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Abstract: This work presents the development of Adaptive Cruise Control (ACC) applied
to a vehicle. The ACC tracks a predefined controlled vehicle cruise speed, however when a
leading vehicle with lower speed is encountered, the ACC must adapt the controlled vehicle
speed to maintain a safe distance between the vehicles. The control strategy applied combines
Control Lyapunov Function (CLF), related to performance/stability objectives and Control
Barrier Function (CBF), related to safety conditions represented by a safe set. CLF and
CBF are integrated with Quadratic Programming (QP) and a relaxation is used to make
performance/stability objectives as a soft constraint and safety conditions as a hard constraint.
The system model is based on a vehicle available at EPUSP and presents an input time-delay,
that can degrade performance and stability. The input delay is compensated with a Smith
Predictor. The initial results were obtained through numerical simulations and, in the future,
the scheme will be implemented in the vehicle. The numerical simulations indicate that the
proposed controller respect the performance/stability objectives and the safety conditions.
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Quadratic Programming, Smith Predictor.

1. INTRODUCTION

Autonomous driving is a research area of automotive engi-
neering with many topics related to control. One of these
topics is Advanced Driver Assistance Systems (ADAS).
The ADAS are technologies developed to help driving
easily and safely (Xiao and Gao (2010)). One of these tech-
nologies is Cruise Control (CC). CC tracks a predefined
controlled vehicle cruise speed. In 1995, Adaptive Cruise
Control (ACC) was improved in Japan (Vahidi and Es-
kandarian (2003), Ioannou and Chien (1993)). ACC must
adapt a controlled vehicle speed to maintain a safe distance
if a leading vehicle with lower speed is encountered (Liang
and Peng (2000)). In order to detect the leading vehicle
and obstacles, ACC considers sensors like radar or lidar.

The ACC problem involves performance/stability objec-
tives (track a desired cruise speed) and safety conditions
(maintain a safe distance to a leading vehicle). The per-
formance objectives and the safety conditions can conflict
in certain situations and the control must set priority for
safety conditions.

Several control strategies presented in the literature have
been applied to ACC, such as intelligent control (Kuyumcu
and Sengor (2016)), sliding mode control (Ganji et al.
(2014)) and model predictive control (MPC) (Li et al.
(2017)), (Magdici and Althoff (2017)). Among these con-
trollers, the MPC has been one of the most discussed. This
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is due to its capability to insert constraints to increase the
performance and the robustness (Brugnolli et al. (2019b)).

The control strategy applied in this work for solving the
ACC problem is proposed for Ames et al. (2019) and
Ames et al. (2017). It combines Control Lyapunov Func-
tion (CLF), related to performance/stability objectives
and Control Barrier Function (CBF), related to safety
conditions represented by a safe set. CLF and CBF can be
integrated with Quadratic Programming (QP) to satisfy
both objectives and a relaxation is used to make the
performance/stability objectives as a soft constraint and
the safety conditions as a hard constraint (Ames et al.
(2017)).

Several applications using this control strategy are pro-
posed in the literature such as bipedal walking robot
(Nguyen et al. (2016)), robotic manipulator (Rauscher
et al. (2016)), two-wheeled inverted pendulum (Gurriet
et al. (2018)), quadrotors (Wu and Sreenath (2016)) and
multi-robot systems (Wang et al. (2017)).

This control strategy has already been applied to ACC
problem. In Ames et al. (2017), the control strategy was
applied to ACC and lane keeping problems separately and
the results were presented through numerical simulations.
In Xu et al. (2017), the control strategy was applied to
ACC and lane keeping problems simultaneously and the
results were obtained experimentally on robot testbeds.
In Mehra et al. (2015), the control strategy was applied to
ACC problem and the results were obtained experimen-
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tally on scale-model cars. However, in all those cases, the
models have not transport delays associated to them.

The system model presented in this work is based on a
vehicle available at EPUSP. This same vehicle was con-
trolled with ACC in Brugnolli et al. (2019b) and Brugnolli
et al. (2019a) using Dahlin Control and MPC, respectively.
The vehicle dynamics presents an input time-delay, that
can degrade performance and stability. The input delay
is compensated with a Smith Predictor. The main works
presented in the literature related to this control strategy
typically deal with no input delay systems. The initial
results were obtained through numerical simulations and,
in the future, the technique will be implemented in the
vehicle.

