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Abstract: This work is concerned with the problem of planning trajectories for a group of mobile
robots operating in a obstacle-filled environment. The objective of the robots is to cooperatively
reach targets sets, avoiding collisions between themselves and with obstacles, while maintaining
the robust connectivity of their communication network. Model predictive control with mixed-
integer encoding is used to plan the trajectories in a centralized fashion. Two novel constraints
are introduced to cope with the robustness connectivity problem. Simulations are provided to
evaluate the proposal.
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1. INTRODUCTION

Multiagent systems (MAS) are systems of multiple agents
that collaborate to solve tasks (Dorri et al., 2018). In par-
ticular, MAS composed of autonomous mobile agents (mo-
bile robots) recently became viable due to improvements in
their communication capability, as well as decreased fabri-
cation costs and better autonomy of the robots. A group of
coordinated robots can succeed in situations where a single
robot is insufficient; for example, complex and large-scale
problems such as load transportation (Klausen et al., 2018)
and forest firefighting (Harikumar et al., 2018).

One of the main challenges regarding this type of MAS is
trajectory planning (Garcia et al., 2013). Multiple trajec-
tories must be planned such that collisions with obstacles
and between robots are avoided. Moreover, the robots
must be guided so as to cooperatively work towards the
same global goal, which is often achieved by allocating
them to different tasks. Many of these requirements are
reliant in the constant communication between robots.
Communication networks of MAS are commonly modelled
as graphs. Therefore, to achieve constant communication
between robots, the graph must be connected at all times.

In Filotheou et al. (2018) the problems of collision avoid-
ance and connectivity of MAS were addressed using model
predictive control (MPC). However, the task allocation
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was pre-defined. Sun et al. (2018) proposed a sliding mode
control law to guarantee the robustness of the connectiv-
ity network of a MAS subjected to disturbances, but a
scenario without obstacles was considered. In Afonso et al.
(2020), the problems of collision and obstacle avoidance, as
well as connectivity and task allocation are solved within
a MPC with mixed-integer linear programming (MILP)
encoding. Nevertheless, this work does not address the
robustness of the communication network. Therefore, the
failure of a single robot could compromise the operation
of the group.

The present work contributes by expanding the results
of Afonso et al. (2020) by proposing novel connectivity
constraints which guarantee a degree of robustness to
the communication network of the MAS. The subsequent
sections are organized as follows. Section 2 details the
problem. In Section 3 the solution of the problem is pre-
sented. In Section 4 the simulations results are displayed
and discussed. Finally, Section 5 concludes the paper and
shares our ideas for future work.

2. PROBLEM STATEMENT

Consider a group of Na robots. The dynamics of these
robots are modelled by the following discrete-time equa-
tion

xi,k+1 = Axi,k + Bui,k, 1 < i ≤ Na, (1)

yi,k = Cxi,k, 1 ≤ i ≤ Na, (2)

where xi,k ∈ Rnx is the state vector, ui,k ∈ Rnu is
the control vector, and A ∈ Rnx×nx and B ∈ Rnx×nu

are state space matrices; yi,k ∈ Rny is the vector of
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positions, and C ∈ Rny×nx is a matrix that extracts the
positions from the state vector. Additionally, let X ⊂ Rnx

and U ⊂ Rnu denote compact polytopic sets representing
admissible values for the states and controls, respectively.

For simplicity, let us consider that the group operates
within a 2-dimensional region, represented by a compact
polygonal set A ⊆ R2, i.e. ny = 2. Consider that this
region contains Nt target sets Qp ⊂ R2, 1 ≤ p ≤
Nt, which are also compact and polygonal. These sets
represent advantageous or required areas to visit during
the operation of the group. The region A also contains
No static polygonal obstacles, denoted by Oq ⊂ R2,
1 ≤ q ≤ No. The area occupied by each robot, at some
time-step k, is represented by the compact polygonal sets
Ri,k ⊂ R2, 1 ≤ i ≤ Na. The free operation regions for
each robot, at a time-step k, are then defined as:

Afree
i,k , A\


No⋃
q=1

Oq ∪
Na⋃
j=1
j 6=i

Rj,k

 , 1 ≤ i ≤ Na. (3)

The robots are able to communicate if they are within
each other’s communication areas, which are modelled as
compact polygonal sets Ci,k ⊂ R2, 1 ≤ i ≤ Na. All
regions are assumed to have the same size, therefore the
communication connections are always bidirectional. The
communication network is represented by a time-varying
undirected graph Gk = {V, Ek}, where V = {v1, . . . , vNa

}
is a set of vertices, and Ek ⊆ {(vi, vj) | vi, vj ∈ V} a set of
edges. The vertices represent the robots, whereas the edges
represent possible communication links between them.

