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Abstract:
In this paper, we address the H∞ control problem for uncertain sampled-data systems rewritten
as hybrid systems. The conditions proposed are formulated as intervals to ensure stability and
design controllers that guarantee an upper bound for an associated H∞ norm. A numerical
example points out the main features of the proposed method.
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1. INTRODUCTION

In systems engineering, many control systems analysis
and design techniques are based on time-invariant mathe-
matical models. These models may not exactly represent
physical systems because of uncertainties due to the impos-
sibility of accurately estimating their parameters. Thus,
control systems must be robust with respect to such un-
certainties and guarantee stability and performance even
under the effect of external disturbances (Bhattacharyya
and Keel, 1995).

In the last decades, a popular performance measure has
been employed in optimal control theory: the H∞ norm
(Zhou et al., 1996). Its importance is twofold: in the
frequency domain, the H∞ norm represents the peak gain
of the Bode plot of the system; in the time domain, the
H∞ norm represents the worst-case L2 gain of the system.
Based on this performance index, several robust control
problems have been tackled (Başar and Bernhard, 2008).

Typical approaches to modelling uncertain systems yield
either polytopic (de Oliveira et al., 1999) or interval (Mao
and Chu, 2003; Zhang et al., 2006; Hong et al., 2006; Mao,
2004; Lee et al., 2006) dynamic models. Whilst polytopic
models typically yield less conservative results, the number
of vertices needed to model an uncertain system with
several independent uncertainties may become prohibitive.
As interval models only store the minimum and the maxi-
mum value of each uncertain entry in the system matrices,
such models allow us to deal with several uncertainties
efficiently.
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In this paper, our main goal is to design H∞ robust
sampled-data controllers for interval systems. H2 and H∞
control techniques for interval systems have been devised
in (Alves et al., 2019b,a) for both continuous and discrete-
time systems. These results have been extended to design
sampled-data controllers for interval systems, therefore the
discretised system is equivalent for the H2 case, and the
H∞ case is only an approximation. Thus, our approach
in this paper is to model the sampled-data control system
as a hybrid system (Goebel et al., 2009), which blends
continuous and discrete-time behaviour in its dynamics.
This approach allows us to deal with the H∞ control
problem.

1.1 Related Work

The H∞ control problem based on frequency and state-
space formulations has been considered by several scien-
tists. For example, the optimal solution for precisely known
problems can be determined by algebraic Riccati equations
(Zhou et al., 1996; Furuta and Phoojaruenchanachai, 1990;
Stoustrup, 1993). However, in many practical cases, the
system may present uncertainties and, thus, other methods
must be sought to ensure robustness to the control system
(Bhattacharyya and Keel, 1995). The literature is rich
in the area of robust control of interval and (the closely
related) polytopic systems. Following the remarkable ro-
bust stability result provided by Kharitonov’s Theorem
(Kharitonov, 1978; Ackermann, 1993), classic references
in the area of interval systems (Sezer and Šiljak, 1994;
Mansour, 1989; Delgado-Romero et al., 1997; Daoyi, 1985)
focused on devising simple tests and conditions for the
stability of an interval dynamic system. Stability condi-
tions for interval systems have been revisited and restated
in the linear matrix inequality (LMI) (Boyd et al., 1994)
framework in (Mao and Chu, 2003; Zhang et al., 2006),
in which other properties such as controllability are also
investigated; these new results are based on Petersen’s
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Lemma (Petersen, 1987; Shcherbakov and Topunov, 2008;
Ji and Su, 2016) for robust stability under norm-bounded
uncertainties. These LMI conditions provide a simple and
computationally efficient stability test for the interval sys-
tem and can be extended to design stabilizing controllers,
for instance. Even though these conditions were initially
published as necessary and sufficient for quadratic stability
and stabilizability of an uncertain system, it was later
verified that they are, in fact, only sufficient; the necessity
part implication of Petersen’s Lemma does not hold for
more than one norm-bounded uncertainty (Shcherbakov
and Topunov, 2008; Ji and Su, 2016; Yang and Lum,
2005; Mao and Chu, 2006). In the following papers (Hong
et al., 2006; Mao, 2004; Lee et al., 2006), robust condi-
tions H∞/H2 have been proposed in terms of LMIs for
continuous interval systems; as the results are based on
the Petersen’s Lemma these conditions are only sufficient.