In section 2, the concepts of CLF, CBF and the QP applied
to integrate CLF and CBF are presented. The system
modeling is described in section 3. The Smith predictor
is presented in section 4. In section 5, the ACC is detailed.
Simulation results and conclusions are presented in section
6 and 7, respectively.

2. CONTROL STRATEGY

This section presents the concepts of CLF, CBF and the
QP applied to integrate CLF and CBF in the proposed
control strategy.

Throughout this work, we will assume an affine control
system:

i = (@) + gla)u, (1)

with f and g locally Lipschitz, z € D C R" and u € U C
R™ is the set of admissible inputs.

2.1 Control Lyapunov Functions

CLFs utilize Lyapunov functions together with inequality
constraints on the derivative to establish entire classes
of controllers that stabilize a given system (Ames et al.
(2014)).

Suppose we have the control objective of (asymptotically)
stabilizing the nonlinear control system (1) to a point
z* = 0. This can be achieved by finding a feedback control
law v = k(x) that drives a positive definite Lyapunov
function V(x) to zero (Ames et al. (2019)). That is, if

Ju=k st. V<—cV, (2)

where

V=LV +L,Vk, (3)

then the system is stabilizable. The term LV stands for

%—Zf, the term L,V stands for %—Zg and c is a positive
constant.

The function V' is a CLF if it is positive definite and
satisfies (Ames et al. (2017)):

1r61fU [LyV + LgVu+cV] <0. (4)

The importance of this definition is that it allows us to
consider the set of all stabilizing controllers for every point
x € D (Ames et al. (2017), Sontag (1983)), such that:

Kclf(a:) = {ueU:LfV+LgVu+cV§O}. (5)

Freeman and Kokotovic introduced the min-norm con-
troller, u*(z), defined pointwise as the element of K
having minimum Euclidean norm (Freeman and Kokotovic
(1996)). The min-norm controller can be interpreted as the
solution of the QP:

" Lo
u*(x) = argmin -u’ u

(¥) = arg min 5 (6)
st. LyV 4+ LyVu+cV <0.

2.2 Control Barrier Functions

Two important concepts related to control systems are
liveness and safety. Liveness requires that “good” things
eventually happen, such as asymptotic stability or track-
ing. Liveness is mathematically related to CLFs. Safety
requires that “bad” things do not happen, such as invari-
ance of a set C. Any trajectory starting inside an invariant
set will never reach the complement of the set (Ames et al.
(2019)). Safety is mathematically related to CBFs.

The concept of Barrier functions were first utilized in
optimization (Boyd and Vandenberghe (2004)). Barrier
functions are directly related to Lyapunov-like functions
(Tee et al. (2009),Wieland and Allgower (2007)), multi-
objective control and it guarantees invariance of sets.

There are two types of barrier functions. The reciprocal
barrier function B(z) is unbounded on the set C' boundary,
i.e., B — oo as ¢ — JC. The zeroing barrier function h(x)
vanishes on the set C' boundary, i.e., h — 0 as x — 9C.
In each case, if B or h satisfy Lyapunov-like conditions,
then the forward invariance of C' is guaranteed (Ames
et al. (2019)). The natural extension of a barrier function
to a system with control inputs is a CBF (Wieland and
Allgower (2007)). As shown for CLFs in (5), in CBFs we
impose inequality constraints on the derivative to obtain
entire classes of controllers that render a given set forward
invariant.

As previously mentioned, safety can be related to invari-
ance of a set, i.e., not leaving a safe set. In particular,
we consider a set C defined as the superlevel safe set of
a continuously differentiable function h : D C R — R
yielding (Ames et al. (2019)):

C={reDcCR":h>0},
0C ={xeDCR":h=0}, (7)
Int(C)={zx e D CR":h>0}.

The definition of safety is given by:

Definition 1. Let u = k(z) be a feedback controller such
that (1) is locally Lipschitz. For any initial condition
xo € D there exists a maximum interval of existence I(x)
such that x(t) is the unique solution to (1) on I(zp). The
set C is forward invariant if for every zo € C, z(t) € C
for (0) = zp and all t € I(zp). The system (1) is safe



with respect to the set C' if the set C' is forward invariant
(Ames et al. (2019)).

After the set C' and safety has been defined, we can
define Reciprocal Control Barrier Function (RCBF) B and
Zeroing Control Barrier Function (ZCBF) h.

