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Abstract: This work proposes an interpretable machine learning approach to diagnose
suspected COVID-19 cases based on clinical variables. Results obtained for the proposed models
have F-2 measure superior to 0.80 and accuracy superior to 0.85. Interpretation of the linear
model feature importance brought insights about the most relevant features. Shapley Additive
Explanations were used in the non-linear models. They were able to show the difference between
positive and negative patients as well as offer a global interpretability sense of the models.
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1. INTRODUCTION

The Corona Virus Disease, better known as COVID-19,
has gained humanity’s attention since the first reports of
its occurrences in Wuhan, Hubei province, China Andersen
et al. (2020). In March 2020, the World Health Organiza-
tion (WHO) declared the COVID-19 to be a pandemic out-
break WHO (2020b). According to the Situation Report
153 from the WHO WHO (2020a), over 8 million people
has been infected and nearly half a million deceased, up to
June 2020.

Due to the fact of the COVID-19 highly contagious na-
ture, governments saw the need to implement policies
for social distancing, quarantine, and lock-downs. These
events brought serious health and economic challenges to
several countries, and Brazil was no exception. There is an
urgent need to test the majority of the population in order
to assist federal and local government’s decision making.
Due to limited resources, COVID-19 tests are restricted to
healthcare professionals and people with severe conditions,
hence not reaching the vast majority of the population.

Since the 1990s, diagnostic medicine has been taking ad-
vantage of Machine Learning Singh et al. (2019). Advances
in technology provided faster, easier and realible ways of
applying machine learning in several fields of medicine such
as diagnostic of respiratory diseases Amaral et al. (2012),
diabetes Zou et al. (2018) and cancer Liu et al. (2017).
However, in areas such as Finance, Government, and
Medicine, the need to explain and interpret the predictions

of a model has become a pressing issue. Understanding
the reasons behind a model prediction or understanding
the model itself can guide a more reliable and trustworthy
development of artificial intelligence in these areas Tjoa
and Guan (2019). Several interpretability methods have
been proposed over the last few years. Some remarkable
approaches are agnostic models that can explain deep
learning predictions and used to explain cancer diagno-
sis through images Palatnik de Sousa et al. (2019) and
intrinsically interpretable models, such as a fuzzy model
that can build a rule set to predict lung cancer with liquid
biopsy variables Potie et al. (2019).

This novel proposes an interpretable machine learning
approach to diagnose COVID-19 on suspected cases from
the Hospital Israelista Albert Einstein. Interpretation will
be carried out by analyzing the feature importance of
a linear model and explaining the non-linear models’
predictions using the Shapley Additive Explanations. The
sections ahead are divided into COVID-19 Symptoms and
Diagnosis, Methods, Experimental Assessment, Results,
Interpretation of Results, and Conclusion.

2. COVID-19 SYMPTOMS AND DIAGNOSIS

COVID-19 presents varied clinical specifics, from asymp-
tomatic to Acute Respiratory Distress Syndrome (ARDS).
The typical clinical features of this disease are fever, which
is the most common symptom among mild to moderate
cases. The cough was the second most common symptom
observed in recent studies Huang et al. (2020). Also, loss
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of smell may, therefore, be a strong predictor of COVID-
19 infection. Other symptoms reported include headache,
rhinorrhea, sore throat, and fatigue. Chest pain and tight-
ness were reported. Varied gastrointestinal reactions were
mentioned, including diarrhea, nausea, vomiting, poor
appetite, and anorexia. Ocular reaction, skin rash, and
conjunctivitis have also been described. Thus, they are
indistinguishable from other respiratory infections. In a
subset of patients, by the end of the first week, the disease
can progress to pneumonia, respiratory failure, and death
Singhal (2020).

