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Lúıs Felipe Vieira Silva ∗ Thiago Damasceno Cordeiro ∗
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Abstract: This works presents anH2/H∞ robust control scheme for a rotary inverted pendulum
using Linear Matrix Inequality (LMI) approach based on Lyapunov theory and taking into
account the uncertainty of the position of the pendulum to the servo-basis of the system. The
dynamic model of the system is obtained by Euler-Lagrange formulation and the controller is
obtained by solving a convex optimization problem. Experiments using this control scheme with
changes in the position of the pendulum were made to compare the performance with another
controller using pole placement control design. Results show that only H2/H∞ controller is able
to maintain the stability of the system for all experiments performed in this work.
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1. INTRODUCTION

The Rotary Inverted Pendulum (RIP) is a classical prob-
lem in the control systems area that provides a challenging
platform for control study purposes. Due to the fact that
RIP is an unstable multi-variable non-minimum phase sys-
tem its use is very popular within the control community
to verify performance and demonstrating the effectiveness
of several control techniques (Cazzolato and Prime, 2011).
Moreover, the dynamic model of the RIP is very useful for
the study of attitude control of space rockets, automatic
aircraft landing systems or for the problem of stabilizing
androids (Akhtaruzzaman and Shafie, 2010).

Basically, there are two control tasks for an inverted pen-
dulum system: swing-up and balance control. For swing-up
control, the pendulum is swing from its downward stable
balance point to the upward unstable balance point. For
balance control, the pendulum is in its upright vertical
position and the driven arm automatically varies its angle
while the controller tries to keep the system stable (Furuta
et al., 1992).

The system model is usually determined by energy-based
methods, in which differential equations from the mechan-
ical model are obtained by using Euler-Lagrange formu-
lation (Fantoni and Lozano, 2002). However, these math-
ematical models are just approximations of real physical
system and ignore a wide range of uncertainties that can
lead to instability such as physical wear on the motor and
system gears, problems on the voltage grid, or inaccuracies
at the base of the pendulum that have not been properly
modeled. For this, robust control theory is used (Zhou
et al., 1996).

A robust controller handles two types of problems: the
analysis problem and the synthesis problem. For analysis,
given a controller, the question is whether the controlled

signals satisfy desired properties for all admissible noises,
disturbances or model uncertainties. For synthesis, it con-
sists on designing a controller such that the control signals
satisfy the desired properties also for noises, disturbances
or uncertainties (Zhou and Doyle, 1998).

In the case of RIP, many robust controllers have been
studied, most of them based on maintaining stability of
the system given modeled disturbances and uncertainties,
like H∞ controller, a method that synthesizes a controller
to achieve robust performance or stabilization. Another
classical method on robust control design is H2 controller,
which uses H2 norm as measure for system performance
and is useful to deal with measurement noise and random
disturbance. A mixed H2/H∞ controller consider both:
while H∞ performance is convenient to enforce robustness
to model uncertainty, H2 performance is useful to handle
stochastic aspects such as measurement noise and random
disturbance.

The purpose of this work is to present a robust H2/H∞
controller design that stabilizes the rotary inverted pendu-
lum taking into account uncertainty on the dimensions of
the rotary arm.

This work consists of five Sections. Section 2 brings Euler-
Lagrange formulation to model the RIP used in this work
using state-space representation. Section 3 presents the
H2/H∞ controller design and discusses about uncertainty
in the rotary arm. Experimental results are presented in
Section 4 comparing performance of the H2/H∞ controller
with a pole placement controller. Four experiments are
presented using root mean squared error (RMSE) and
mean squared error (MSE) as performance indices. Section
5 contains the final conclusions of this work.
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2. ROTARY INVERTED PENDULUM MODEL

The RIP used in this work was designed by Quanser Inc.
for research and education purposes (Quanser, 2015) with
a rotary arm attached to a DC motor (actuator) and the
pendulum’s rod, which is connected to the rotary arm as
can be seen in Figure 1(a).

(a) (b)

Figure 1. (a) Rotary inverted pendulum SRV02 ROTPEN
designed by Quanser Inc and; (b) Illustrative descrip-
tion of the rotary inverted pendulum.