Definition 2. Consider the control system (1) and the set
C C R"™ defined by (7). A continuously differentiable
function B : Int(C) — R is called a RCBF if there exist
class k functions aq, as, ag, such that, for all € Int(C)
(Ames et al. (2017)),

1 1
) =P = )
inf [LyB+ LyBu — as(h)] <0. (9)

uelU

Given a RCBF B, for all z € Int(C), define the set (Ames
et al. (2017))

Krpp(z) ={ueU:LyB+ LyBu—az(h) <0}. (10)
Considering control values in this set, the forward invari-
ance of C' is guaranteed by the following corollary:

Corollary 1. Consider a set C' C R™ defined by (7) and
let B be an associated RCBF for the system (1). Then
any locally Lipschitz continuous controller « : Int(C) — U
such that v € K,qy will render the set Int(C) forward
invariant (Ames et al. (2017)).

Definition 3. Consider the control system (1) and the set
C C R"™ defined by (7) for a continuously differentiable
function h : R®™ — R. The function h is called a ZCBF
defined on set D with C C D C R", if there exists an
extended class x functions « such that

sup [L¢h + Lghu + a(h)] > 0.
uclU

Given a ZCBF h, for all € D, define the set (Ames et al.
(2017))

(11)

With this definition, we have the following corollary:

Corollary 2. Consider a set C' C R™ defined by (7) and
let h be an associated ZCBF for the system (1). Then any
locally Lipschitz continuous controller v : D — U such

that u € K,y will render the set C forward invariant
(Ames et al. (2017)).

In this paper, we will consider the following relationship
between RCBF and ZCBF:

B=-—.
h

2.8 Integrating CLFs and CBFs Through QP

(13)

Using QP, we can integrate performance/stability objec-
tives (represented by CLFs) and safety conditions (repre-
sented by CBFs). By relaxing the constraint represented

by the CLF condition (4), and adjusting the weight on the
relaxation parameter ¢, the QP can mediate the tradeoff
between performance/stability and safety, making the per-
formance/stability objectives as a soft constraint and the
safety conditions as a hard constraint (Ames et al. (2017)).

Given a RCBF B associated with a set C' defined by
(7) and a CLF V, they can be integrated into a single
controller through a QP such as (Ames et al. (2017)):

1
u*(z) = argmin —u’ H(z)u+ F(z)"u
u=(u,6)ER™ xR
st. LV 4+ LyVu4¢cV —6<0

LB+ LyBu—a(h) <0,

(14)

where ¢ was defined in (2), o was defined in (11), H(x) €
Rm+Dx(m+1) s positive definite and F(z) € R™*1,

3. SYSTEM MODELING

In this work, we present the control strategy applied to
a system model based on a vehicle available at EPUSP.
The vehicle considered is a Volkswagen Polo Sedan model
with spark-ignition engine 2.0 L. The vehicle is controlled
by an open-source electronic control unit (ECU) and was
tested on an inertial dynamometer from NAPRO company
(Brugnolli et al. (2019b)).

Although the vehicle has a customized ECU, it does not
have an electronic brake system. Thus, the brake pedal was
discarded as a control input. The control input u(t) chosen
for the vehicle is the accelerator pedal, which range varies
from 0% (not pushed) to 100% (fully pushed) (Brugnolli
et al. (2019b)). The system output y(¢) considered for the
ACC is the translational vehicle speed.

The system identification, obtained in Brugnolli et al.
(2019Db), is given by:

Y(s) _ 00855 +0.1788 o

- 4 1
Uls) s +0.2041 (15)

The vehicle dynamics presents an input time-delay of 0.5 s,
represented by e~95% that can degrade performance and
stability. To compensate the input delay, it is applied a
Smith Predictor, that will be described in next section.

The state space representation without considering delay
is given by:

i(t) = —0.2014z(t) + 0.1615u(t)

y(t) = x(t) + 0.085u(t), (16)

where x is the system state.
4. SMITH PREDICTOR

Control systems with time-delay is a topic analyzed by
engineers and scientists for decades. Time-delay is com-
monly seen in engineering applications, such as thermic
and chemical. The delay can be found in system states,
control input or system output and can be generated by
sensors and actuators in control loop. Time-delay degrades
performance and stability of control systems.



Fig. 1. Block diagram of the Smith predictor

A common alternative to project control systems with
time-delay is to use Padé approximation to represent time-
delay. This can generate considerable increase in system
order and sensibility to perturbations. One of the most
traditional structures and widely used in industry to
compensate time-delay is the Smith predictor, proposed
by O. J. Smith (Smith (1957)).

