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Abstract: Industrial robots have grown over the years making production systems more and
more efficient, requiring the need for efficient trajectory generation algorithms that optimize
and, if possible, generate collision-free trajectories without interrupting the production process.
In this work is presented the use of Reinforcement Learning (RL), based on the Q-Learning
algorithm, in the trajectory generation of a robotic manipulator and also a comparison of its
use with and without constraints of the manipulator kinematics, in order to generate collision-
free trajectories. The results of the simulations are presented with respect to the efficiency of
the algorithm and its use in trajectory generation, a comparison of the computational cost for
the use of constraints is also presented.

Keywords: Path Planning, Collision Avoidance, Reinforcement Learning, Robotic Manipulator,
Trajectory Generation.

1. INTRODUCTION

The industry has found in automation an important ally
for the modernization and growth of its activities. The
use of robots has increased exponentially in order to
perform tasks. In fact, the use of robots with manipulation
functions has shown significant growth in the context
of industrial production. The aforementioned diffusion of
robots in an industrial environment has provided, over
the years, that several methods were developed in order
to monitor and to control mobile or manipulator robots,
giving them the ability to operate in environments that
are dangerous to humans (Pinto et al., 2014).

In this sense, optimization becomes a key part, since it is
necessary to complete tasks with some desired character-
istics, such as minimum time, shorter trajectory, minimal
wear of the mechanical parts, among others. Thus, the
trajectory performed by the robot is extremely important.
In most cases, the cost functions, which are minimized
during the optimization process, will have some kind of
robot model as a component. This makes them applicable
only for a given robot model and sometimes does not apply
to be developed and implemented in other robot models
(Csiszar, 2016).

The trajectory generation refers to a point in the workspace
of the manipulator that can be translated into suitable
conditions for a point in the joint space. The problem is to
take the manipulator to the specified position, regardless
of the initial position and the environment variables. This
problem is more generally defined as robot navigation
(Sciavicco et al., 1997). Trajectory planning consists of

determining a curve in the workspace, connecting the
desired, initial and final position of the actuator, avoiding
any obstacle. The union of positions in the Cartesian space
defines two types of profiles for linear and circular displace-
ments (Khatib, 1986), (Batista et al., 2020b), (Batista
et al., 2018).

Based on these concepts, the present work aims to generate
the trajectory of a robotic manipulator using Reinforce-
ment Learning (RL), the learning algorithm used is Q-
Learning. The algorithm is used to generate trajectory in
an environment where some obstacles are considered and
the trajectories generated must be collision free.

This paper is organized as follows. Section 2 provides some
information about the robotic manipulator and presents
the model of the forward and inverse kinematics of the
same. Section 3 presents the use of RL and the Q-Learning
algorithm used. The algorithm simulation is presented in
Section 4. Finally, the conclusions and future work are
mentioned in Section 5.

2. LITERATURE REVIEW

The Q-Learning algorithm is a popular method of RL, and
is used for collision prevention where an optimal action-
state policy is calculated based on the Markov Decision
Process (MDP). The Q-Learning is used to train robots to
reach a certain target point, moving through obstacles and
avoiding collisions with them. The actions considered are
discrete and correspond to moving and rotating in different
directions. However, the movement of the robot does not
seem natural due to discrete control actions. In addition,
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a simplistic reward function that depends only on actions
taken and collision events should be used (Shim and Li,
2017).

RL is a popular area of research, widely used in several
areas such as manufacturing technology, multi-agent tech-
nology or computer vision. Robotics RL is often applied
to wheel control mobile robots, manipulating robots, or
humanoid robots. The Q-Learning algorithm was used as
a trajectory generator to reach a target and implemented
in an industrial manipulator robot (Miljković et al., 2013).

In Park et al. (2007), real-time path planning is proposed,
combining Probabilistic Roadmap (PRM) and RL to deal
with uncertain dynamic environments and similar envi-
ronments. A series of experiments demonstrate that the
proposed hybrid path planning can generate a collision-
free path even for dynamic environments in which objects
block the pre-planned global path. It is also shown that
hybrid path planning can adapt to similar environments
previously learned without significant additional learning.

In Gu et al. (2017) it was presented that a recent RL
algorithm based on training off-policy of Q functions can
switch to complex 3D manipulation tasks and learn deep
neural network policies with sufficient efficiency to train in
physical robots real. It was shown that training times can
be further reduced by parallelizing the algorithm on several
robots that group their policy updates asynchronously.
The paper presents an experimental evaluation and shows
that the method can learn a variety of 3D manipulation
skills in simulation and a complex door opening skill in
real robots.