The rotary arm has length Lr, moment of inertia Jr and
its angle to the x0 axis is θ, which increases positively
when the arm is in counter-clockwise (CCW) rotation. The
pendulum’s rod has length Lp and its center of mass is
located in Lp/2 with moment of inertia Jp. The angle of
the pendulum’s rod, α, is zero when it is perfectly aligned
on the vertical (z0 axis) and increases positively when it is
rotated counter-clockwise, as can be seen in Figure 1(b).

Two equations of motion are provided in the case of
Quanser’s RIP (Quanser, 2011), which are obtained using
Lagrange method. The entire formulation can be found in
(Vieira, 2019) and these two equations are derived as(
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A linear state-space model of this system can be reached
using Taylor series (Quanser, 2011). The resulting linear

equations, with initial conditions θ0 = α0 = θ̇0 = α̇0 = 0
are as follows:
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in a state-space form, the state vector x for the rotary
pendulum system is defined such as

xT = [x1 x2 x3 x4] = [θ α θ̇ α̇] (9)

The state vector (9) shows that ẋ1 = x3 and ẋ2 = x4.
Replacing this into (7) and (8), and making u = τ , it gives
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All the given parameters of the RIP can be found in
(Inc., 2012; Quanser, 2015). Using these values, and for
Lr = 0.2159, the state matrix A is given by

A =

0 0 1 0
0 0 0 1
0 80.3 −45.8 −0.930
0 122 −44.1 −1.40

 , (14)

input matrix B is given by

B =

 0
0

83.4
80.3

 . (15)

Only the servo position and link angles are measured in the
output equation. Therefore, matrices C and D are given
by

C =

[
1 0 0 0
0 1 0 0

]
and D =

[
0
0

]
, (16)

and the output equation y = Cx+Du is given by

y =

[
1 0 0 0
0 1 0 0

]
x =

[
x1
x2

]
(17)

The system’s open-loop poles are thus s1 = 0, s2 =
−48.41, s3 = 7.05, and s4 = −5.86.

2.1 The rotary arm uncertain model

The rotary arm length is measured from the pendulum’s
rod to the base of the servo and equals to Lr = 0.216m.
However, this parameter can be in a range of 0.16−0.216m
leading to the following research question: is it possible
to stabilize the closed-loop system, using a controller
with static gains, taking into account the range of the
rotary arm length (Lr) uncertainties? The RIP model with
uncertainties can be represented by the following equation:

ẋ(t) = A(Lr)x(t) +Bu(Lr)u(t) +Bww(t),

z(t) = Cx(t), (18)

where Lr is limited to R = {Lr ∈ R | 0.16 ≤ Lr ≤ 0.216}.
As an example, for Lr = 0.16 m, matrices A and B have
the new following values:

A(Lr = 0.16) =

0 0 1 0
0 0 0 1
0 60.3 −45.8 −0.69
0 74.9 −32.6 −0.85

 , (19)

and

B(Lr = 0.16) =

 0
0

83.4
59.5

 . (20)

The new system’s open-loop poles are s1 = 0, s2 = −47.26,
s3 = 5.86 and s4 = −5.28.

3. H2/H∞ ROBUST CONTROL DESIGN FOR
ROTARY INVERTED PENDULUM

The H2 and H∞ controllers can be combined in a central
H2/H∞ controller that minimizes H2 norm from distur-
bance signal w(t) to controlled output z(t), while also
guaranteeing disturbance attenuation H∞.

Consider the following linear system:

ẋ(t) = Ax(t) +Buu(t) +Bww(t)

z(t) = Czx(t) +Dzuu(t) +Dzww(t), (21)

where x(t) ∈ Rn is the state vector, z(t) ∈ Rp is the
output vector, w(t) ∈ Rq is the disturbance vector and
u(t) ∈ Rm is the input control vector. A, Bu, Bw, Cz, Dzu

and Dzw are the system coefficient matrices of appropriate
dimensions. For a state-feedback matrix K ∈ Rp×n such
that u(t) = −Kx(t), and considering Dzu = Dzw ≡ 0,
(21) can be rewritten as the new system

ẋ(t) = A′x(t) +Bww(t)

z(t) = C ′zx(t), (22)

where A′ = (A − BuK) and C ′z = (Cz −DzuK), Cz = C
and Bw = 0.