In this context, the problem is to plan trajectories for each
robot, such that the following requirements are met:

i) Gk is connected with a degree of robustness;

ii) control and state limits are respected;

iii) no collisions between robots or with obstacles occur;

iv) the maneuver ends upon visitation of the last target
QNt ;

v) the robots cooperate to reach a compromise between
target set visitation, fuel consumption, and time ex-
penditure.

The particular contribution of this paper is related to
requirement i).

3. PROBLEM SOLUTION

In this section, we introduce a formulation of MPC used to
calculate trajectories compatible with the aforementioned
requirements. First, an encoding addressing requirements
ii), iii), iv), and v) is presented. Then, two solutions
for the robust connectivity problem are proposed. These
approaches require the introduction of new constraints to
the optimization problem.

3.1 MAS Trajectory Planning with MILP

In order to cope with requirements ii) to v), the optimiza-
tion problem proposed in Afonso et al. (2020) is utilized.

Problem 1.

min
ui,k,bp,k,N

N + γ

N∑
k=0

Na∑
i=1

‖ui,k‖1 −R
N∑

k=0

Nt∑
p=1

bp,k, (4)

subject to

xi,0 = xinitial
i , 1 ≤ i ≤ Na, (5a)

xi,k+1 = Axi,k + Bui,k, 1 ≤ i ≤ Na, 0 ≤ k ≤ N, (5b)

xi,k ∈ X , 1 ≤ i ≤ Na, 0 ≤ k ≤ N + 1, (5c)

ui,k ∈ U , 1 ≤ i ≤ Na, 0 ≤ k ≤ N, (5d)

yi,k ∈ Afree
i,k , 1 ≤ i ≤ Na, 0 ≤ k ≤ N + 1, (5e)

∃i | yi,N+1 ∈ QNt , (5f)

bi,p,k = 1⇒ yi,k ∈ Qp, 1 ≤ p ≤ Nt, 0 ≤ k ≤ N + 1,

1 ≤ i ≤ Na, (5g)
Na∑
i=1

N∑
k=0

bi,p,k ≤ 1, 1 ≤ p ≤ Nt. (5h)

Constraints (5c) and (5d) impose limits on the state and
control values, therefore requirement ii) is satisfied. Con-
straint (5e) addresses the collision avoidance both among
robots themselves and between robots and obstacles, i.e.,
requirement iii). Without loss of generality, constraint (5f)
guarantees requirement iv) by imposing that the last tar-
get set is reached at step N+1. Requirement v) is achieved
by balancing the weights γ ∈ R+ and R ∈ R+ in the
cost function depicted in Equation (4). The minimization
of time is achieved through the use of a variable horizon
N ∈ N, which is an optimization variable. Constraints (5g)
impose that a reward is only granted if a target set is
visited by a robot; constraint (5h) ensures that the reward
is collected once per target set.

Constraint (5g) depicts the explicit use of binary variables
in this problem; these variables are naturally implemented
in a MPC-MILP problem. Additionally, the imposition of
constraints such as (5e) results in the non-convexity of the
feasible region. This problem is addressed with the “big-
M” technique, which is implemented with binary variables
(Agarwal et al., 2010). We refer the reader to Afonso
et al. (2020) for details regarding the implementation of
this optimization in a linear mixed-integer programming
framework.

Remark 1. The variable horizon N is selected from a set
{1, . . . , T}, where T is the fixed horizon of the optimiza-
tion problem. Since the value of N is unknown a priori,
all constraints are implemented for 0 ≤ k ≤ T . However,
they are relaxed once the variable horizon is reached. This
also results in ui,k = 0, 1 ≤ i ≤ Na, N + 1 ≤ k ≤ T .