Finally, sampled-data control for interval systems was
proposed in (Alves et al., 2019b,a), based on equivalent
discrete-time systems. These two papers present numerical
examples comparing interval and polytopic approaches,
demonstrating the interval conditions are numerically
more efficient, requiring fewer conditions and variables,
mostly for systems with a large number of uncertainties
independently. For the precisely known case, stability and
performance conditions for the sampled-data control of
LTI systems were proposed using hybrid models in (Souza
and Geromel, 2015; Geromel and Souza, 2015). These
results motivate the development of this paper.

1.2 Contributions of this Paper

In this paper, we rewrite the interval sampled-data control
system as a hybrid system, which allows us to devise
stability and stabilisation conditions considering also a
guaranteed H∞ performance. It is important to state that
this robust control problem could be addressed using poly-
topic models and affine Lyapunov functions. The main
drawback presented by this approach is the exponential
number of vertices: an interval matrix with m uncertain
(independent) entries can be represented by a matrix poly-
tope with 2m vertices, which means more constraints and
variables are required to assess its stability. Our conditions,
albeit more conservative, only need a constant number
of constraints and a polynomial number of variables and,
thus, they can be solved more efficiently even for large sys-
tems. Moreover, our conditions can be promptly extended
to consider time-varying uncertainties.

2. PRELIMINARIES

2.1 Notation

We now introduce some notation that shall be used
throughout the paper. The sets of natural, real, and non-
negative real numbers are indicated by N, R, and R+,
respectively. The set of real m× n matrices is denoted by
Rm×n and the set of n-dimensional real column vectors
is denoted by Rn. For any matrix X ∈ Rm×n, XT ∈
Rn×m denotes its transpose. Additionally, for any matrix
X = (xij) ∈ Rm×n, X > 0 (X ≥ 0) denotes that
xij > 0 (xij ≥ 0) for all i, j. For any symmetric matrix
X = XT ∈ Rn×n, X � 0 (X � 0) denotes that X is

positive definite (semidefinite). The set Sn is formed by all
symmetric matrices of order in Rn×n and Sn+ is formed by
all symmetric positive definite matrices of order in Rn×n.
He(X) means the sum of a matrix X with its transpose:
He := X +XT. For any two given matrices X,X ∈ Rm×n
such that X ≤ X, we define the interval matrix [X,X] as
the set

[X] =
[
X,X

]
:=
{
X ∈ Rm×n : X ≤ X ≤ X

}
, (1)

whose center and radius are defined as X0 := 1
2X + 1

2X

and as ∆X := 1
2X −

1
2X, respectively. We may also write

the matrix interval above as

[X] :=
{
X0 +

∑
i,j

eiδxijf
T
j : |δxij | ≤ ∆xij

}
, (2)

in which ∆xij = [∆X]ij , ei and fj are the i-th and the
j-th columns of compatible identity matrices. Uncertain
or arbitrary elements in a matrix interval are denoted
in bold. In the description of symmetric matrices, we
use the symbol ? to denote a block whose symmetric
correspondent is already described. Finally, the notation
ξ(t−k ) for tk ≥ 0, k ∈ N, given, indicates the limit of ξ(t)
as t goes to tk from the left.

2.2 Interval System

Let us consider the linear, time-invariant system

S :

ẋ(t) = Ax(t) +
[
B E

] [u(t)
w(t)

]
, x(0) = 0,

y(t) = Cx(t) + Du(t),
(3)

which evolves from zero initial condition and in which
x : R+ → Rnx is the state, w : R+ → Rnw is the
disturbance input, u : R+ → Rnu is the control input
and y : R+ → Rny is the output. In this article, S is said
to be an interval system, meaning that their realization
matrices A ∈ [A], B ∈ [B], E ∈ [E], C ∈ [C] and D ∈ [D]
are not precisely known. For simplicity, define the set

X = [A]× [B]× [E]× [C]× [D], (4)

which allows us to write the uncertainties in compact form
(A,E,B,C,D) ∈ X.