3.1 H2 Controller

The H2 problem is how to determine a gain matrix K,
that stabilizes system (22) with minimum H2 norm. It
must be remembered that the H2 norm of the system (22)
is determined by the following optimization problem:

min Tr

[
C ′zQ(C ′z)T

]
:

{
Q = QT > 0

(A′)Q+Q(A′)T +BwB
T
w < 0

(23)

However, as the objective function and the LMI of (23)
has non convex terms, the following relations will be used
(Duan and Yu, 2013):

• W ≥ C ′zQ(C ′z)T ;
• Y = KQ.

With these relations, and using Schur’s complement in
(23), a theorem for H2 control using state feedback can
be written.

Theorem 1. (H2 control). Consider system (22). If there
exist a symmetric matrix Q and two symmetric matrices
W and Y such that:
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[
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(QCT
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zu) Q

]
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[
b11 Bw

BT
w −I

]
< 0,

(24)

where b11 = (AQ+QAT−BuY −Y TBT
u ) and I is a identity

matrix of order 1. Then the system is stable for the control
law u(t) = −Y Q−1x(t) and the H2 norm of the system is

‖ Gwz ‖2<
√
Tr(W ).

3.2 H∞ Controller

The H∞ problem is how to determine a gain matrix K,
that stabilizes system (22) with minimumH∞ norm. Thus,
a theorem of H∞ control using state feedback can be
written (Palhares and Gonçalves, 2007).

Theorem 2. (H∞ control). Consider system (22). If there
exist a symmetric matrix Q and a scalar δ > 0 such that:

min δ :


Q = QT > 0, a11 Bw (QCT

z − Y TDT
zu)

BT
w −δI DT

zw
(CzQ−DzuY ) Dzw −I

 < 0,

(25)

where a11 = AQ + QAT − BuY − Y TBT
u and δ ≡ γ2.

Then, system (22) is stabilized by the control law u(t) =
−Y Q−1x(t) and the H∞ norm of this system is given by

‖ Gwz ‖∞=
√
δ = γ.

3.3 H2/H∞ Controller

As mentioned before, an H2/H∞ controller is a combina-
tion of both H2 and H∞ controllers. Therefore, a theorem
of this control strategy can be defined as follows.

Theorem 3. (H2/H∞ control). Consider system (22). If
there exist a symmetric matrix Q and a scalar δ > 0 such
that:

min Tr(W ) :
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W a12
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b11 Bw b13
BT

w −δI DT
zw

b31 Dzw −I

 < 0,
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where a12 = (CzQ − DzuY ), a21 = aT12, b13 = QCT
z −

Y TDT
zu, b31 = bT13 and b11 = AQ+QAT −BuY − Y TBT

u .
Then, the system is stabilized by the control law

u(t) = −Y Q−1x(t), (27)

where the H∞ norm of the system is ‖ Gwz ‖∞<
√
δ < γ

and the H2 norm is ‖ Gwz ‖2<
√
Tr(W ).

3.4 Control Signal Restrictions

In some cases, the optimum gain of an H∞ controller can
assume a very high norm value. This case may not be
acceptable for real systems and the use of saturation in the

control signal is required, e.g., in DC motor input voltage
(Vm). The usual solution for this problem is to impose
limitations on the control signal u(t) = −Kx(t). For this,
consider the following conditions:

• There are two matrices Q > 0 and Y that satisfy
Theorem 2 1 .

• The i-th control signal ui(t), i = {1, ..., p}, should be
limited between ±µ.

From the conditions above and knowing that u(t) =
−Y Q−1x(t), then

max
t≤0
‖ ui ‖ ≤ µi ⇐⇒

max
t≤0
‖ Kix(t) ‖ ≤ max
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where Ki(Yi) is the i-th line of matrix K(Y ) and λmax(∗) is
the maximum eigenvalue of (∗) (Trofino, 2000). Therefore,
the restriction ‖ ui ‖, is equivalent to the following LMI,
∀i: [

Q Y T
i

Yi µ2
i

]
≥ 0. (29)

This LMI constraint can be used in conjunction with H2,
H∞ and H2/H∞ control constraints so that the solution
of the convex optimization problem can find the same
matrices Q and Y that satisfy all imposed conditions.