In the work from Nair and Supriya (2018), an approach
called Modified Temporal Difference Learning for path
planning and obstacle avoidance was proposed for static
obstacles. The algorithm was developed in MATLAB soft-
ware and path planning was implemented in a 4 × 4 grid
environment. A GUI for the same is created, which ac-
cess the user inputs like obstacle number, positions and
type. The developed algorithm was compared with the
conventional path planning Dijkstra’s algorithm in the
same environment. It was observed that computational
complexity was less in the proposed approach compared
to the conventional method.

In Jing et al. (2018) was propose a novel computational
framework to automatically generate efficient robotic path
online for surface/shape inspection application. Within the
computational framework, a MDP formulation was pro-
posed for the coverage planning problem in the industrial
surface inspection with a robotic manipulator. A rein-
forcement learning-based search algorithm was proposed in
the computational framework to generate planning policy
online with the MDP formulation of the robotic inspec-
tion problem for robotic inspection applications. It was
observed that the proposed method could automatically
generate the inspection path online for different target ob-
jects to meet the coverage requirement, with the presence
of pose variation of the target object.

In Liu et al. (2019) was proposed a knowledge fusion
algorithm for upgrading a shared model deployed on the
cloud. Then, effective transfer learning methods in Life-
long Federated Reinforcement Learning (LFRL) was intro-

duced. LFRL was consistent with human cognitive science
and fited well in cloud robotic systems. Experiments show
that LFRL greatly improves the efficiency of reinforcement
learning for robot navigation. The cloud robotic system
deployment also showed that LFRL was capable of fusing
prior knowledge.

3. ROBOTIC MANIPULATOR

The manipulator used in this work is called Selective
Compliance Assembly Robot Arm (SCARA). He is a robot
that has four degrees of freedom (DOF). Considering the
first two joints from the base, it is noted that its workspace
is the horizontal type (XY). As the joints revolve around
vertical axes in a rotational manner it possible to make an
analogy to planar robots of two DOF. Therefore, for this
study only two DOF are needed. Figure 1 shows an image
of the robot.

Figure 1. SCARA robotic manipulator.

3.1 Kinematics Model

The robot kinematics is defined as the study of its move-
ment in relation to a reference system. Thus, it is about
the analytical description of the robot spatial movement
as a function of time, and in particular of the relationships
between the position and orientation of its tool with the
values that make its articular coordinates. The problem of
direct kinematics is to determine the position and orien-
tation of the manipulator actuator, in relation to a fixed
reference coordinate system, known the joint values; the
problem of inverse kinematics solves the configuration that
the robot must adopt for a position and orientation of the
known extreme (Romano, 2002).

3.2 Forward kinematics

In order to define the forward kinematics model, the
Denavit-Hartenberg (DH) convention and the coordinator
system of the manipulator, which are shown in Figure 2,
are used. Thus, the needed parameters of angle and size
can be selected (Hartenberg and Denavit, 1964).



Figure 2. Robot joint coordinate systems SCARA Gonza-
lez (2017).

From the DH parameters the homogeneous transformation
matrices of the coordinate systems are formed. These
matrices are used in conjunction with the comparison of
the geometric shape of the robot in order to determine the
position of its end-effector in the workspace through the
coordinates in the joint space as described by the equations

Px = 0.35 cos(θ1) + 0.30 cos(θ1 + θ2), (1)

Py = 0.35 sin(θ1) + 0.30 sin(θ1 + θ2). (2)

The equations (1) and (2) represent the solution to the
problem of forward kinematics for the SCARA manipula-
tor.

3.3 Inverse kinematics

The inverse kinematics is intended to solve a configuration
that the robot must adopt in relation to the position and
orientation of a known point. A simple way to solve this
problem is to use the geometric method where is possible to
determine the value of the joint angle, in order to correctly
position the manipulator so that the trajectories in the
joint space can be generated (Silva, 2016; Batista et al.,
2020a).