3.2 Robust Communication Network

Let Gk be a graph that represents the communication
network of a MAS. In this work, a network is said to
be robust if, at some time-step k, Gk remains connected
despite the removal of a single vertex; such a scenario is
consistent with the full failure of a robot, or the failure
of its communication hardware. As connectivity is not lost
instantly by the removal of a single robot from the network,
the robots can rearrange to form a robust network again



once a fault is identified. In the context of the present
work, this property is enough to satisfy requirement i).

First, we introduce some concepts used in the analysis of
the connectivity of graphs.

Definition 1. A cut vertex of a graph G = {V, E} is any v ∈
V such that G′ = {V/{v}, E ′}, E ′ , E\ {(v, vi) | ∀vi ∈ V},
is disconnected (Bertrand and Zhang, 2012). The number
of cut vertices of a graph G is denoted by δ (G) ∈ N.

Definition 2. A vertex-cut in a graph G = {V, E} is
any set of vertices K ⊆ V, such that G′ = {V/K, E ′},
E ′ , E\ {(vi, vj) | ∀vi ∈ K,∀vj ∈ V}, is disconnected. A
minimum vertex-cut Kmin is a vertex-cut with minimum
cardinality (Bertrand and Zhang, 2012).

Definition 3. The connectivity κ of a graph G, is the car-
dinality of the minimum vertex-cut (Bertrand and Zhang,
2012).

Definition 4. A graph G is said to be k-connected if
κ(G) ≥ k (Bertrand and Zhang, 2012).

Definition 5. A walk is a sequence of adjacent vertices
of a graph. A closed trail is a walk where the first and
last vertices of the sequence are equal and each edge is
traversed only once. A cycle is a closed trail of length three
or more with no repeated vertices. (Bertrand and Zhang,
2012).

According to Definitions 1, 2, and 3, if the communication
network of the MAS is represented by a 2-connected graph,
then it possesses the discussed degree of robustness, i.e.,
the network (graph) would remain connected despite the
removal of a single robot (vertex). Indeed, such a graph
has connectivity κ(G) ≥ 2, therefore |Kmin| ≥ 2. From
Definition 1, it follows that at least two vertices must be
removed to disconnect G.

We now discuss a class of graphs denoted Hamiltonian,
which are always 2-connected (Bertrand and Zhang, 2012).

Definition 6. A cycle in a graph G is called a Hamiltonian
cycle if it contains every vertex of G. A graph that contains
a Hamiltonian cycle is called Hamiltonian graph (Bertrand
and Zhang, 2012).

As an illustration, consider the example presented in Fig-
ure 1. In a Hamiltonian graph, there are always two paths
(through the Hamiltonian cycle) to any vertex: clockwise
and counter-clockwise. Therefore, the removal of a single
vertex disrupts only one of these paths, and the remaining
path still connects the vertices.

Remark 2. The hamiltonicity of a graph is a sufficient
condition for 2-connectivity.

Finally, sufficient conditions for the hamiltonicity of a
graph are presented.

Theorem 1. Let G = {V, E} be a graph with n ≥ 3 vertices.
If deg(u)+deg(v) ≥ n, for all pairs of nonadjacent vertices
u, v ∈ V, then G is Hamiltonian (Ore, 1960).
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Figure 1. (a) Example of a Hamiltonian graph and (b)
resulting graph if vertex 2 is removed.

Corollary 1. Let G = {V, E} be a graph with n ≥ 3 vertices.
If deg(v) ≥ n/2, ∀v ∈ V, then G is Hamiltonian (Bertrand
and Zhang, 2012).

In the following subsection, the results in Theorem 1 and
Corollary 1 will be used to encode alternative MILP con-
straints that ensure 2-connectivity of the communication
graph of the MAS.