Otherwise, if the optimum gain from the controller and
its H∞ norm are very small, the gain may not be enough
to turn on a real system. This problem can be solved in
a simple way by imposing another LMI with a positive
constraint on the matrix that makes up the K gain, i.e.,
for K = Y Q−1 it is possible to impose the following
relationship:

Q = QT > εI, (30)

where ε > 0 is a very small scalar. This solution generates
a sub-optimal controller that must be evaluated at control
design (Palhares et al., 1998).

For each n uncertainties in a model, it is generated
a polytope Bn with 2n vertices. Given the number of
uncertainties and its range of values, an algorithm can be
implemented 2 to generate all A, B, C, and D matrices
on the vertices of a polytope. Since only the uncertainty
of Lr was modeled, a polytope B1 was generated with two
vertices.

In H2/H∞ robust control, the conditions from Theorem
3 must be satisfied for each system configuration on the
vertices of B1. To avoid very high voltages, a constraint of
±5V is added to the control variable, since these values
are sufficient to control the system. For very small norm
values, making the controlled system very slow, a positivity
constraint can be added in the matrix to increase the K
gain. Empirically, a reasonable ε value obtained was 0.375.
Thus, the final convex optimization problem to obtain the
H2/H∞ controller with limitation on the control variable
and sub-optimal norm is to minimize Tr(W ) subject to

1 Also valid to H2 and H2/H∞ Theorems (1 and 3, respectively)
2 The implementation can be found at
https://github.com/lfelipev/robust-control



Q = QT > εI,[
W a12
a21 Q

]
≥ 0,

b11 Bw(n) b13
BT

w −δI Dzw(n)T

b31 Dzw(n) −I

 < 0,

[
Q Y T

Y µ2

]
≥ 0,

. (31)

where n is the n-th system on the polytope vertice, a12 =
Cz(n)Q−Dzu(n)Y , a21 = aT12, b11 = A(n)Q+QA(n)T −
Bu(n)Y − Y TBu(n)T , b13 = QCz(n)T − Y TDzu(n)T , and
b31 = bT13.

4. RESULTS

Problem (31) has been solved using SeDuMi (Sturm,
1999), a computational optimization package restricted to
symmetric matrix cones that can be used to find matrix
Q to minimize Tr(W ).

The H∞ norm is
√
δ = γ = 5.09, the H2 norm is√

Tr(W ) = 1.55, and the RIP is controlled by the control
law u(t) = −Y Q−1x(t) = −KH2/H∞x(t).

The designed control gains are

KH2/H∞ = [−5.57 26.92 −2.98 4.21] , (32)

and the closed-loop poles are calculated as −3.49± j5.10,
−4.26, and −1251. These results were computed with
MATLAB R2014b running in Windows 10, Intel Core-i5
CPU at 3.1GHz, and 8GB RAM.

The values of Q and Y were calculated as follows:

Q =

 0.0026 −0.0005 −0.0092 0.0011
−0.0005 0.0037 0.0092 −0.0178
−0.0092 0.0092 0.1565 0.0356
0.0011 −0.0178 0.0356 0.1389

 ∗ 10−6, (33)

Y = [0.0310 0.0074 −0.1769 −0.0653] ∗ 10−7. (34)

To evaluate the performance of the H2/H∞ robust
controller on the SRV02 RIP, a state-feedback con-
troller designed through pole-placement is used (Quanser,
2015). The gain vector of this controller is KQ =
[−5.26 28.16 −2.76 3.22] with closed-loop poles −2.80 ±
j2.86, −30, −40. This controller was designed to obtain
the following system specifications:

• Damping ratio: ζ = 0.7;
• Natural frequency: ωn = 4rad/s;

In all performed experiments, the pendulum starts in a
hanging down position and the RIP angle is ±180. Then,
it is manually brought to the upright position, with the
angle going up to zero, and the controller starts to work.

Four experiments were done to evaluate the performance
of the two controllers. The first consists of positioning the
rotary arm at Lr = 0.17 m from the base of the servo
and varying the angle θ by ±10◦. The second consists of
positioning the rotary arm at Lr = 0.21 m from the base of
the servo with the same variation of the angle θ. The third

experiment was done with the rotary arm at Lr = 0.21 m
and varying the angle θ by ±20◦ and the fourth experiment
was done by placing the rotary arm at Lr = 0.17 m with
the angle θ varying at ±20◦.