Smith predictor is a control structure that shifts the
delay outside the control loop, so that the controller
acts on the process as if the closed loop dynamics are
not delayed (Normey-Rico and Camacho (2008)). When
Smith predictor was developed, was supposed a constant
time-delay and an exact system model. Therefore, Smith
predictor is very sensitive to model uncertainties. Besides
that, it is only applied to SISO (Single-Input-Single-
Output) and stable systems.

Fig. 1 shows a block diagram of Smith predictor. C(s) is
the controller, Gy,(s) is the nominal system model without
time-delay, e~7° represents the time-delay 7 and G(s) is
the real system model. r(¢) is the reference input, u(t) is
the control input, y(t) is the system output, §(t + 7) and
9(t) are the predicted values for system output.

The closed loop transfer function is given by:

Y(s) _ C)R()
R(s) 1+4+C(s)[G(s) — Gn(s)e ™ + Gn(s)]”

(17)

If there is no error between the nominal system model
and the real system model, i.e., G,(s)e” ™ = G(s), the
prediction error ey (t) will be zero. Therefore, (17) becomes:

V() C)G(s)
R(s) 1+ C(s)Gn(s)

(18)

and the delay is eliminated. Thus, the feedback signal will
be a prediction of the process output and the controller
C(s) can be designed considering the process without time-
delay.

In this work, the system model (15) presents a delay rep-
resented by e~?-%%. Using Smith predictor, the controller
design can be done disregarding time-delay. The design
procedure is done considering the system in structure (1),
so it was used the system model (16).

5. ADAPTIVE CRUISE CONTROL

The ACC tracks a predefined controlled vehicle cruise
speed v, (r(t)), that must be maintained, as in common

ivc

QP u(t) »  System e Pindieh e o
predictor
CLF <
CBF <

To

Fig. 2. Block diagram of the control strategy applied

CC systems. This problem can be expressed as a perfor-
mance/stability objective and related to a CLF. However
when a leading vehicle with lower speed v; is encountered,
the ACC must adapt controlled vehicle speed, represented
as y in (16), to maintain a safe distance D between the
vehicles. This distance is determined with sensors such as
radar or lidar. This problem can be expressed as a safety
condition and related to a CBF. If the leading car increases
its speed or leaves the lane and there is no conflict between
the safe distance and the desired cruise speed, ACC auto-
matically increases controlled vehicle speed (Ames et al.
(2017)). So the QP-based controller (14) can be applied.
The weight on the relaxation parameter 6 must be chosen
so that the CLF becomes a soft constraint, the CBF
becomes a hard constraint and the system tracks the cruise
speed v, while maintain a safe distance D from the leading
vehicle. The constraints do not need to be simultaneously
satisfiable. Fig. 2 shows a block diagram of the control
strategy applied.

The CLF V that characterizes the soft constraint is given
by:

V= [t +7) + (1) — vl
where §(t + 7), ep(t) and v, = r(t) are shown in Fig. 1.

(19)

The CBF h that characterizes the hard constraint is given
by:

h=D —74(g(t +7) + ep(t)),

where D = (x; — z.) is the distance between the leading
vehicle and the controlled vehicle, and 74 is the desired
time headway, which is an estimation of a human driver
reaction time.

(20)

6. SIMULATION RESULTS

For the evaluation of the ACC with CBF and Smith
predictor, numerical simulations results were obtained
with Matlab/Simulink. Tt is important to highlight that
before applying the control with Smith predictor, the delay
time =Y presented in system model (15) was estimated
using Padé approximation and the control was applied
without Smith predictor. The system became unstable for
all simulation tests using the control strategy proposed.
Besides that, as described in Orosz and Aames (2019),



when time-delays are introduced in system dynamics they
may still render the system unsafe, even when safety is
ensured for the non-delayed system. One way to deal with
that is the use of Smith predictor.

We consider three simulation experiments, shown in Figs.
3, 4 and 5. As mentioned anteriorly, y is the controlled
vehicle speed or the system output, v. is the predefined
vehicle cruise speed or the reference input r as shown in
Fig. 1 and v; is the leading vehicle speed. The objective is
that y tracks the reference v, when the distance D between
the vehicles guarantees a safety behaviour and y has its
value reduced otherwise. The control input u, related to
the vehicle accelerator pedal, cannot be greater than 100%
or smaller than 0%.

