
Robust optimal nonlinear control strategies

for an aerial manipulator ?

Júnio E. de Morais ∗ Daniel Neri ∗ Guilherme V. Raffo∗,∗∗

∗ Graduate Program in Electrical Engineering, Federal University of
Minas Gerais, MG, (e-mail: {jeduardo, danielneri}@ufmg.br).

∗∗ Department of Electronic Engineering, Federal University of Minas
Gerais, MG (e-mail: raffo@ufmg.br)

Abstract: This work presents two control strategies based on a classic nonlinear H∞ controller
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1. INTRODUCTION

Unmanned aerial manipulators (UAMs) consist of un-
manned aerial vehicles (UAVs) coupled with one or more
robotic manipulators. These aerial robots expand the
workspace of a robotic manipulator to encompass all of
the accessible (i.e. obstacle-free) tridimensional space, pre-
senting a vast potential in the realization of tasks in
remote, hard to access, and hazardous environments. De-
spite the advantages, developing UAMs is not a trivial
task. These systems are usually underactuated mechanical
systems with highly coupled and complex nonlinear dy-
namics. In addition, the UAMs operate under the effects
of disturbances caused by aerodynamic effects, unmodeled
dynamics and parametric uncertainties, as well as those
effects related to the displacements of the center of mass
generated by the movements of the robotic arm. Therefore,
this kind of systems require robust controllers in order to
achieve acceptable performance.

In the literature, few works deal with control design
for UAMs. In Mello et al. (2015), feedback linearization
with PD controller was designed for a UAM. In Lippiello
and Ruggiero (2012), a cartesian impedance control law
was proposed, while Johansen et al. (2019) used a PD+
controller based on dual quaternions. Acosta et al. (2014)
proposed a robust passivity based controller that ensures
stability with the robotic arm locked at any position. In
Heredia et al. (2014), a backstepping based controller for
the UAV and admittance controller for the robotic arm
were implemented; while in Jimenez-Cano et al. (2013),
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the same backstepping based controller was used for the
UAV, but with a PID based controller for the robotic
arm. In Ballesteros-Escamilla et al. (2019), an adaptive
controller based on a PD structure was proposed for the
trajectory tracking of an UAM. In Acosta et al. (2020)
a nonlinear cascade control strategy is presented, with
a passivity based controller for the UAV and an inverse
kinematic controller with integral action for the robotic
manipulator. And Nava et al. (2020) present a controller
based on multi-task optimization for an UAM equipped
with a force sensor in its end effector.

Among the fundamental nonlinear control strategies used
to handle and attenuate disturbances, the classic H∞
control theory is one of the most used. This control strat-
egy aims to achieve a small and bounded ratio between
the external disturbances and the cost variable (van der
Schaft, 2000). Some applications of nonlinear H∞ con-
trollers to underactuated mechanical systems are found in
Siqueira and Terra (2004b); Raffo et al. (2011, 2015). The
efficiency of the nonlinear H∞ controller has already been
demonstrated through several experiments. Nevertheless,
this control approach presents some drawbacks. As stated
in Chilali and Gahinet (1996), the H∞ control strategy
deals mostly with the aspect of the highest gain that the
system gives to the disturbances, and provides little control
over the transient behavior of the system. To overcome this
issue, Aliyu and Boukas (2011) proposed the formulation
of the H∞ controller in the Sobolev space Wm,p for the
general class of nonlinear systems. Later, Neri et al. (2018)
particularized this approach for mechanical systems and
extended it to the weighted Sobolev space. The reasoning
behind this new control approach is to consider the dynam-
ics of the system in the cost functional in order to obtain
a controller that provides better transient response with
fast reaction against external disturbances. These features
make the W∞ controller more attractive for the control
design of UAMs than the classic H∞ control strategy.
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Figure 1. Reference frames rigid attached to the mechani-
cal system in order to derive the forward kinematic.

Therefore, aiming to achieve a robust trajectory tracking,
this paper presents two control strategies based on the
classic nonlinear H∞ controller and on the novel non-
linear W∞ controller for a UAM. Numerical experiments
are conducted in a hardware-in-the-loop (HIL) framework
using the ProVANT simulator, which was developed on
the Gazebo and Robot Operating System (ROS) plat-
forms using the Computer-Aided Design (CAD) model
of the UAM. In order to assess the performance of the
designed controllers, a quantitative comparative analysis is
performed based on the Integral Square Error (ISE) and
the Integral of Absolute value of the control Derivative
(IADu) indexes.