Two performance indices were used: mean squared error
(MSE) and root mean squared error (RMSE) (Chai and
Draxler, 2014). The quadratic scoring rules that measures
average magnitude of the error are given by

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

e2i . (35)

.

4.1 Experiment 1: Rotary arm Lr = 0.17 m and θ = ±10◦

Positioning the rotary arm in 0.17 m from the base of the
servo and varying θ between ±10◦, the simulation results
are showed in Figure 2 with 20 seconds of simulation. The
same result is shown with the time between 9.5 and 13
seconds in Figure 3 for better visualization.

From these figures, it can be seen that the controller with
the KQ gains (dotted lines) have shown an oscillatory
behavior before being able to put the angle α at zero
degrees. This oscillatory behavior was seen in the control
variable Vm, represented in gray color, in the pendulum’s
rod angle (α) and in the angle of the rotary arm (θ).
As can be seen, controller H2/H∞ (the continuous lines)
manages to stabilize near the equilibrium point more
quickly, although it still has a low θ oscillation.

The performance indices MSE and RMSE can be seen
in the Table 1. The angle α and control input Vm were
calculated in relation to the balance point (zero). MSE
and RMSE of θ were calculated in relation to the reference
(±10◦) represented in Figures 2 and 3 by the dashed
line. Ignoring the initial conditions of the system, the
calculations were made after 2 seconds of simulation, which
is the time before the pendulum being lifted.

Table 1. Performance indices comparison for pole-
placement controller (KQ) and H2/H∞ controller

(KH2/H∞) for Lr = 0.17m and θ = ±10◦.

Performance Index KQ KH2/H∞
MSE α 5.10 1.75
RMSE α 2.25 1.32

MSE θ 42.07 33.55
RMSE θ 6.48 5.79

MSE Vm 0.76 0.24
RMSE Vm 0.87 0.49

4.2 Experiment 2: Rotary arm Lr = 0.21 m and θ = ±10◦

Positioning the rotary arm at 0.21 m from the base of the
servo and varying the angle θ between±10◦, the simulation
results are shown in Figure 4 with a simulation time of 20
seconds and also with time between 9.5 and 13 seconds in
Figure 5.

It can be seen that the angle transition is more smooth.
However, the H2/H∞ controller presented a greater over-
shoot in the angle θ that influenced the performance in-
dices calculation. The performance of the controllers can



Figure 2. Experimental result with the rotary arm angle
(θ) varying between ±10◦ and the distance between
the servo and the pendulum equal to 0.17 m. Simula-
tion result with time between 0 and 20 seconds.

Figure 3. Experimental result with the rotary arm angle
(θ) varying between ±10◦ and the distance between
the servo and the pendulum equal to 0.17 m. Simula-
tion result with time between 9.5 and 13 seconds.

be seen in Table 2. Both MSE and RMSE of α, Vm and θ
are calculated as in experiment 1, i.e., ignoring the first 2
seconds of simulation due to initial conditions. The angle
α and the control signal Vm showed similar values, but in
the angle θ the MSE and RMSE were higher for H2/H∞
controller. It can be concluded that the values were almost
the inverse of experiment 1 for the angle θ.

Table 2. Performance indices comparison for pole-
placement controller (KQ) and H2/H∞ controller

(KH2/H∞) for Lr = 0.21m and θ = ±10◦.

Performance Index KQ KH2/H∞
MSE α 1.04 1.48
RMSE α 1.02 1.22

MSE θ 33.65 40.90
RMSE θ 5.80 6.39

MSE Vm 0.16 0.17
RMSE Vm 0.40 0.42

Figure 4. Experimental result with the rotary arm angle
(θ) varying between ±10◦ and the distance between
the servo and the pendulum equal to 0.21 m. Simula-
tion result with time between 0 and 20 seconds.

Figure 5. Experimental result with the rotary arm angle
(θ) varying between ±10◦ and the distance between
the servo and the pendulum equal to 0.21 m. Simula-
tion result with time between 9.5 and 13 seconds.

