADC) offers a
12-bit digital resolution. Conversely, there is a trade-off
between magnetic field resolution and measurement range.
The default option (which was used) is 0.92mG/LSb and
+1300mG, respectively.

Since the extended two-step technique is intended to en-
able in-field calibration of magnetometers, with no equip-
ment or external source of heading, the rotation move-
ments were performed by hand. Two data sets were col-
lected, with the first one containing 17200 samples. Figure
8 displays the measurements and reference sphere.

After parameter estimation and algebraic computation,
the error parameters were obtained, as summarized in
Table 3. Figure 9 shows the corrected measurements,
successfully lying on top of the reference sphere, whose
radius was calculated via the WMM. Figure 10(a) displays
the difference between measured and expected magnitude,
before and after calibration.

Notice that, although the calibrated measurements stand
very close to the sphere of Figure 9 and have magnitude
near expected (Figure 10(a)), they do not present the same
uniformity as in the simulated cases. This is a result of
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Figure 8. Corrupted measurements of the first scenario, in
red, plotted with the reference sphere of radius B,
computed via the WMM.

Table 3. Three-dimensional calibration results
for real data, first scenario.

Error component  Estimated Unit
b 46.6374 mG
by -144.7348 mG
b 106.5259 mG
sfz 1.1401 unitless
sfy 1.0662 unitless
sfz 1.1102 unitless

p 0.9467 °

1) -3.4458 °

A 0.3638 °
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Figure 9. Corrected measurements of the first scenario, in
green, plotted with the reference sphere of radius By,
computed via the WMM.
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Figure 10. Difference between the magnitude of corrupted
and corrected measurements, and expected magni-
tude. (a) three-dimensional estimation, unrestricted
motion scenario. (b) three-dimensional estimation, re-
stricted motion scenario. (¢) two-dimensional estima-
tion, restricted motion scenario.

other errors, not considered in this model, including non-
deterministic and time-varying components, that affect
the magnetometers readings. However, such circumstances
require different estimation approaches, which are not the
focus of this work. Still, the method performed appropri-
ately for what it was intended, even with less samples than
in the simulated case.

The second data set was meant to represent a restricted
scenario where only limited motion is possible, such as
in a land, or maritime vehicle application. In this case,
the vehicle was supposed not being able to perform the
same rotations as in Figure 9. Even though this is beyond
the scope defined by the authors, we tested the three-
dimensional, extended two-step methodology for a scenario
where yaw is almost the only movement possible. Figure
11 shows the sampled data and the reference ellipsoid.

However, after calibration, measurements were not all ad-
equately corrected. Au contraire, the erroneous estimation
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Figure 11. Corrupted, restricted measurements, in red,
plotted with the reference sphere of radius B;, com-
puted via the WMM.

of the error parameters, especially for A (Table 4), caused
some measurements to become even more incorrect, as
displayed in Figure 12. Therefore, despite producing a
consistent result in terms of the leastsquares estimation,
the three-dimensional method seems to be appropriate
only for cases where rotation is not so restricted (Figure
10(b)). Although the algorithm was capable of finding a
reasonable fit with respect to By, the lack of data mislead
the parameter estimation, producing unreasonable esti-

mates as \ = 44.5829°.

Lastly, we assumed a two-dimensional magnetometer in
the restricted scenario, not considering measurements from
z-sensor, and we conducted calibration using the two-
dimensional algorithm of Section 3.1. Again, this test is
beyond the scope defined by Foster and Elkaim (2008),
since the data of the restricted scenario were sampled
while the sensor was being rotated by hand, and there
is no guarantee it was horizontally leveled at any point.
Figure 13 shows the 2D corrupted and corrected data
plotted with the reference circle, Figure 10(c) displays the
least squares performance with respect to By, and Table
4 contains the estimated parameters, which were close to
the ones obtained with the 3D technique (second scenario).
Therefore, for estimating the error parameters of z- and
y-sensors in the restricted scenario, the two-dimensional
algorithm seems to be appropriated, even without a precise
leveling.

Table 4. Calibration results for real data, sec-
ond scenario

Error
component 3D Calibration 2D Calibration Unit
by 42.1704 41.0439 mG
by 185.0259 185.2486 mG
b 75.1705 - mG
Sfa 0.8391 1.1050 unitless
sfy 0.7917 1.0486 unitless
sfz 0.0876 - unitless
p -2.4289 -2.4280 °
10 6.2294 - °
A 44.5829 - °©
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o 100
£
o 0
2
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Figure 12. Corrected, restricted measurements, in green,
plotted with the reference sphere of radius B;.
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Figure 13. Corrupted and corrected measurements, in red
and green, respectively, for z- and y-sensors, plotted
with the reference circle of radius Bj,.

6. CONCLUSIONS

In this paper, we revised the subject of magnetometer
calibration, which was defined as the scope of study. Error
models, suitable for calibration were defined and the cali-
bration procedures by Foster and Elkaim (2008) were thor-



oughly described, pointing a few mistakes in the original
paper. Results from simulated and hardware implementa-
tion of the calibration technique were proposed, evidencing
successful estimation of the expected error parameters
and subsequent correction of measurements, with degraded
performance for the restricted motion scenario introduced
here. In conclusion, the methodology by Foster and Elkaim
(2008) properly performed the calibration of the consumer-
grade HMC5H883L triaxial magnetometer, enhancing its
reliability, and making it more appropriate for applications
like integrated navigation.

For future studies, we consider relevant the implementa-
tion of the extended two-step technique for accelerometer
calibration, since Foster and Elkaim (2008) claimed it is
also applicable, although not tested (Menezes Filho et al.,
2020). In addition, finding analytical closed-form solution
mapping the ellipse/ellipsoid parameters to the actual er-
ror parameters would facilitate implementation and reduce
computational effort. !
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