2.3 Petersen’s Lemma on Quadratic Stability

In this section, we present some relevant auxiliary results
for the main theoretical developments of this article. We
begin by the important matrix lemma stated by Ian
Petersen:
Lemma 1. [Petersen (1987); Shcherbakov and Topunov
(2008)]
Let G ∈ Sn, M ∈ Rn×p, and N ∈ Rq×n be given. The
inequality

G+M∆(t)N +NT∆(t)TMT ≺ 0, ∀t ∈ R+, (5)

holds for all ∆ : R+ → Rp×q such that ∆(t)T∆(t) � I for
all k ∈ N if, and only if, there exists ε > 0 such that

G+ εMMT + ε−1NTN ≺ 0. (6)

Unfortunately, this remarkable result cannot be extended
for several uncertain matrices without losing necessity; see
Ji and Su (2016) for a generalized necessary and sufficient
result for two uncertain matrices. The same drawback



exists in the S-procedure and, as there is a relationship be-
tween Petersen’s Lemma and the S-procedure, this might
be one way of justifying this fact (Shcherbakov and Top-
unov, 2008). As a consequence of this loss of necessity, the
results developed in Mao and Chu (2003) and in Zhang
et al. (2006), which made use of Petersen’s Lemma for
interval systems, are not necessary, as pointed out by Yang
and Lum (2005). Nevertheless, the conditions presented
in both papers are very interesting as they are based
on only one linear matrix inequality, which means they
can tackle even systems with a relatively large number of
uncertain parameters. As pointed out by Shcherbakov and
Topunov (2008), the conservativeness of such conditions is
acceptable in practice.
Remark 1. Petersen’s Lemma (Petersen, 1987) is based
on robust stability under norm-bounded uncertainties, it
can guarantee the stability for any realization in the in-
terval even for the time-varying system. As our main
results are heavily dependent on Petersen’s Lemma, the
same design conditions presented in this paper can deal
with interval time-varying uncertainties with no additional
assumptions.

2.4 Computation Resources

All the code in this paper was run on an HP computer
with Windows 10 64 bits operating system, AMD Ryzen 5
2500u, 2.00 GHz, and 16GB memory. Also, interval opera-
tions and functions are carried out with INTLAB (Rump,
1999), which is a computational package developed for
reliable interval computing that runs on MATLAB.

3. PROBLEM STATEMENT

This paper aims to propose a controller able to stabilise a
linear time-invariant uncertain system of the form S, (3),
with the sampled-data state-feedback control signal

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), k ∈ N. (7)

We also focus on minimising an upper bound µ > 0 for
the worst-case L2 gain

J∞(K) = sup
w(t)∈`2\{0}

∫∞
0
y(t)Ty(t)dt∫∞

0
w(t)Tw(t)dt

, (8)

which is an H∞-like performance index for S.

To solve this robust control problem, the LTI system S,
given in (3), together with the constraint on u imposed by
(7), can be recast as

H :


ξ̇(t) =

[
A B
0 0

]
ξ(t) +

[
E
0

]
w(t), ξ(0−) = 0

y(t) = [C D] ξ(t)

ξ(tk) =

[
I 0
K 0

]
ξ(t−k )

(9)

which is valid for all t ∈ [tk, tk+1), we assume the jump
rate is constant, that is tk+1 − tk = h. Note that the
equivalence between the hybrid linear system H given in
(9) and the original one is a result of the particular choice
of the augmented state vector ξ(t) = [x(t)Tu(t)T]T. To
simplify the augmented matrices, it can be considered the
following representation form

H :

 ξ̇(t) = AAA ξ(t) + EEEw(t), ξ(0−) = 0
y(t) = CCC ξ(t)
ξ(tk) = Kξ(t−k ).

(10)

For simplicity, as the uncertainties on H depend only on
the uncertainties of S, we write (AAA ,EEE ,CCC ) ∈ X. Moreover,
as before, we define the H∞ cost associated with H as

J∞(H) = sup
w(t)∈`2\{0}

∫∞
0
y(t)Ty(t)dt∫∞

0
w(t)Tw(t)dt

. (11)

4. HYBRID SYSTEMS STABILITY AND
PERFORMANCE

To devise sampled-data control conditions, we must first
analyse stability and performance conditions for the hybrid
model H. Then, we exploit the equivalence between S
under sampled-data control and H to provide robust
control design conditions.

We begin by stating the following result, which provides
stability and guaranteed H∞ performance for H. As we
shall see, this result, which is based on the developments
of (Souza et al., 2014), is still not computationally viable.
Lemma 2. Let H be an interval hybrid system with
(AAA ,EEE ,CCC ) ∈ X and let the scalar µ > 0 and the matrix K
be given. H is globally asymptotically stable and the perfor-
mance index defined in (11) verifies the bound J∞(H) < µ
for all (AAA ,EEE ,CCC ) ∈ X if there exists a matrix X(t) ∈ Snξ+
such that Ẋ + He(X(t)AAA ) ? ?