Rapid and accurate detection of COVID-19 is essential to
control outbreaks in the community and hospitals. Cur-
rent diagnostic tests for corona virus include the reverse-
transcription polymerase chain reaction (RT-PCR). In
the laboratory, the amplification of the genetic material
extracted from the patient’s saliva or mucus sample is
through the RT-PCR, which is the synthesis of a double-
stranded DNA molecule from an RNA mold. Once the ge-
netic material is satisfactory, the search is for those regions
of the genetic code of the CoV that are conserved Cascella
et al. (2020). In case of a positive result, it is suggested
that the test is repeated for affirmation. In patients with
confirmed COVID-19 diagnosis, the laboratory evaluation
should be repeated to evaluate for viral clearance before
being released from observation. However, the availability
of testing will vary based on which country a person lives
in with increasing availability occurring nearly daily Zhai
et al. (2020).

Furthermore, Serological testing for SARS-CoV-2 is now
becoming widely available. Serum samples should be
screened for the presence of COVID-19 virus-specific an-
tibodies using serological essays Krammer and Simon
(2020). Serological testing may be carried out using
enzyme-linked immunosorbent assay (ELISA), immunoflu-
orescence (IFA) or, in case of limited lab capacity, Rapid
Diagnostic Tests (RDT). The RDT is becoming an es-
sential tool for the early diagnosis of SARS-CoV-2, par-
ticularly in situations with limited access to molecular
methods Porte et al. (2020). Despite the various antibody
tests designed, to this date, the serologic diagnosis has
limitations in both specificity and sensitivity. Serologic
essays, however, can have a crucial role in broad-based
surveillance of COVID-19 Cascella et al. (2020).

Until now, there is no specific antiviral treatment that
has been proven to be useful for COVID-19. Also, there
is no vaccine available. Non-invasive (NIV) and invasive
mechanical ventilation (IMV) may be required in cases
of respiratory failure refractory to oxygen therapy Huang
et al. (2020). Therefore, diagnostic testing is critical to an
effective response to the novel coronavirus, and intensive
care is needed to deal with complicated forms of the disease
to avoid further aggravations Cascella et al. (2020).

3. METHODS

Three models were chosen to access the COVID-19 pre-
diction problem: Random Forest, Support Vector Machine
(SVM) and the Logistic Regression.

To address the interpretability analysis, Shapley Additive
Explanations (SHAP) method will be used on the non-

linear classifiers and the logistic regression features weights
will be evaluated separately.

3.1 Logistic Regression Classifier

The Logistic Regression is one of the most used models for
classification tasks over the last decades Fan et al. (2019).
One major advantage of this model is its intrinsically
interpretable nature, since the it fits the input features into
linear a regression problem. The decision of the model is
given by:

p(t) =
1

1 + e−t
(1)

t = β0 + β1x1 + β2x2 + ...+ βnxn (2)

If for a given feature x1 there is a β1 weight, for another
feature x2 there is a weight β2 and β1 is ten times
greater than β2, it is reasonable to say that the feature
x1 is considerably more important to the decision of the
model. That is, x1 will have ten times more impact than
x2. Therefore, it is possible to make sense of a global
feature importance by analysing the values of the β feature
weights.

3.2 Random Forest

The Random Forest Classifier is Random Forest (RF) is an
ensemble strategy that assembles and compounds several
base decision trees Breiman (2001).It can be used both for
regression and for classification problems. In the former,
RF outputs the class that is the majority of the class’s
output by individual trees, while in the later, it presents
the mean of the individual trees results. It employs the
bootstrap aggregation (bagging) that helps to alleviate
the variance by calculating the average of many decision
trees, which present low bias, and at the same time, they
are still able to capture complex interaction structures in
data. Breiman (1996) also observed that in an ensemble of
decision trees, the trees were deeply correlated, as long as,
in the tree-growing procedure, the algorithm could select
any of the available features. Hence, the random selection
of features decreases the correlation between the trees.
Notably, in the process of building an individual tree on
a bootstrapped dataset, before each split, a subset of m
≤ p of the p input features is designated at random as
candidates for inferring the best split of the training set.

