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Abstract: This article presents design conditions for gain-scheduled controllers with polynomial
dependence on the parameters for LPV systems. The technique is used to solve the problem
of controlling a quadruple tank considering variations in valve opening. First, the nonlinear
modeling of the system as well as an analysis of its characteristics are presented, and then an
approximation to the dynamics is proposed in terms of a LPV polynomial model. As main
contribution, a sufficient condition based on LMIs is proposed for the design of gain-scheduled
controllers by state feedback with performance criterion based on the H2 norm. The design
condition is general in the sense of treating LPV models with an arbitrary number of parameters
and degree of polynomial dependence. Simulations in three distinct scenarios are presented to
illustrate the design methodology and the quality of the controller designed for the quadruple
tank.
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Quadruple tank.

1. INTRODUCTION

Systems with two-input two-output (TITO) are the preva-
lent category of multiple-input multiple-output (MIMO)
systems in industry, because many real processes belong to
this class of systems or because more complex systems can
be decomposed in a TITO process with good decoupling
among their inputs and outputs.

The quadruple tank (QT), proposed in (Johansson, 2000),
is a TITO system extensively investigated due to its
characteristics (as multivariable process, coupling and the
positioning of the transmission zero). A schematic repre-
sentation of this system is presented in Figure 1. The QT
system presents a considerable coupling between channels
and has an adjustable transmission zero that can be either
minimum or non-minimum phase, depending on the open-
ing of the valves. If the sum of the percentage openings
regarding the lower tanks is greater than 1 (γ1 + γ2), the
system features a minimum phase zero. Otherwise, the
system has a non-minimum phase zero.

Various control techniques have been implemented in the
QT system, such as decoupled PI, internal model control
(IMC), model predictive control (MPC), sliding mode con-

trol, among others. In (Åström et al., 2002) a decoupled
PI structure is considered together with a static decou-
pling. In (Husek, 2014) decentralized PI controllers are
designed based on phase margin specifications. The work
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Figure 1. Schematic of a Quadruple Tank.

in (Gatzke et al., 2000) applies inner-outer factorization for
non-minimum phase internal model control. A distributed
model predictive control framework is proposed and ap-
plied to the quadruple tank in (Mercangöz and Doyle III,
2006), while in (Almurib et al., 2011) an offset-free model
predictive control is addressed. In (Li and Zheng, 2014)
an H∞ loop-shaping is applied to the QT system and an
analysis of the robustness of different control techniques
was performed in reference (Vadigepalli et al., 2001), con-
sidering IMC (Internal Model Control), PI (proportional
integral) and H∞. Other robust control techniques were
tested in the same plant, as in (Neves et al., 2016), which
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applies an LQG/LTR control, and in (Neves and Angélico,
2016), which works with dynamic decoupling and QFT
control for uncoupling uncertainties.

Dynamic systems affected by time-varying parameters
have attracted considerable interest in the last decades
in academic researches as well in industrial applica-
tions (Hoffmann and Werner, 2015; Mohammadpour and
Scherer, 2012; Palma et al., 2020b,a). One of the reasons
for this fact is that linear time-invariant (LTI) approxima-
tions sometimes can lead to poor performance in closed-
loop or even instability (Shamma and Athans, 1991).
Moreover, one of the main appeals of linear parameter-
varying (LPV) models is the ability to represent locally
nonlinear systems with more accuracy than standard LTI
models (Caigny et al., 2011; Tóth, 2010).

The purpose of this paper is to provide a new H2

gain-scheduled state-feedback synthesis conditions for
continuous-time LPV systems, with application in a QT
system. First, an LPV model is proposed to represent the
QT system, having as time-varying parameters the per-
centage opening of the two valves. Then, design conditions
solvable in terms of LMIs are provided as main contribu-
tion. The conditions allow to take into account bounded
rates of variation for the time-varying parameters, which
are specially suitable to deal with QT system. A numerical
experiment is given to illustrate the approach.

2. MODELING

The quadruple tank is formed by four interconnected
tanks. The system features two pumps (controllable in-
puts) that pour liquid through two valves, which divide
the liquid flow between tanks 1 and 4 (valve 1), and tanks
2 and 3 (valve 2) (Johansson, 2000). A schematic drawing
is shown in Figure 1.

The dynamic model is based on the mass balance in
each tank (Neves et al., 2016). Considering the schematic
presented in Figure 1, and applying mass conservation in
each tank, it is obtained the nonlinear model
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2gh3 +

γ1k1v1
A1
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A4

,

where, ki and vi are the gain and the input voltage, hi,
ai and Ai are the liquid level, the output hole area and
the section area of the tank i, respectively. Besides, γi
represents the percentage opening of the i-th valve. The
values of all parameters are informed in the Table 1.