EEE TX(t) −µI ?
CCC 0 −I

 ≺ 0, (12)

[
X(h) ?
X(0)K X(0)

]
� 0 (13)

hold for all (AAA ,EEE ,CCC ) ∈ X for t ∈ [0, h].

Proof. Let us consider the Lyapunov candidate function v
given by v(t) = ξ(t)TP (t)ξ(t), t ∈ R+, in which P (t) =
X(t − tk) for t ∈ [tk, tk+1), k ∈ N. Let us first provide
a sketch of the proof of the stability part. For this, we
assume that the system evolves from a given ξ(0−) and
that w ≡ 0. For any t ∈ (tk, tk+1), it follows that

v̇(t) = ξ(t)T
(
Ṗ (t) + AAA TP (t) + P (t)AAA

)
ξ(t) < 0, (14)

from the first block of (12). Moreover, from (13), it follows
that

v(tk) < v(t−k ) (15)

holds for all k ∈ N. As pointed out in (Amorim et al.,
2018), these conditions ensure global exponential stability
for the dynamics of H.

Now, let us move our attention to the H∞ guaranteed
cost. Schur complement allows us to conclude that (12) is
equivalent to[

Ṗ (t) + He(P (t)AAA ) + CCC TCCC ?
EEE TP (t) −µI

]
≺ 0 (16)

Thus, this inequality implies that

v̇(t) < −y(t)Ty(t) + µw(t)Tw(t), (17)

holds for all t ∈ (tk, tk+1). Integrating this inequality in
this interval and remembering that v(t+k ) = v(tk) and that

v(t−k ) > v(tk), it follows that



∫ tk+1

tk

(
y(t)Ty(t)−µw(t)Tw(t)

)
dt < v(t−k )−v(t−k+1), (18)

is valid for all k ∈ N. Thus, as H is globally asymptotically
stable,∫ ∞

0

(
y(t)Ty(t)− µw(t)Tw(t)

)
dt < v(0−) = 0, (19)

which implies that µ is an upper bound for the H∞
guaranteed cost. The proof is complete.

The conditions stated in this lemma involve linear matrix
inequalities that depend on all realization matrices in X.
The following theorem provides a set of computationally
feasible conditions for the robust control design problem.
Theorem 1. Let H be an interval hybrid system with
(AAA ,EEE ,CCC ) ∈ X and let the scalar µ > 0 and the matrix
K be given. H is globally asymptotically stable and the
performance index defined in (11) verifies the bound J∞ <
µ for all (AAA ,EEE ,CCC ) ∈ X if there exist a matrix X(t) ∈
Snξ+ and positive scalars αij, i, j ∈ {1, · · · , nξ}, εij, i ∈
{1, · · · , nξ} and j ∈ {1, · · · , nw}, γij, i ∈ {1, · · · , ny} and
j ∈ {1, · · · , nξ}, such that (13) and
Ẋ(t)+He(X(t)A0)+M ? ? ? ? ?

ET0 X(t) −µI + T ? ? ? ?
C0 0 −I + U ? ? ?
Xa 0 0 −A ? ?
Xe 0 0 0 −E ?
Ic 0 0 0 0 −C

 ≺ 0,

(20)

hold for t ∈ [0, h], in which

M =
∑
i,j

∆a2ijαijeje
T
j , T =

∑
i,j

∆e2ijεijfjf
T
j , (21)

U =
∑
i,j

∆c2ijγijgig
T
i , (22)

Xa = [X(t) · · · X(t)]︸ ︷︷ ︸
nξ

T
, Xe = [X(t) · · · X(t)]︸ ︷︷ ︸

nw

T
, (23)

Ic =
[
Inξ · · · Inξ

]︸ ︷︷ ︸
ny

T
, (24)

A =diag
(
α11, · · · , α1nξ , · · · , αnξ1, · · · , αnξnξ

)
, (25)

E =diag
(
ε11, · · · , ε1nw , · · · , εnξ1, · · · , εnξnw

)
, (26)

C =diag
(
γ11, · · · , γ1nξ , · · · , γny1, · · · , γnynξ

)
, (27)

vectors ej, fj, gi are the j-th and i-th columns of identity
matrices of compatible dimensions and A0, E0 and C0 are
the center matrices of X.