Random Forest is fast to train and execute and achieves
state-of-the-art performance. It can handle high dimen-
sion input vectors and offers an internal assessment of
the generalization error as forest-building advances. In
addition, another critical virtue is the capacity to build
feature importance plots. At each split in each tree, the
algorithm records the improvement in the split criterion
as an importance score associated to the splitting variable.
These importance scores are compiled over all the trees
in the forest separately for each input, and can also be
employed as a feature selection method by choosing the
features with higher scores in the importance plots.



3.3 Support Vector Machine

The basic principles from which Support vector machines
(SVM) were conceived were established by statistical
learning theory Vapnik (2000) . Considering a binary, lin-
early separable classification problem, SVM provides a de-
cision boundary that is hyperplane with optimal geometric
margin from the classes, which in turn, presents the highest
generalization capacity. This conception can be extended
to a nonlinear separable problem by applying an artifice is
called a ”kernel trick.” There is a wide variety of kernel
functions, in order to explore different linear and non-
linear relationships, for example, polynomial, Gaussian
and hyperbolic. This scheme transforms the data into a
new high-dimensional space, where one expects the classes
to be effortlessly separable. Albeit the decision surface is
a hyperplane in the high-dimensional space, when it is
examined in the primary feature space, it is no longer a hy-
perplane, indicating that SVM can also be employed when
data that is not linearly separable. In order to address
the issue of patterns that are not so easily separable, the
SVM can have a soft-margin implemented. That is, as the
sample moves across the decision boundary, a loss function
assigns an uncertainty value to its prediction Chang and
Lin (2011).

3.4 Shapley Additive Explanations

In order to address the interpretability of models, Lund-
berg and Lee (2017) proposed the Shapley Additive Expla-
nations (SHAP) as a local explanation to single predictions
or a group of predictions.

This method main advantage is its ability to explain any
predictor by assigning features of samples a score (SHAP
value), based on their participation in the prediction
task. SHAP specifies the explanation Molnar (2020) for
a prediction as:

g(x′) = φ0 +

M∑
n=1

φnx
′
n (3)

Where φ are the weights (SHAP values) for each feature
of each sample.

The SHAP values estimation steps are the following:

(1) Randomnly choose some features in samples and
replace for a random value

(2) Get the prediction for each modified sample
(3) Compute the SHAP values with the SHAP Kernel or

SHAP Tree

A Kernel SHAP Explainer, fits a linear model for every
prediction of a given dataset. This Kernel aims to optimize
the following loss equation:

L(f, g, πx) =
∑

[f(hx(z′)) − g(z′)]2πx(z′) (4)

The πx term is a compliant weighting strategy that assigns
higher values to predictions that depend on lesser features
or at almost all of them Molnar (2020).

The SHAP Tree Explainer is a simplified version of the
SHAP Kernel and can only be used with tree based

methods Lundberg et al. (2020). This is a faster way of
calculating SHAP values, since no linear models is fitted.
The SHAP values are calculated by the change in the
conditional expectation of all features given a subset of
features. In other words, this calculation ignores the nodes
of features that are not present in the sample subset and
calculate change on the conditional expectation, given this
subset sample.

4. EXPERIMENTAL ASSESSMENT

In this section, the specific procedure of applying the
methods mentioned above is presented with more technical
details. The main steps consisted of data acquisition, pre-
processing, feature selection, model selection, and interpre-
tation of models and predictions. All the algorithms imple-
mented were built-in Python 3.7, and code is available at
the url: www.github.com/ lucasthim/covid19-prediction.

4.1 Data Acquisition

The experiment was executed with data provided by the
Hospital Israelita Albert Einstein (São Paulo, Brazil),
through a charitable Kaggle competition, and it is avail-
able at www.kaggle.com/einsteindata4u/covid19.

Since the primary goal was to help Brazil fight the COVID-
19 pandemic, there was no prize, and no leaderboard with
top results was present. The major competition tasks were
to confirm suspected cases and also predict admission to
the general ward, semi-intensive unit or intensive care unit
among confirmed COVID-19 cases.