For this problem, the QP (14) was represented as(Ames
et al. (2017)):

1
“u'H,.,.u+ FT u

u*(r) = argmin T
u=(u,6)TeRrR? 21
s.t. Aclfu S bclf ( )
Acpru < bepy,
where
Aay = [LgV, =], by = —LyV = ¢V, (22)
and
Acpp = [LyB,0], bay = —LyB+ a(h). (23)

The QP (21) was solved using a closed-form expression
demonstrated in Ames et al. (2017). Besides that, the QP
can be solved numerically using Matlab function quadprog
or Hildreth’s QP procedure (Hildreth (1957)). It was
chosen a(h) = %, where v > 0 and B was related to h
using (13). The numerical values of the parameters used
in all simulations were 74 = 1.8 (Ames et al. (2017)),
0 10
7 = 10000, ¢ = 1000, Face = | | and Hace = [0 p(;}’

where ps = 100 is the weight on the relaxation parameter
d.

In the simulation 1, the initial conditions adopted were
zor = 30 m (leading vehicle initial position), Zggee = 0 m
(controlled vehicle initial position) and yo = 10 m/s
(controlled vehicle initial speed). The cruise speed was
v, = 15 m/s and the leading vehicle speed v; is shown
in Fig. 3. The simulation results show that the controlled
vehicle reaches the cruise speed, respecting the CLF con-
straint, and when the leading vehicle speed reduces, the
CBF constraint acts in the QP and reduces the controlled
vehicle speed, so that the safety requirements are satisfied.
It is also important to highlight the influence of the weight
on the relaxation parameter § so that the CLF becomes
a soft constraint and the CBF a hard constraint. The
parameter c exerts influence on the convergence rate of the
cruise speed when CBF is not active and the parameter ~y
exerts influence on the convergence rate to the safe set
when CBF is active. The ZCBF h always satisfies the
condition (7) for the safe set and the distance D between
the vehicles is guaranteed. The control effort u was great
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Fig. 3. Simulation 1

in the beginning due to the convergence rate ¢, however it
is reduced afterwards.

In the simulation 2, the initial conditions were the same
for the simulation 1, except that xq; = 20 m, the cruise
speed was the same and the leading vehicle speed is shown
in Fig. 4. The simulation results show that the controlled
vehicle speed increases progressively to reach the cruise
speed due to the CLF constraint. However, the controlled
vehicle speed never exceeds the leading vehicle speed due
to the CBF constraint. When the leading vehicle speed
reaches the cruise speed, the controlled vehicle speed does
not increase, because it cannot exceed the cruise speed.
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The CBF h and the variables D and u follow the same
considerations of the simulation 1.

In the simulation 3, the initial conditions adopted were
zor = 150 m, Togee = 0 m and yo = 18 m/s. The cruise
speed was v, = 22 m/s and the leading vehicle speed v
is depicted in Fig. 5. The simulation results show that,
between 0 s and 10 s, the controlled vehicle reaches the
cruise speed due to the CLF constraint. Between 10 s and
20 s, the controlled vehicle speed decreases in order to
satisfy the CBF constraint. Between 20 s and 80 s, the
controlled vehicle reaches the cruise speed again, but does
not exceed it. Finally, after 80 s, the controlled vehicle
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Fig. 5. Simulation 3

speed decreases again to satisfy the CBF constraint. In
the simulation 1, the delay in the speed decrease is lower
because D is lower. In the simulation 3, the delay in the
speed decrease is higher because D is higher. The CBF h
and the variables D and u follow the same considerations
of other simulations.

7. CONCLUSIONS

This work presents the development of ACC applied to a
vehicle using a control strategy that combines CLF, related
to performance/stability objectives and CBF, related to
safety conditions represented by a safe set. CLF and CBF



are integrated with QP and a relaxation is used to make
the performance/stability objectives becomes a soft con-
straint and the safety conditions a hard constraint. The
system model is based on a vehicle available at EPUSP
and presents an input time-delay, that can degrade perfor-
mance and stability. The input delay is compensated by a
Smith Predictor. The numerical simulations indicate that
the proposed controller respect the performance/stability
objectives and the safety conditions. In all simulation
experiments the controlled vehicle reaches the cruise speed
with a convergence rate determined by ¢, due to the CLF
constraint, and when the leading vehicle speed decreases,
the CBF constraint acts on the QP and reduces the con-
trolled vehicle speed, so that the safety requirements are
satisfied. The weight on the relaxation parameter § makes
the CLF a soft constraint and the CBF a hard constraint
and the parameter v exerts influence on the convergence
rate to the safe set when the CBF is active. In all cases, the
ZCBF h satisfies the safety condition and the distance D
between the vehicles is guaranteed. As future works, this
control scheme will be implemented in the real vehicle.
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