Proof. Applying Schur Complement to (20), we obtain the
equivalent inequality

Ẋ(t) + He(X(t)A0) +M ? ?
ET0 X(t) −µI + T ?
C0 0 −I − U

+

+

nξ∑
i

nξ∑
j

(
α−1ij

[
X(t)ei

0
0

] [
eTi X(t) 0 0

])
+

+

nξ∑
i

nw∑
j

(
ε−1ij

[
X(t)ei

0
0

] [
eTi X(t) 0 0

])
+

+

ny∑
i

nξ∑
j

(
γ−1ij

[
ej
0
0

] [
eTj 0 0

])
≺ 0.

(28)

This inequality can be reorganized as follows:Ẋ(t) + He(X(t)A0) ? ?
ET0 X(t) −µI ?
C0 0 −I

+

+

nξ∑
i

nξ∑
j

∆a2ijαij

[
ej
0
0

][
ej
0
0

]T
+ α−1ij

[
X(t)ei

0
0

][
X(t)ej

0
0

]T+

+

nξ∑
i

nw∑
j

∆e2ijεij

[
0
fj
0

][
0
fj
0

]T
+ ε−1ij

[
X(t)ej

0
0

][
X(t)ej

0
0

]T+

+

ny∑
i

nξ∑
j

∆c2ijγij

[
0
0
gi

][
0
0
gi

]T
+ γ−1ij

[
ej
0
0

][
ej
0
0

]T ≺ 0.

(29)
Thus, by Petersen’s Lemma (Lemma 1), it follows that
(29) implies thatẊ(t) + He(X(t)A0) ? ?

ET0 X(t) −µI ?
C0 0 −I

+

+

nξ∑
i

nξ∑
j

He

([
ej
0
0

]
δaij

[
eTi X(t) 0 0

])
+

+

nξ∑
i

nw∑
j

He

([
0
fj
0

]
δeij

[
eTi X(t) 0 0

])
+

+

ny∑
i

nξ∑
j

He

([
0
0
gi

]
δcij

[
eTj 0 0

])
≺ 0,

(30)

holds for all |δaij | 6 ∆aij , i, j = 1, . . . , nξ; |δeij | 6
∆eij , i = 1, . . . , nξ, j = 1, . . . , nw; |δcij | 6 ∆cij , i =
1, . . . , ny, j = 1, . . . , nξ. Regrouping the terms in (30), we
can rewrite it in interval form as (12), which implies thatH
is globally asymptotically stable and the H∞ performance
bound holds. The proof is complete.

Remark 2. The conditions in Theorem 1, as they are
stated, are still not ready for optimisation, as they depend
continuously on t ∈ [0, h]. Nevertheless, their computa-
tional implementation as convex conditions is rather sim-
ple using piecewise linear functions as in (Allerhand and
Shaked, 2010) or as a Sum of Squares problem (Parrilo,
2000).

5. SAMPLED-DATA CONTROL OF INTERVAL
SYSTEMS

We now exploit the analysis results devised in the previous
section to propose sampled-data robust controllers for



interval systems with H∞ guaranteed performance. We
begin with the following lemma.
Lemma 3. Let S be an interval hybrid system with
(A,E,B,C,D) ∈ X and let the scalar µ > 0 be given.

There exists a feedback gain K̂ ∈ Rnu×nξ such that the
sampled-data feedback law (7) quadratically stabilises S
and ensures that J∞(K) < µ for all (A,E,B,C,D) ∈ X
if there exist matrices S(t) ∈ Snx+ , Z(t) ∈ Snu+ , L(t) ∈
Rnx×nu and W ∈ Snx+ , such that the linear matrix inequal-
ities−

[
Ṡ(t) ?

L̇(t)T(t) Ż(t)

]
+

[
He(AS(t)+BL(t)T) ?

LT(t)AT + ZT(t)BT 0

]
? ?[

ET 0
]

−µI ?[
CS(t) + DLT(t) CL(t) + DZ(t)

]
0 −I

 ≺ 0,

(31) S(h) ? ?
L(h)T Z(h) ?
S(h) L(h) W

 � 0, (32)

W ? ?
W S(0) ?

K̂ L(0)T Z(0)

 � 0, (33)

[
S(t) ?
L(t)T Z(t)

]
� 0, (34)

hold for all (A,E,B,C,D) ∈ X and t ∈ [0, h]. Further-
more, the quadratically stabilizing state-feedback gain is
given by K = K̂W−1.