When the system is linearized at an operation point
(hop, vop), the following linear model is obtained

ẋ(t) = A(x(t)− hop) +B(u(t)− vop),

where, hop = [h1op h2op h3op h4op]
>

and vop = [v1op v2op]
>

.
Besides, the operation point has to satisfy the following
system of equations

Table 1. Quadruple tank parameters.

Parameter value

g Gravity acceleration [cm/s2] 981
k1,k2 Pump constant [cm3/s] 5.5556
a1,a2 Output hole area [cm2] 0.15
a3,a4 Output hole area [cm2] 0.071
A1,A2 Section area [cm2] 32.1699
A3,A4 Section area [cm2] 28.2743 γ1k1

A1

(1 − γ2)k2

A1
(1 − γ1)k1

A2

γ2k2

A2

[v1op
v2op

]
=

a1
√

2gh1op

A1

a2
√

2gh2op

A2

 , (1)

and

h3op =
((1− γ2)k2)2

2a23g
v22op, (2)

h4op =
((1− γ1)k1)2

2a24g
v21op. (3)

Thus, it is possible to determine the operation point of the
interest variables (h1op and h2op), by computing vop using
the Eq. (1), and then computing h3op and h4op using the
Eqs. (2) - (3).

The operation of the tank depends on the opening of the
valves, as shown in (Johansson, 2000). Depending on the
sum γ1 + γ2, its operation has certain characteristics. For
instance, if γ1 + γ2 = 1, the system is singular.

To show the influence of γ1 and γ2 on the system, a
simulation is performed. We set γ1 = γ2 = 0.65 and the
voltages applied to the pumps were considered necessary
to maintain h1 = 10cm and h2 = 10cm, that, from Eq. (6),
are equal to v1 = v2 = 3.7819 V. Then, from Eqs. (7) - (8),
one can see that h3op = h4op = 5.4677cm. The simulation
presents the system in the situation previously described,
then (at the instant t = 20s) γ2 was changed from 0.65 to
0.7, resulting in the output shown in Figure 2.
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Figure 2. Tank levels considering a small disturbance in
γ2.

As can be seen, a small variation in γ2 causes a significant
difference in the outputs. This behavior can happen in
practical situations due to several factors, for example, it
is possible that the valve starts to clog, an error occurs in



the valve opening control, or the valve has a mechanical
break, among many other factors. For this reason, a time-
varying control law, adapted online according to the values
of γ1 and γ2, is considered to control the quadruple tank
system.

2.1 LPV model

The LPV model considers γ1 and γ2 as time-varying
parameters. Thus, considering the operation point 1

hop = [10 10 5.4677 5.4677]
>
,

vop = [3.7819 3.7819]
>
,

the matrices of the linear system approximation are

A =

−0.033 0 0.021 0
0 −0.033 0 0.021
0 0 −0.024 0
0 0 0 −0.024

 , (4)

B(γ1, γ2) =

 0.173γ1 0
0 0.173γ2
0 0.197(1 − γ2)

0.197(1 − γ1) 0

 . (5)

The LPV approximation, calculated in this form, has
only the matrix B(γ1, γ2) with time-varying entries, being
written as

B(γ1, γ2) = B0 + γ1B1 + γ2B2.

3. CONTROLLER SYNTHESIS

Although the motivation of the proposed control approach
is the QT system, the synthesis conditions are formulated
for a general continuous-time LPV system with an arbi-
trary number of time-varying parameters.

Consider the following LPV system

ẋ = A(ρ(t))x+Bu(ρ(t))u+Bw(ρ(t))w,

z = C(ρ(t))x+Du(ρ(t))u,
(6)

where x(t) ∈ Rnx , u(t) ∈ Rnu , w(t) ∈ Rnw and z(t) ∈ Rnz

denote, respectively, the state, control input, exogenous in-
put and output vectors. Besides, ρ(t) is a vector of bounded
time-varying parameters and matrices A(ρ(t)), B(ρ(t)),
Bw(ρ(t)), C(ρ(t)) and D(ρ(t)) depend polynomially on
ρ(t).

The parameters ρ(t) = [ρ1(t), . . . , ρN (t)] and their time-
derivatives are assumed bounded in the form

ai ≤ ρi(t) ≤ ai
bi ≤ ρ̇i(t) ≤ bi

such that ρ(t) belongs to the hyperrectangle Θ and ρ̇(t)
belongs to the hyperrectangle Γ to all t ≥ 0 (Apkarian
and Adams, 1998).