Summarizing, the main contributions of this paper are: (i)
the design of two robust control strategies for trajectory
tracking of an unmanned aerial manipulator based on the
nonlinear H∞ controller, proposed in Raffo et al. (2011),
and on the novel nonlinearW∞ controller, proposed in Neri
et al. (2018), followed by a comparative analysis between
their performances; and (ii) the implementation of these
controllers in a HIL framework using the high fidelity
ProVANT Simulator 1 . Accordingly, the remaining of the
paper is structured as: Section 2 describes the modeling of
the UAM; Section 3 presents the nonlinear H∞ and W∞
control approaches designed for underactuated mechanical
systems; Section 4 illustrates the numerical experiments
and presents the comparative analysis. Finally, Section 5
concludes the work and presents future works.

2. SYSTEM MODELING

The UAM presented in this work consists of a quadrotor
UAV serially coupled with a planar manipulator composed
of three revolute joints (see Figure 1). To obtain the
forward kinematics, five frames are rigid attached to the
system, they are shown in Figure 1 and are defined as: FI
is the inertial frame, F b is a frame attached to the center of
mass of the UAV, and F li is attached to the center of mass
of the i-th link of the manipulator, with i ∈ {1, 2, 3}.
The quadrotor UAV has six degrees of freedom (DOF)

qq , [φ θ ψ x y z]
′
, where x, y, and z denote the position

of the origin of F b with respect to (w.r.t.) FI, and φ, θ, and

1 The ProVANT simulator is an open source software developed for
testing control strategies on UAVs. It is available to download on
https://github.com/Guiraffo/ProVANT-Simulator.

ψ are Euler angles that describe the orientation of F b w.r.t.
FI using the roll, pitch and yaw convention. The manipu-
lator arm has three degrees of freedom qm , [β1 β2 β3]

′
,

where βi is the angular position of the i -th joint w.r.t the
(i-1 )-th joint. Thus, the complete system possesses nine
DOF, with the vector of generalized coordinates given by

q ,
[
q′
q q′

m

]′
.

Initially, the forward kinematics are developed. Therefore,
the pose of the quadrotor UAV w.r.t. FI are computed
by means of the following homogeneous transformation
matrix 2 :

HI
b =

[
RI

b pI
b

0 1

]
, (1)

where RI
b , Rz,ψRy,θRx,φ ∈ SO(3) is the orthonormal

rotation matrix, pI
b = [x y z]

′
is a vector that describes

the position of the quadrotor UAV, and 0 is a matrix of
zeros with appropriate dimension.

The pose of the center of mass of the manipulator links
w.r.t. the UAV fixed frame are determined using the stan-
dard Denavit-Hartenberg (DH) convention (Spong et al.,
2006), with the parameters ai, αi, di and ϑi presented in
Table 1. Therefore, under the DH convention, the transfor-
mation matrix from the i−th link to the previous (i−1)−th
link in the chain is given by

H
li−1

li
=

[
R
li−1

li
p
li−1

li
0 1

]
, (2)

with

R
li−1

li
=

[
cosϑi − sinϑi cosαi sinϑi sinαi
sinϑi cosϑi cosαi − cosϑi sinαi
0 sinαi cosαi

]
, (3)

p
li−1

li
=

[
ai cosϑi
ai sinϑi
di

]
. (4)

In this way, the homogeneous transformation matrix from
the i-th link to inertial frame is computed by

HI
li

=

[
RI
li

pI
li

0 1

]
= HI

bH
b
l0
Hl0
l1

· · ·Hli−1

li
. (5)

2.1 Equations of Motion

The dynamic modeling of the system follows the method-
ology presented in Lippiello and Ruggiero (2012), making
use of the Euler-Lagrange formalism. The resulting equa-
tions of motion are given in the canonical form as

M(q)q̈+C(q, q̇)q̇+G(q) = u+ δ(t) (6)

where M(q) ∈ R9×9 is the symmetric and positive definite
inertia matrix, C(q, q̇) ∈ R9×9 is the centrifugal and Cori-
ollis forces matrix, G(q) ∈ R9 is the vector of gravitational
forces, u ∈ R9 is the vector of generalized forces, and
δ(t) = [δφ δθ δψ δx δy δz δβ1

δβ2
δβ3 ]

′ ∈ R9 is the vector
of generalized disturbances that affect the system.