Proof. This result is based on Lemma 1. First, applying a
congruence transformation in (12) with the matrixX(t)−1 ? ?

0 I ?
0 0 I

 (35)

and defining Y = X−1, it follows that (12) is equivalent to−Ẏ (t) + He(AAA Y (t)) ? ?
EEE T −µI ?

CCCY (t) 0 −I

 ≺ 0. (36)

Now, let us define the following partition of Y :

Y (t) =

[
S(t) ?
L(t)T Z(t)

]
. (37)

This partition allows us to rewrite (36) as (31). As (34)
holds, Y (t) � 0 for all t ∈ [0, h] and this implies that
X(t) � 0 on the same interval.

Now, take (33) and (34). Both can be rewritten equiva-
lently as

Y (h) � Y (h)

[
I
0

]
W−1 [I 0]Y (h) (38)

W−1 �
[
I KT

]
Y (0)−1

[
I
K

]
, (39)

respectively. Hence, combining both inequalities, we may
eliminate W and obtain (13), completing the proof.

As before, we now present computationally feasible condi-
tions for the design of our state-feedback controller.
Theorem 2. Let S be an interval hybrid system with
(A,E,B,C,D) ∈ X and let the scalar µ > 0 be given.

There exists a feedback gain K̂ ∈ Rnu×nξ such that the

sampled-data feedback law (7) quadratically stabilises S
and ensures that J∞(K) < µ for all (A,E,B,C,D) ∈
X if there exists matrices S(t) ∈ Snx+ , Z(t) ∈ Snu+ ,

L(t) ∈ Rnx×nu+ , W ∈ Snx+ and positive scalars αij, i, j ∈
{1, · · · , nξ}, εij, i ∈ {1, · · · , nξ} and j ∈ {1, · · · , nw}, βij,
i ∈ {1, · · · , nξ} and j ∈ {1, · · · , nu}, γij, i ∈ {1, · · · , ny}
and j ∈ {1, · · · , nξ}, δij, i ∈ {1, · · · , ny} and j ∈
{1, · · · , nu}, such the linear matrix inequalities (32), (33),
(34) and



−
[
Ṡ(t) ?

L̇T(t) Ż(t)

]
+

[
He(A0S(t)+B0L

T(t))+M ?
LT(t)AT

0 + Z(t)BT
0 0

]
?[

ET
0 0

]
−µI + T[

C0S(t) +D0L
T(t) C0L(t) +D0Z(t)

]
0

[ Snx 0 ] 0
[LTnx 0 ] 0
[ 0 Lnx ] 0
[ 0 Znx ] 0[
Sny 0

]
0[

LTny 0
]

0[
0 Lny

]
0[

0 Zny
]

0
[ Inw 0 ] 0

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

−I + U ? ? ? ? ? ? ? ? ?
0 −A ? ? ? ? ? ? ? ?
0 0 −B ? ? ? ? ? ? ?
0 0 0 −A ? ? ? ? ? ?
0 0 0 0 −B ? ? ? ? ?
0 0 0 0 0 −C ? ? ? ?
0 0 0 0 0 0 −D ? ? ?
0 0 0 0 0 0 0 −C ? ?
0 0 0 0 0 0 0 0 −D ?
0 0 0 0 0 0 0 0 0 −E


≺ 0,

(40)

in which

M =
∑
i,j

2(∆a2ijαijhih
T
i ) +

∑
i,j

2(∆b2ijβijhih
T
i ), (41)

T =
∑
i,j

(∆e2ijεijfjf
T
j ), (42)

U =
∑
i,j

2(∆c2ijγijgig
T
i ) +

∑
i,j

2(∆d2ijδijgig
T
i ), (43)

Snx = [S(t) · · · S(t)]︸ ︷︷ ︸
nx

T
, LTnx = [L(t) · · · L(t)]︸ ︷︷ ︸

nx

T
(44)

Lnx =
[
LT(t) · · · LT(t)

]︸ ︷︷ ︸
nx

T
, (45)

Znx = [Z(t) · · · Z(t)]︸ ︷︷ ︸
nx

T
, Lny =

[
L(t)T · · · L(t)T

]︸ ︷︷ ︸
ny

T
,

(46)