Next theorem presents synthesis conditions formulated
in terms of parameter-dependent LMIs for the design of

1 The operation point was calculated considering average values of
γ1 and γ2, i.e., on average, γ1 = 0.65 and γ2 = 0.65.

K(ρ(t)) associated to the state-feedback control law u(t) =
K(ρ(t))x(t).The notation He(M), is used to indicate M +
M>.

Theorem 1. Let ξ ∈ (−1, 1) be a given scalar. If there exist
parameter-dependent matrices W (ρ) = W (ρ)>, H(ρ) =
H(ρ)>, Y (ρ), X(ρ) and Z(ρ) and a scalar µ > 0 such that
the following parameter-dependent LMIs

µ > Tr(H(ρ)) (7)[
H(ρ) Bw(ρ(t))>

? W (ρ)

]
> 0, (8)Ξ(1, 1) Ξ(1, 2) Ξ(1, 3) V̄ (ρ)

? Ξ(2, 2) ξΞ(1, 3) −V̄ (ρ)
? ? −I 0
? ? ? −He(X(ρ))

 < 0,

(9)

where

Ξ(1, 1) = W (ρ) + He(Ã(ρ)Y (ρ) +Bu(ρ)Z(ρ)), (10)

Ξ(1, 2) = ξ(Ã(ρ)Y (ρ) +Bu(ρ)Z(ρ))

−Y (ρ)>Â(ρ)> − Z(ρ)>Bu(ρ)>,

Ξ(1, 3) = Y (ρ)>C(ρ)> + Z>(ρ)Du(ρ)>

Ξ(2, 2) = −W (ρ) − ξHe(Â(ρ)Y (ρ) +Bu(ρ)Z(ρ)),

Â(ρ) = A(ρ) +
1

2
I, (11)

Ã(ρ) = A(ρ)) −
1

2
I, (12)

V̄ (ρ) = −Ẇ (ρ) +
1

2
X(ρ), (13)

hold for all ρ ∈ Θ and ρ̇ ∈ Γ, then K(ρ) = Z(ρ)Y (ρ)−1 is
a robustly stabilizing parameter-dependent state-feedback
gain and µ is an H2 guaranteed cost for system (6) in
closed-loop.

Proof. First it is shown that ξ can be constrained to the
range (−1, 1) without loss of generality 2 . Multiply (9) on
the left by B>⊥ and on the right by B⊥, with

B⊥ =

 ξI 0 0
−I 0 0
0 I 0
0 0 I

 ,
yielding (ξ2 − 1)W 0 (ξ + 1)V̄

0 −γI 0
(ξ + 1)V̄ > 0 −X −X>

 < 0,

which is feasible only if (ξ2 − 1)W is negative definite. As
W is positive definite, then it is necessary that −1 < ξ < 1.

As next step, multiply (9) on the left by AT
⊥ and on the

right by A⊥, with

A⊥ =


Â> +K>B>u C> +K>D>u 0

Ã> +K>B>u C> +K>D>u 0
0 I 0
0 0 I

 ,
which provides

2 The dependence of the variables on ρ is omitted to save space.



ÂWÂ> − ÃWÃ> ? ?

C̄W (Â− Ã)> −I ?

V̄ >(Â− Ã)> 0 −He(X)

 < 0.

Using the definitions given in (11)-(13), the previous
inequality can be rewritten in the formWA>cl +AclW WC>cl −Ẇ +

1

2
X

CWcl −I 0

−Ẇ +
1

2
X> 0 −X −X>

 < 0, (14)

where, Acl = A+BuK, Ccl = C +DuK.

Multiplying last inequality on the left by CT⊥ and on the
right by C⊥, with

C⊥ =

 I 0
0 I
1

2
I 0

 < 0,

provides [
WA>cl +AclW − Ẇ WC>cl

CclW −I

]
< 0, (15)

which can be recognized as the observability Grammian
formulated in terms of an inequality for a continuous-time
LPV system (Sznaier, 1999). Conditions (15), (7) and (8)
assures that K(ρ) = Z(ρ)Y (ρ)−1 is a stabilizing gain and
µ is an H2 guaranteed cost for the closed-loop system.