The database consisted of clinical spectrum data of 5647
suspected COVID-19 cases that were admitted to the
hospital during March of 2020. Initially, there were a total
of 107 features in the database and a flag identifying the
result of the COVID-19 exam. The features comprised of
blood, pressure, urine and hormonal tests, age, and the
presence of other diseases such as other types of corona
virus and influenza.

All the features were already normalized with mean equal
to zero and standard deviation equal to one. Therefore, the
real sense of the range of the variables was lost, especially
for the age.

Despite having plenty of features, most of them had
missing values in over 80% of the entire database. It
happens because the data was a gathering of different
clinical trials performed by several different doctors under
diverse circumstances. Thus, by not having a mandatory
clinical trial script, each doctor requested the most suitable
exams and tests for their patients under their care.

4.2 Pre-processing

Since there was no prior knowledge about the original
nature and range of each feature, deleting missing data was
performed without imputing or replacing any value. Fea-
tures (columns) with over 90% missing data were dropped,
and patients (rows) with over 10% of missing data. Also,
features containing only one value were removed. The goal
of this step was to eliminate most of the missing values,



but keeping as many features from different natures as
possible, i.e., from blood tests, urine, diabetes, etc.

Thereby, a database with 362 patients and 28 features was
obtained with no missing values. Among those, approxi-
mately 10% of the suspected cases are indeed a positive
confirmation of COVID-19. These features consisted of
age, blood test variables, and also disease exams.

As mentioned, there was no prior knowledge about the
real values of the features; hence they were normalized
with a maximum value of 1 and a minimum of 0. Thus,
it is possible to have a better sense of the feature’s limits.
This last step was essential to help interpret the models
and the predictions.

4.3 Feature Selection

First, a linear correlation analysis was done to eliminate
highly correlated features. Then, a feature selection pro-
cess was implemented with the Recursive Feature Elimi-
nation (RFE) Guyon et al. (2002).

The RFE consists of ranking features based on a chosen
type of feature importance and recursively eliminating the
least important features. This process is done until no more
features can be removed, and a subset of features is chosen
based on the grouping with the highest ranking.

To mitigate the effect of feature interactions and also
variance in data, the RFE was executed with a 5-fold
Cross-Validation, and the optimal set was chosen based
on the average of all folds.

4.4 Model Selection

Several hyper-parameter values were tested using a 10-fold
cross-validation for the SVM, Random Forest and Logistic
Regression. The chosen metric for hyper-parameter tuning,
as well as scoring the RFE process, was the F-2 measure.

Given the nature of the COVID-19 infectious spread, it
is important that the subject tested positive remains in
social isolation and under quarantine as long as necessary.
A false positive case that stays under quarantine until the
suspicion of the virus is gone is way less dangerous than a
false negative case walking freely on the streets.

Hence, F-2 measure is reasonable to guide the model
selection to pay more attention to identifying true positives
rather than getting more overall predictions correct.

4.5 Interpretation

After selecting and testing models, the interpretation of
the results and models was carried with the SHAP method.
However, since the Logistic Regression classifier can be
directly interpreted by analysing its feature weights (β),
the SHAP method will be applied only in the non-linear
models of this work, the Random Forest and the SVM.

SHAP values for the Random Forest are calculated with
the Tree Explainer technique, since it is a faster way of
doing it. For the SVM, SHAP values are calculated with
the Kernel Explainer.

The SHAP values offer a wide variety of interpretations.
Therefore, the following visualizations were chosen to help

interpret the models and explain the predictions: Force
plots for single predictions, summary plot of all SHAP
values and dependence plots. The summary plot and the
dependence plots offer a broader view of how the model
interprets a handful of values. Hence, it is possible to have
a grasp on the most relevant features for a model, as well
as if there is a range of feature value that contributes more
for an outcome.