4.3 Experiment 3: Rotary arm Lr = 0.21 m and θ = ±20◦

In this experiment the rotary arm was positioned at Lr =
0.21 m from the servo base and the variation of the angle
θ was ±20◦. This means that the DC motor input voltage,
Vm, will have higher peaks to execute the change of angle.
The simulation results with 20 seconds of simulation are
displayed in Figure 6. The same result is shown in Figure
7 between 9.5 and 13 seconds.

In this experiment, both controllers showed a very similar
behavior for both angles θ and α and also for control input
Vm including higher voltage peaks needed to make the
angle transitions.

The performance indices of the controllers can be seen in
Table 3, the MSE and RMSE of α, Vm, and θ were also
calculated despising the first 2 seconds of simulation due
to initial conditions.



Figure 6. Experimental result with the rotary arm angle
(θ) varying between ±20◦ and the distance between
the servo and the pendulum equal to 0.21 m. Simula-
tion result with time between 0 and 20 seconds.

Figure 7. Experimental result with the rotary arm angle
(θ) varying between ±20◦ and the distance between
the servo and the pendulum equal to 0.21 m. Simula-
tion result with time between 9.5 and 13 seconds.

Table 3. Performance indices comparison for pole-
placement controller (KQ) and H2/H∞ controller

(KH2/H∞) for Lr = 0.21m and θ = ±20◦.

Performance Index KQ KH2/H∞
MSE α 3.93 3.89
RMSE α 1.98 1.97

MSE θ 114.17 116.53
RMSE θ 10.68 10.79

MSE Vm 0.45 0.42
RMSE Vm 0.67 0.65

4.4 Experiment 4: Rotary arm Lr = 0.17 m and θ = ±20◦

In this experiment the rotary arm was positioned at Lr =
0.21 m from the servo base and the variation in the angle
θ was ±20◦. Because of high variation in angle θ it is also
expected that the controller voltage will have higher peaks
to execute the change of angle. The simulation results are
showed in Figure 8 with 20 seconds and in Figure 9 with
time between 9.5 and 13 seconds.

Figure 8. Experimental result with the rotary arm angle
(θ) varying between ±20◦ and the distance between
the servo and the pendulum equal to 0.17 m. Simula-
tion result with time between 0 and 20 seconds.

Figure 9. Experimental result with the rotary arm angle
(θ) varying between ±20◦ and the distance between
the servo and the pendulum equal to 0.17 m. Simula-
tion result with time between 9.5 and 13 seconds.

In this experiment only the H2/H∞ controller remained
stable. The controller by pole-placement wasn’t able to
control the system in this configuration. Although the
controller output voltage was limited in ±5V , the figures
show that the system needed voltage peaks above 5V in a
short period of time when changing the angle.

The performance indices of the H2/H∞ controller can be
seen in Table 4. The MSE and RMSE of α, Vm, and θ are
calculated similarly to experiment 1, despising the first 2
seconds of simulation due to initial conditions.

5. CONCLUSION

This work presented the modeling and control of a rotary
inverted pendulum. The Euler-Lagrange formulation was
used to obtain the mathematical model of the pendulum.
With this model and its representation in state-space,
two control techniques were applied: pole-placement and
H2/H∞ robust control.



Table 4. Performance indices comparison for pole-
placement controller (KQ) and H2/H∞ controller

(KH2/H∞) for Lr = 0.17m and θ = ±20◦.

Performance Index KH2/H∞
MSE α 4.69
RMSE α 2.16

MSE θ 103.09
RMSE θ 10.15

MSE Vm 0.73
RMSE Vm 0.85

The main objective of this work is to implement and
evaluate the performance of the H2/H∞ controller in a
rotary inverted pendulum system. The study was made
taking into account the uncertainty of the position of the
rotary arm in a range of 0.17− 0.21 m.

Experimental results showed the practical application of
robust control theory, where an H2/H∞ controller man-
aged to maintain pendulum stability even in the presence
of modeled uncertainty in four different scenarios. The
pole-placement controller only showed robustness for three
of the four experiments performed while the H2/H∞ con-
troller has fulfilled its objective. As future works, it will be
considered to implement robust controllers that guarantee
not only stability, but other performance indices in the
controller design projects like steady-state error, rising-
time, overshoot etc.
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