3.3 Mixed-Integer Programming for Robust Connectivity

First, the connections between robots are encoded through
the following constraints

bconi,j,k = 1⇒ yi,k ∈ Cj,k, 1 ≤ i, j ≤ Na, (6)

for 0 ≤ k ≤ N . Therefore, the ith and jth robots are
connected, i.e., within each other’s communication regions,
at a time-step k, if bconi,j,k = 1. The number of connections of
a robot is equal to the degree of its corresponding vertex in
the graph that describes the communication network. Let
degi,k denote the degree of the ith vertex at a time-step k,
then this quantity is associated with the binary variables
through the following equation:

degi,k =

i−1∑
j=1

bconj,i,k +

Na∑
j=i+1

bconi,j,k, 1 ≤ i ≤ Na, 0 ≤ k ≤ N.

(7)
An example is now provided to illustrate the use of Equa-
tion (7).

Example 1. Consider a bidirectional graph Gk with 4
vertices and the following adjacency matrix

Adj =

0 1 0 0
∗ 0 1 1
∗ ∗ 0 0
∗ ∗ ∗ 0

 , (8)

where * represents values that do not matter. Let us
calculate the degree of the second vertex. This can be
accomplished by adding the sum of all elements of the
second row with the sum of all elements of the second
column; therefore, the degree of the second vertex is 3.
Assume now that Gk represents a communication network
in our scheme, then an analogous operation is performed
using Equation (7)

deg2,k =
(
bcon2,3,k + bcon2,4,k

)︸ ︷︷ ︸
row

+ bcon1,2,k︸ ︷︷ ︸
column

= 3. (9)

Two robust connectivity constraints are now proposed;
each one guarantees a robust communication network for



the MAS. As in Theorem 1, constraint (10) imposes a min-
imum value for the sum of the degree of each nonadjacent
vertex:

degi,k + deg`,k ≥ Na −Nab
con
i,`,k, 1 ≤ i ≤ Na − 1,

i+ 1 ≤ ` ≤ Na. (10)

Notice that, if the ith and jth robots are connected at a
time step k, i.e., their corresponding vertices in the graph
are adjacent, then bi,j,k = 1 and the constraint is relaxed,
since the degrees of vertices are always nonnegative. The
number of constraints in (10) is (T+1)Na(Na−1)/2, which
is O(TN2

a ).

As in Corollary 1, constraint (11) imposes a minimum
value for the degree of each vertex:

degi,k ≥
Na

2
, 1 ≤ i ≤ Na, 0 ≤ k ≤ N. (11)

The number of constraint in this case is (T + 1)Na =
O(TNa). Notice that constraint (10) scales quadratically
with the number of robots in the group, whereas constraint
(11) scales linearly. Consequently, as the number of robots
in the group increases, an encoding with the second
constraint scales significantly better than an encoding with
the first constraint. On the other hand, since the condition
in Corollary 1 is sufficient for the condition in Theorem 1,
it follows that constraint (11) is more conservative than
constraint (10).

Remark 3. The dominant constraint in terms of compu-
tational complexity is the one associated with collision
avoidance, with O(TN2

an), where n ∈ N is the number
of sides of the polytope representing the collision region.

Constraints (10) and (11) provide a degree of connectivity
robustness which is absent in the formulations presented
in Afonso et al. (2020), where only 1-connectivity is guar-
anteed. However, our approach is based on sufficient con-
ditions, whereas the two constraints proposed in Afonso
et al. (2020) are associated with necessary and necessary
sufficient conditions; these constraints scale linearly and
exponentially, respectively.

4. SIMULATIONS

In order to evaluate the proposed solutions, a simulation
is carried out. Our methodology is to compare the results
of Problem (1) with the addition of constraint (6) and
three different connectivity constraints: constraint (10),
constraint (11), and the faster yet more conservative
approach presented in Afonso et al. (2020). The results are
compared in terms of performance and robustness through
the resulting optimal cost and average number of cut-
vertices

δ̄ ,
1

N

N∑
k=0

δ (Gk) , (12)

respectively.

4.1 Simulation details

The robots are assumed to be satisfactorily modelled as
double integrators. The discrete-time state matrices for a
sample time of 1 second, are

A =

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , B =

0.5 1
1 0
0 0.5
0 1

 . (13)

The state vector is defined as xi,k ,
[
rxi,k, v

x
i,k, r

y
i,k, v

y
i,k

]T
,

with rxi,k ∈ R and ryi,k ∈ R being the position coordinates,

whereas vxi,k ∈ R and vyi,k ∈ R are the corresponding veloc-

ities. The control vector ui,k ,
[
axi,k, a

y
i,k

]T
is composed

of the components of acceleration axi,k ∈ R and ayi,k ∈ R.