From the direct kinematics equations (1) and (2) and
applying some trigonometric transformations, one may
find the inverse kinematics equations given by:

θ1 = tan−1
[
Py(L1 + L2 cos(θ2))− PxL2 sin(θ2)

Px(L1 + L2 cos(θ2))− PyL2 sin(θ2

]
, (3)

θ2 = cos−1

(
P 2
x + P 2

y − L2
1 − L2

2

2L1L2

)
, (4)

where L1 = 0.35 m and L2 = 0.30 m are the values of
the lengths of each joint of the manipulator as shown in
Figure 2.

The equations (3) and (4) are the solutions to the SCARA
manipulator inverse kinematics problem and are used to
generate its trajectory.

4. USING OF RL IN THE GENERATION OF
TRAJECTORIES

The RL is an approach that can be used to learn the
robots movements, based on feedback received from the en-
vironment. The basic idea is inspired by natural learning,
the way animals (including humans) learn. This technique
involves several different attempts to solve a problem for
later verification. When good results occur, the tendency
is to repeat the behavior; if the resulting responses are not
satisfactory, the direction to be followed is to avoid them
(Sutton and Barto, 1998). In RL, the robot tries different
actions (in fact, all the actions at its disposal) in all states
in which it enters. For each action, there is continuous
monitoring, so that all information is stored in some type
of representation (usually, some type of table or matrix).

The RL theory is based on Markovian decision-making
processes, although its ideas and methods can be extended
and applied to more general applications and processes.
An environment satisfies Markov property if its state
summarizes the past compactly, without losing the ability
to predict the future. That is, one can predict what the
next state and the next expected reward will be, given
the current state and action (Sutton and Barto, 1998). A
Markov process is a sequence of states, with the property
that any future state value prediction will depend only on
the current state and action, and not on the sequence of
past states.

A Markovian decision process is defined by a set 〈S,A, P,R〉,
in which one have: the finite set of states S of the system,
the finite number of actions A, and a P state transition
model, which maps the state-action pairs into a probability
distribution over the set of states, and finally, a R reward
function, which specifies the reinforcement. The agent re-
ceives for choosing a particular action a ∈ A in the state
s ∈ S. The state s and a are the current actions that
determine (i) the next state s′ according to the probability
P (s′|s, a), and (ii) the reward r(s, a) associated. Figure 3
shows the generic structure of the RL.

Figure 3. Generic structure of the RL Sutton and Barto
(1998).

4.1 Q-Learning

In the RL algorithm used here, the robot and the envi-
ronment interact in a discrete sequence of steps in time.



The state and the action at a given moment determine
the probability distribution for the state st+1 and the
reinforcement rt. The purpose of the robot is usually to
choose actions in order to maximize a discounted sum of
subsequent reinforcements:

rt =

T∑
k=0

γkrt+k (5)

The actions are selected by the robot from a function state
(control policy) π : S → A. The value of utility of a state,
given a policy is the expected reinforcement starting from
the following state and following the policy:

V π(s) = Eπ(Rt|st = s) (6)

and the optimal policy of actions is that sequence that
maximizes the value of the state:

V ∗(s) = max
π

V π(s) (7)

There is always at least one optimal policy that produces
the maximum utility value in all states s ∈ S. Alongside
these two state value functions, there are two share value
functions:

Qπ(s, a) = Eπ(Rt|st = s, at = a) (8)

and

Q∗(s, a) = max
π

Qπ(s, a) (9)

From Q∗, you can determine an optimal policy by making

π∗(st) = arg max
a

Q(s, a) (10)

Therefore, Q-Learning is an algorithm that allows one to
automatically establish an action policy in a interactive.
The algorithm converges to an optimal control procedure,
when the Q state-action pair learning hypothesis is rep-
resented by a complete table containing the information
value of each pair (Sutton and Barto, 1998). Convergence
occurs both in deterministic and non-deterministic MDP.
The Q-learning algorithm learns an optimal assessment
function over the entire state-action pair space S × A
(Ribeiro, 2002).

The function Q(s, a) rewards the future action by choosing
the action a in the state s, and is learned through trial and
error according to the following equation

Qt+1(st, at) = Qt(st, at)+

α[rt + γVt(st+1)−Qt+1(st, at)] (11)

where α is the learning fee, r is the reward, or punishment,
resulting from taking action in the s state, γ is the discount
factor and the term Vt(st+1) = maxaQ(st+1, a) is the
utility of the state s resulting from the action, obtained
using the function Q that has been learned to date .

The Q function represents the discounted reward expected
when taking a a action when visiting the s state, and
following an optimal policy since then. The generic Q-
Learning algorithm is shown in Algorithm 1.