LTny = [L(t) · · · L(t)]︸ ︷︷ ︸
ny

T
, (47)



Sny = [S(t) · · · S(t)]︸ ︷︷ ︸
ny

T
, Zny = [Z(t) · · · Z(t)]︸ ︷︷ ︸

ny

T
, (48)

Inw = [Inx · · · Inx ]︸ ︷︷ ︸
nw

T
(49)

A =diag
(
α11, · · · , a1nx , · · · , αnx1, · · · , αnxnx

)
, (50)

E =diag
(
ε11, · · · , ε1nw , · · · , εnx1, · · · , εnxnw

)
, (51)

B =diag
(
β11, · · · , β1nu , · · · , βnx1, · · · , βnxnu

)
, (52)

C =diag
(
γ11, · · · , γ1nx , · · · , γny1, · · · , γnynx

)
, (53)

D =diag
(
δ11, · · · , δ1nu , · · · , δny1, · · · , δnynu

)
, (54)

hold for all t ∈ [0, h]; vectors hi, fj, gi are the i-th
columns of identity matrices of compatible dimensions.
The matrices A0, E0, B0, C0 and D0 are the center
matrices of X. Futhermore, the quadratically stabilizing
state-feedback gain is given by K = K̂W−1.

Proof. First, we apply Schur Complement and some al-
gebraic manipulations on (40). By Petersen’s Lemma
(Lemma 1), we can rewrite it in interval form as (31),

implying that u(t) = Kx(tk), with K = K̂W−1 makes
H quadratically stable and verifies the guaranteed perfor-
mance J∞ < µ. For more details, the proof of Theorem 1
presents methods similar to those used in Theorem.

6. NUMERICAL EXAMPLE

Consider the uncertain system (3) with realization matri-
ces taken from Example 2 of Wang and Michel (1994):

[A] =

[
1± 0.1 −1± 0.1
0± 0.05 4± 0.2

]
, E = B =

[
1
−1

]
.

The realization matrices C and D are given by

C = C =

[
I
0

]
, D = D =

0
0
1
0

 .
To design a sampled-data control law of the form (7)
with sampling period of h = 0.1s, we implement the
conditions of Theorem 2 approximating derivative as in
(Allerhand and Shaked, 2012), with 20 interior points, that
is, X(t) is a piecewise linear function with 20 evenly spaced
breakpoints in the interval [0, 0.1]. This procedure yields
the robust gain

K =
[
8.9735 20.8907

]
.

This design procedure required 1751 lines of inequalities
and 146 optimization variables and took 9.6489s to termi-
nate.

Table 1 shows J∞ guaranteed costs provided by Theorem 2
and by the analysis condition provided by Theorem 1. We
also validate these bounds by a Monte Carlo procedure.
In this example, we generate 50 thousand possible real-
izations and compute the closed-loop J∞(µ) performance.
For each system realization, we compute their norm using
Lemma 2, which is necessary and sufficient in the precisely
known case. We also simulate, for each realization, the
closed-loop response to a unit pulse input of 1 second using
the interval controller. Results obtained are displayed by
Table 2 and by Figure 1.

Table 1. Comparative table of closed-loop J∞
for the restriction of synthesis and analysis.

J∞(µ)

Guaranteed Synthesis 10.0300 (Theorem 2)
Guaranteed Analysis 5.5003 (Theorem 1)

Worst Case 5.0240 (Lemma 2)
Average 4.3718 (Lemma 2)

Std. Deviation 0.0022 (Lemma 2)

Table 2. Comparative table of closed-loop J∞
performance simulation achieved.

J∞(µ)

Worst Case 2.3932
Average Norm 2.1108
Std. Deviation 0.0004

Figure 1. Closed-loop response to a step input of 1 second
using the interval controller bounded H∞ norm. The
yellow and the blue lines are the means of the states
x1(t) and x2(t), respectively. The black lines bounded
the means by their standard deviations.

7. CONCLUSION

In this paper, we provide novel analysis and synthesis
techniques to verify stability and to design stabilizing
sampled-data controllers for uncertain linear systems. Our
approach is based on hybrid systems, allowing us to take
into accountH∞ performance, which was not possible with
equivalent models. A numerical example points out the
main features of the proposed methods. The prospects for
future accomplishments are to implement robust sampled-
data conditions for analysis and synthesis, considering
performances H∞/H2: state feedback (for H2), filtering,
and output feedback.
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