A scenario with Na = 6, No = 2, and Nt = 5 is considered.
Table 1 details each polygonal region of the scenario in
terms of type, center, and side lengths. The fixed horizon
size is chosen as T = 20; the weights are selected as γ = 0.1
and R = 10.

Table 1. Parameters of the polygonal regions
in the scenario.

Region Type Center Sides length

A Square (5, 5) 10

O1 Rectangle (1.622, 3.113) (1.663, 1.025)
O2 Rectangle (7.943, 5.285) (3.408, 1.808)

Q1 (1.683, 2.169)
Q2 (1.107, 8.013)
Q3 Square (9.406, 4.034) 0.5
Q4 (5.777, 5.225)
Q5 (1.486, 6.120)

Ri,k Square yi,k 0.1
Ci,k Octagon yi,k 1

The optimization problem was solved using the Gurobi R©

solver with the YALMIP toolbox (Löfberg, 2004) in
MATLAB R© environment. The computer used had a
Intel R© i3-8130U (3.4GHz clock) processor and 12GB of
RAM. Since we are interested in feasible solutions acquired
within reasonable time, the simulations were carried out
with three maximum optimization times: 60, 120, and 240
seconds per time step.

4.2 Results and Discussion

The results considering three maximum optimization
times: 60, 120, and 240 seconds, are now presented. The
corresponding trajectories are depicted in Figures 2, 3, and
4. Each of these Figures is subdivided by approach: a)
using constraint (10); b) using constraint (11); c) using the
approach presented in Afonso et al. (2020). The evolution
of the number of cut vertices over time is presented in
Figures 5a, 5b, and 5c.

As shown in Table 2 and Figures 5a, 5b, and 5c, the
number of cut vertices of the graph representing the com-
munication network is always zero when either robust
connectivity constraint is applied. On the other hand, in
the approach of Afonso et al. (2020), the robots spread dis-
regarding the robustness of the communication network,
resulting in a fluctuation in the number of cut vertices over
time. The trade-off between performance and robustness is
evident: the robust approaches perform significantly worse
in terms of coverage of targets and overall cost, as show in
Figures 2, 3, and 4, and Table 2.



Table 2. Results for each optimization time.

Approach

Max.
solver
time (s)

Cost
No. of
targets
visited

Avg. cut
vertices (δ̄)

60 −1.51 1
Constraint (10) 120 −9.07 2 0

240 −17.34 3

60 −1.49 1
Constraint (11) 120 −17.26 3 0

240 −17.34 3

60 −20.81 3 0.85
Afonso et al. (2020) 120 −26.42 5 1.10

240 −30.08 5 2

Regarding the robust approaches, the conservativeness
added to the optimization problem due to constraint (11)
did not compromise the performance of the resulting
trajectories, as compared to (10). In fact, its results
were approximately equal or better than the approach
using constraint (10), which is less conservative. This
superiority is observed in the results with the proposed
optimization times, but is unlikely to hold if the periods are
substantially increased. However, since closed-loop MPC
runs an optimization at each time-step, the performance
of an encoding in shorter windows of time is often as
important as its asymptotic results. Furthermore, since
constraint (11) scales much better than constraint (10), it
may be a more adequate option for MAS with a relatively
large number of robots.

5. CONCLUSION

In this work, mixed-integer programming was employed to
plan trajectories for a group of robots. The objective of the
group is to navigate through an obstacle-filled environment
to collect rewards and reach a terminal target, while main-
taining robust connectivity. Two novel constraints were
proposed to address the problem of robust connectivity.
The results show that, at the expense of performance,
the proposed approaches were successful in generating
communication networks represented by graphs with no
cut vertices. Moreover, for the optimization times consid-
ered, approximately equal or better results were observed
in the less computationally expensive approach. Future
works may address the problems of conservativeness in the
robust formulations proposed, as well as improvements in
the computational time. Additionally, a possible research
line may be the exploration of an algorithm to provide
trajectories to the MAS when no feasible solution is found
within the maximum optimization time.
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