The inertia matrix is computed through the UAM total ki-
netic energy. Therefore, using the previous defined forward
kinematics, the inertia matrix is given by

2 From now on, the frame notations FI, F b and F li will be simplified
to I, b and li, respectively



M(q) =

[
M11 M12 M13

∗ M22 M23

∗ ∗ M33

]
, (7)

in which the ∗ terms are deduced by the symmetry of M(q),
and
M11 = W′

ηIqWη +
∑3

i=1

(
mliSli

′Sli +Wη
′JliWη

)
,

M12 = −
∑3

i=1

(
mliSli

)
, M13 =

∑3

i=1

(
mliR

I
b J̄v

(li)
)
,

M22 =
(
mq +

∑3

i=1
mli

)
1, M23 =

∑3

i=1

(
Wη

′JliJ̄
(li)
ω −mliSliR

I
b J̄

(li)
v

)
,

M33 =
∑3

i=1
mli (J̄

(li)
v )′J̄

(li)
v + (J̄

li
ω )

′JliJ̄
li
ω ,

with Sli = S
(
RI

b
pb
li

)
WI, Jli = Rb

li
Ili (R

b
li
)′, J̄

(li)
v = ∂pI

li
/∂q,

J̄
(li)
ω = ∂ωI

li,b
/∂q, WI = RI

b
Wη , and

Wη =

[
1 0 − sinφ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

]
.

Moreover, 1 is an identity matrix with appropriate di-

mension, J̄
(li)
v ∈ R3×9 and J̄

(li)
ω ∈ R3×9 are, respectively,

the geometric Jacobian matrices of the linear and angular
velocities of the i-th link, mq and Iq are the mass and
inertia tensor matrix of the quadrotor UAV, and mli and
Ili are the mass and inertia tensor matrix of the i-th link
of the manipulator arm. Finally, S (·) is a skew symmetric
matrix (Spong et al., 2006) that satisfies S (·)v = ·×v for
any vector v ∈ R3, and the link angular velocity, ωI

li
∈ R3,

is obtained from ṘI
li
RI
li
= S(ωI

li,b
).

From the inertia matrix, one can compute the Coriolis
matrix, C(q, q̇), using the Christoffel symbols of the first
kind as follows

Cij =

9∑
k=1

1

2

(
∂Mij

∂qk
+
∂Mik

∂qj
−
∂Mjk

∂qi

)
q̇k, (8)

where Ck,j and Mk,j are elements of the Coriolis and
inertia matrices, respectively, corresponding to the k-th
row and j-th column.

In addition, the potential energy of this system is com-
puted by

U = −g

[
mqe

′
3 +

3∑
i=1

mlie
′
3(p

I
b +RI

bp
b
li
)

]
, (9)

where e3 = [0 0 1]
′
, and g is the acceleration of grav-

ity. Therefore, the gravitational force vector is given by
G(q) = ∂U/∂q.
Finally, the vector of generalized forces is computed by
u = B(q)Γ, in which Γ = [f1 f2 f3 f4 τ1 τ2 τ3]

′ ∈ Rnc

is the vector of control inputs with fn being the force
applied by the n-th propeller, for n ∈ {1, 2, 3, 4}, τi the
torque applied to the i-th joint of the manipulator arm, and
B(q) ∈ R9×7 the input coupling matrix. To improve the
controllability of the system, the rotors of the quadrotor
UAV are tilted towards its geometric center by a small
angle αT (Raffo et al., 2011). Then, the input coupling
matrix of the system is given by

B(q) =

[
N(q) 06×3

03×4 13×3

]
, N(q) =

[
Wη

′ 03×3

03×3 RI
b

]
N̄,

N̄ =


0 l cos(αT ) 0 −l cos(αT )

−l cos(αT ) 0 l cos(αT ) 0
kτ

b
−
kτ

b

kτ

b
−
kτ

b
− sin(αT ) 0 sin(αT ) 0

0 − sin(αT ) 0 sin(αT )
cos(αT ) cos(αT ) cos(αT ) cos(αT )

 ,
where l is the distance between the propellers and the
reference frame F b, b is the propeller thrust coefficient,
and kτ is the propeller drag coefficient. The UAM physical
parameters are given in Table 1.