Moreover, inspecting specific prediction paths can help un-
derstand possible similarities between different instances.
For example, true positives and false positives might have
similar paths.

5. RESULTS

As mentioned before, the classifiers were tuned with a 5-
fold cross validation on a training set of 253 samples and
tested on a holdout test set containing 109 samples.

After the RFE and correlation analysis steps, there were 18
remaning features. The eliminated features were the ones
that either showed to be the least important among all
three classifiers or, as mentioned before, presented a high
linear correlation.

Table 1 presents the summary of the results for the test
set on all three classifiers. The confusion matrices for the
test set are shown in Figure 1 for the Logistic Regression,
Random Forest and SVM, respectively.

Table 1. Results of experiments

Classifier Accuracy F2 AUC

Logistic Regression 0.872 0.844 0.899

Random Forest 0.908 0.834 0.896

SVM 0.853 0.813 0.866

Although all the classifiers were optimized for the F2
metric, the Random Forest balanced its false positive
and false negative occurrences. In contrast, the Logistic
Regression and the SVM classifiers had considerably more
false positives. Due to the nature of the problem, one could
say it is a good trade-off to have more false positives rather
than false negatives. A false-positive patient could easily
stay under quarantine for 15 days without having to go on
other clinical trials.

Furthermore, since the Logistic Regression presented re-
sults as good as the other classifiers, it suggests a good
linear relationship between the features and the output.

6. INTERPRETATION OF RESULTS

6.1 Logistic Regression Classifier

As mentioned, the Logistic Regression is an intrinsic
interpretable model and the feature weights of the trained
model are presented Figure 2. The negative contribution
to the model means that the higher the value of a feature,
the less likely it will be for a positive case. Hence, the
positive contribution means that the higher the value of a
feature, the more likely it will be for a positive case. Since
all the features from the dataset were normalized between
zero and one, feature weights have a direct sign impact on
the probability of the outcome. That is, the contribution



Figure 1. Confusion matrices for test set

of each feature does not switch from positive to negative
and vice-versa.

Figure 2. Feature weights - Logistic Regression

For this model, the most critical features are some types of
white blood cells (Leukocytes and Eosinophils) responsible
for maintaining the immunological system. The platelets,
being the third most important variable, are blood cells
responsible for stop bleeding. Moreover, it is not clear for
a non-expert on the field, why the Monocytes and Red
Blood Cells have a considerable positive contribution for
this model. Therefore, urther investigation, with the help
of an expert on the field, should be carried to understand
it.

The features with average importance are the tests for
other diseases. When analysing the training set, it can
be observed that approximately 37% of the negative cases
have at least one of these comorbities (influenza or other
type of coronavirus), while all the positive cases for the
COVID-19 tested negative for these exams. Therefore, this
suggests that testing positive for these comorbities might
help on testing negative for COVID-19.

The least important variables are the ones related to the
red blood cells (RDW, MCV, MCH and MHCH), suggest-
ing a weak linear relationship between these features and
the outcome. It is interesting to notice that the age of

the patient also had little impact on diagnosing suspected
cases.

Following next, Random Forest and SVM will be analysed
together, since both will take advantage of the SHAP
method.

6.2 Random Forest and SVM Classifiers

Since the SHAP method requires a dataset, the entire
dataset was used to calculate the SHAP values for both
classifiers. It is important to mention that in the de-
termination of the SHAP values, there is no standard
recommendation about the dataset to be used. Moreover,
there was no significant difference between SHAP values
obtained with the entire dataset and the ones calculated
using only the training dataset. The best way to start the
interpretation using SHAP is to visualize a force plot. Fig-
ures 3 and 4 show the predictions for all four distinct cases
of True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN) for both Random Forest
and SVM. A SHAP value can be interpreted as the force
(or weight) that each feature has for a single prediction.
The objective of a force plot, is to show how a prediction
deviates from the base value, which is the average of all
predictions, based on the forces (SHAP values) that act
upon a sample. Therefore, the blue arrows are the forces
that decrease the prediction, and the values in pink arrows
increase the predictions. The values above the ruler are
graded in the SHAP values scale, and the colored values
beside each feature name are the given feature value for a
sample. Only the features that contribute the most have
their names shown in the plots for better visualization.