Finally, to show that matrix Y is invertible, note that
feasibility (9) assures that Ξ(1, 1) < 0, which implies that

W + He((Ã+BuK)Y ) < 0⇒

⇒ He((Ã+BuK)Y ) < −W < 0

As a consequence, Y has full rank. �

The novelty of the synthesis conditions of Theorem 1 is
that the scalar parameter ξ is constrained to the range
(-1,1). Other conditions from the literature (Xie, 2005;
Tognetti et al., 2010), which also employ the search on
a scalar to improve the guaranteed costs, do not present
bounds for the scalar. This is an advantage of the proposed
condition. Besides, to the best of the authors’ knowledge,
the treatment of the time-derivative term is new. This
technical novelty is necessary to provide the bounds for
ξ.

The conditions of Theorem 1 are parameter-dependent
LMIs, which are not numerically tractable. However, im-
posing polynomial structures of fixed degree for the opti-
mization variables, it is possible to find solutions by apply-
ing sufficient polynomial positivity tests for the resulting
polynomial matrix inequalities. Note that the control gain
will be a rational function of ρ, depending on the degrees of
the variables Z(ρ) and Y (ρ). In the experiment presented
next, all optimization variables were fixed as polynomials
of degree one on both γ1 and γ2. The tasks of programming
and solving the inequalities can be performed with the
parsers Yalmip and ROLMIP (Agulhari et al., 2019), and
a SDP solver, like Mosek (Andersen and Andersen, 2000).

Back to the tank quadruple problem, using the matrices
given in (4), (5) and

C = diag(0.5 0.5 10−4 10−4),

Du = diag

(
1

12

1

12

)
,

and considering that

0.55 ≤ γ1 ≤ 0.75, 0.55 ≤ γ2 ≤ 0.75, (16)

−0.05 ≤ γ̇1 ≤ 0.05, −0.05 ≤ γ̇2 ≤ 0.05, (17)

it is possible to construct the matrices given in (14)
considering ρ1 = γ1 and ρ2 = γ2. Applying the condition
of Theorem 1 with a scalar search among the values

ξ = [−0.9 −0.8 . . . 0.8 0.9 ] ,

a guaranteed cost of µ = 1.0035 with ξ = 0 has been
obtained. The resulting gain is given by

K(ρ1, ρ2) = Z(ρ1, ρ2)G(ρ1, ρ2)−1,

and must computed in real-time once the values of ρ1 and
ρ2 are available.

4. NUMERICAL RESULTS

To evaluate the performance of the proposed gain-
scheduled control strategy, the same conditions of the
previous simulation were considered, but assuming that
γi, i = 1, 2 are time-varying in the form

γ1(t) = 0.65 + 0.1 sin(0.1t),

γ2(t) = 0.65− 0.1 sin(0.1t),

which satisfy the bounds informed in (16) and (17).

The first simulation considers only the variations of γi with
null initial condition and no external disturbances. The
levels of the tanks and the control effort are presented in
Figures 3 and 4, respectively.
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Figure 3. Tank levels for time-varying γ1 and γ2.

As next experiment, the system is tested with the following
initial conditions

hic = hop + [4 −4 0 0]
>
.

The results are shown in Figures 5 and 6.
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Figure 4. Control effort for time-varying γ1 and γ2.
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Figure 5. Tank levels for time-varying γ1 and γ2 and initial
condition h1 = h1op + 4 and h2 = h2op − 4.
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Figure 6. Control effort for time-varying γ1 and γ2 and
initial condition h1 = h1op + 4 and h2 = h2op − 4.

Finally, consider the existence of an external disturbance
in the plant output, as shown in Figure 7. The results are
presented in Figures 8 and 9.

As can be observed, in all simulations the proposed LPV
controller presented a good performance, keeping the out-
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Figure 7. Additional disturbance in the plant output.
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Figure 8. Tank levels for time-varying γ1 and γ2 with
additional disturbance in the plant output.
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Figure 9. Control effort for time-varying γ1 and γ2 with
additional disturbance in the plant output.

put at the desired operation point, even with variations
in the inlet flows, when the system started with non zero
initial conditions and with external disturbances.



5. CONCLUSION

This paper presented a model approximation that resulted
in a pure LPV representation for the quadruple tank. This
model considers the percentage opening of the two valves
as bounded time-varying parameters with bounded rates
of variation.

Then a gain-scheduled H2 state-feedback control synthesis
condition was proposed to address the LPV model used to
represent the plant. The controller showed good results for
γi varying within the assumed limits.

The proposed synthesis conditions are not limited to the
QT model, treating any LPV model with polynomial
dependence on the time-varying parameters.

Future work includes the practical experiment and the
model extension to obtain a complete LPV model, without
the approximation of the average operating point.
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Brasileiro de Automática, 4118–4125. Bonito, MS.
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