Algorithm 1 Pseudocode for Q-Learning

1: for every s ∈ S, a ∈ A do
2: initializes table Q(s, a)
3: end for
4: generates an initial state
5: repeat
6: selects an action a and runs
7: receives reward r = r(s, a)
8: observe the new state s′

9: update table Q(s, a) as follows:
10: Q(s, a)← r + γmaxa′ Q(s′, a′)
11: s← s′

12: until s be terminal

Until the stopping criterion is reached which can be
a maximum number of episodes, or the shortest state
sequence to achieve the task objective.

5. RESULTS

In this section, the results and simulations for the Q-
Learning algorithm are presented.

5.1 Simulations

To perform the computer simulation, a space is created
that corresponds to the manipulator workspace, shown in
Figure 4. In this space, it is considered a starting point
(SP), where the robot starts its movement to perform
the trajectory, and a final point (FP), which refers to the
target point, where the robot must arrive to complete the
trajectory. The gray squares found in the workspace are
considered obstacles, and the robot must deflect them to
avoid collision.

Figure 4. Workspace of the manipulator.

The actions that can be performed are shown in the tables
below, and are performed at a constant speed and within a
discrete time interval that is also constant. Table 1 shows
the actions for the robot kinematic without constrains.
Table 2 shows the possible actions for the constrained
robot. The change in the direction of rotation of the joint
is made so that the robot can avoid the obstacles and make
the shortest path.

In Table 2, the third column represents the rotation
movement of the manipulator joints, which can rotate 90◦,



Table 1. Unconstrained actions.

Action performed Motion

A1 Forward
A2 Back
A3 To the left
A4 On the right

Table 2. Constrained actions.

Actions
performed

Motion
Rotation
angle (◦)

A1 Forward 0
A2 Back 0

A3
Rotation from

the left
-90

A4
Rotation to

the left
-90

A5
Right from
the right

90

A6
Rotation back
to the right

90

considering a reference point 0 (zero) to the left or to the
right.

Simulations are performed with and without constraints
on the manipulator kinematics for 100 episodes and the
following values are used:

• Maximum number of steps per episode = 2000
• Learning rate, α = 0.1
• Discount factor, γ = 0.95
• Probability of random selection, ε = 0.1
• Eligibility trace, λ = 0.5

5.2 Results

The results of the simulations are presented by means of
the figures 5 and 6 that show the learning curves during
each training of the algorithm in the generation of the
manipulator’s trajectory.
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Figure 5. Algorithm without kinematic constraints.

Also extracted are the sequences of states that define the
optimal policy, that is the optimum trajectory performed
by the robot, which is 13 steps for the algorithm uncon-
strained and 8 steps for algorithm with constrains. The
figures 7 and 8, below show the trajectories generated by
the algorithm.
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Figure 6. Algorithm with kinematic restrictions.

Figure 7. 13-step trajectory (algorithm without restric-
tion).

Figure 8. 8-step trajectory (restricted algorithm).

5.3 Discussions

A comparison was made between the Q-learning algorithm
with and without constrains. The computational cost was
verified and showed in Table 3.

Table 3. Computational cost.

Algorithm Comp. cost [s]

Without restriction 121.780873
With restriction 169.463518

The RL Q-learnig algorithm also functioned as collision-
free trajectory generator of obstacles placed in the manip-
ulator workspace. The simulations showed and compared
the two forms of the algorithm used, where the algorithm



with the kinematics constrained presented a better result,
as shown in the previous section. The same algorithm
also showed a better performance in the generation of the
trajectory, that is, the trajectory had a smaller number of
steps.

6. CONCLUSION

This work presented simulations using RL in order to
generate trajectories of a robot. The algorithm used was
Q-Learning, where a comparison was made between the
algorithm with and without kinematic constrains. It can
be extracted, as the main conclusion of this work, that an
RL can be used efficiently in the generation of trajectories
of manipulators. It can also be concluded that either the
algorithm shows satisfactory results and can also be used
to generate collision-free trajectories.

The authors are researching other ways to improve the
algorithm, such as: considering all kinematic restrictions,
such as the length of links; integration the Q-Learning
algorithm with Robotics System Toolbox ; comparison Q-
Learning with other collision-free trajectory generation
algorithms, such as artificially obtained fields; and to
perform an implementation of the Q-Learning algorithm
in the robotic manipulator.
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