The TP and TN cases appear pretty distinct from each
other, showing an apparent distinction between positive
and negative COVID-19 cases. For the the FP, the forces
acting on these plots form a similar path to the TP.
This implies that these FP samples might lie inside an
uncertainty area where the models struggle to decide which
class the sample belongs to. The same stands to the FN
compared to the TN cases.

When aggregating all SHAP values from all samples, a
summary of the SHAP values can be visualized. Therefore,
it is possible to have a grasp on the classifier feature



Figure 3. Random Forest Single Predictions. From top to bottom: TP, FP,TN,FN

Figure 4. SVM Single Predictions. From top to bottom: TP, FP,TN,FN

importance on a more global level. The summaries of
SHAP values are presented in Figure 5 for the Random
Forest and SVM, respectively. Each dot represent the
SHAP value of a feature of a sample.

According to both summaries, the Leukocytes are an
essential feature for these models. Also, the Platelets and
Eosinophils are ranked in the top four, which is consistent
with the previous findings in the Logistic Regression.

The coronavirus and influenza tests appear with lit-
tle importance for both models. However, the Rhi-
novirus/Enterovirus appears in the top four ranks for both
models. It is interesting to notice that for the low value
of this feature, that is 0, the SHAP values have very
little value. However, for a positive value of the feature,
the SHAP values gain a more extensive range and higher
values. The same happens for Influenza B, but with a
narrower range of values.

Contrary to the Logistic Regression, the red blood cell
features appeared to be moderately important for both
models, suggesting that non-linear models can extract
additional information about these features.

Figure 6 show the dependence plots for the Leukocytes
and the monotonic decreasing relationship with the SHAP
values, as well as the interaction with the Platelets. Also,
for higher values of Platelets, the impact of this feature on
SHAP values decreases, and for low values of the Platelets,
the impact on SHAP values depends more on the Platelets.

7. CONCLUSION

This work presented an interpretable machine learning ap-
proach for the COVID-19 diagnosis through clinical vari-
ables. Despite the obstacles faced with the impossibility
to access the original values of the dataset, and also its
limited nature, the results obtained showed to be entirely
satisfactory.



Figure 5. Summary of SHAP values for Random Forest and SVM

Figure 6. Leukocytes SHAP dependence plots for Random Forest and SVM

Also, the interpretability analysis shows to be an essen-
tial step when applying machine learning to diagnostic
medicine. Even when analyzing just the weights of the Lo-
gistic Regression, it is possible to get some insights about
the features. Moreover, the SHAP values analysis brought
specific insights into the models’ predictions. It is clear
the difference in the profile prediction of a positive and
negative patient. It is interesting to notice how close the
false cases could be to their relative classifications. These
findings might orient doctors on looking for more specific
traces of the COVID-19 in the patients. Also, the SHAP
values summary plots brought broader interpretability to
the models, and the most relevant features among the
Logistic Regression, Random Forest and Support Vector
Machine were consistent.

The characteristic of how the models interpreted the
variables and predicted the cases make this approach more
similar to the forementioned COVID-19 rapid tests. These
tests seek to identify the disease’s presence by analyzing
some changes in the immunological system and other
variables.

Future works will seek partnerships with the public health-
care system to obtain more clinical variables such as blood
pressure, sugar levels, hormones, and urine exams. Also,
other interpretability techniques and interpretable models
should be applied. Interesting models to the diagnostic
medicine are ruled based models, such as the SENFIS
Alves et al. (2019). They are fuzzy systems ensemble
capable of dealing with a high number of dimensions
and offering a small set of rules with a low number of
antecedents to a classification problem.
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