Unmanned aerial manipulator parameters.

Parameter Value

l 0.3 (m)

b 9.510−6 (N·s2)
kτ 1.710−7 (N·m·s2)
αT 5◦

g 9.81 (m/s2)

mq 2.24 (kg)

Iq diag(0.0118, 0.0235, 0.0117) (kg·m2)

ml1 ,ml2 ,ml3 0.2 (kg)

Il1 , Il2 , Il3 diag(0.0011, 0.0011, 0.0012) (kg·m2)

Denavit-Hartenberg parameters.

link di (m) ϑi (rad) ai (m) αi (rad)

l1 0 0.3670 + β1 0.0765 0

l2 0 2.5813 + β2 0.1485 0

l3 0 2.9486 + β3 0.1635 π/2

Table 1. Table of system parameters.

3. CONTROLLER DESIGN

This section presents the design of the nonlinear H∞
and W∞ controllers for the UAM. Since the UAM is
underactuated, it is well known that at most nc degrees of
freedom (DOF) can be regulated at a given reference value
(Siqueira and Terra, 2004a). Because of this fact, we split
the vector of generalized coordinates q ∈ Rn in two parts

q ,
[
q′
s q′

c

]′
, in which the vector qs ∈ Rns represents the

stabilized DOF and qc ∈ Rnc the controlled ones.

The controllers are designed in order to achieve trajectory
tracking of the controlled DOF while stabilizing the re-
maining ones. Regarding that the quadrotor UAV needs
to change its roll and pitch angles to perform movements
in the x and y directions. Thus, it is necessary to choose
either these angles or the x and y positions as the con-
trolled DOF (Raffo et al., 2011). In order to design a
single layer control law, the stabilized DOF are chosen
as qs , [φ θ]

′
, while the controlled DOF are chosen as

qc , [ψ x y z β1 β2 β3]
′
. Consequently, the system (6) is

partitioned as[
Mss Msc

Mcs Mcc

][
q̈s
q̈c

]
+

[
Css Csc
Ccs Ccc

][
q̇s
q̇c

]
+

[
Gs

Gc

]
=

[
Bs
Bc

]
Γ+

[
δs
δc

]
.

(10)

Note that the matrices Bs must have full row rank, and
Bc must be invertible for all t. The following controllers
are derived based on (10).



3.1 Nonlinear H∞ control design

The H∞ control approach used in this work is based on the
controller proposed in Raffo et al. (2011). In order to design
the nonlinear H∞ controller, system (10) is normalized to
obtain a block diagonal inertia matrix by

Tm =

[
1 −MscM

−1
cc

−McsM
−1
ss 1

]
, (11)

which leads to[
Mor 0
0 Mic

]
︸ ︷︷ ︸

M(q)

[
q̈s
q̈c

]
+

[
Cor Coc
Cir Cic

]
︸ ︷︷ ︸

C(q,q̇)

[
q̇s
q̇c

]
+

[
Gor

Gic

]
︸ ︷︷ ︸
G(q)

=

[
Γor
Γic

]
︸ ︷︷ ︸
Γ(q)

+

[
δor
δic

]
︸ ︷︷ ︸
δ(t)

,

(12)

with M(q) = Tm(q)M, C(q, q̇) = Tm(q)C(q, q̇), G(q) =

Tm(q)G(q), Γ(q) = Tm(q)B(q)Γ, and δ(t) = Tm(q)δ(t).

Afterwards, the tracking error vector is defined as

x =


q̇s
˙̃qc
q̃c∫
q̃cdt

 =


q̇s

q̇c − q̇cr
qc − qcr∫
qc − qcrdt

 , (13)

where qcr , q̇cr , and q̇cr are the desired values for the
controlled DOF and its time derivatives. In addition, the
following state transformation is defined

z =

z1
z2
z3
z4

 = T0x =

T11 0 0 0
0 T22 T23 T24

0 0 1 1

0 0 0 1

x, (14)

where T11 = ρ1, T22 = ν1, with ρ, ν ∈ R+, and T23 and
T24 are matrices with appropriate dimension. Despite of
this transformation, the following change of variables over
the control action and disturbances is also considered

M(q)Tẋ+C(q, q̇)Tx = ū+ d̄, (15)

where T ,
[
T11 0 0 0
0 T22 T23 T24

]
.

Accordingly, by expanding these transformations and writ-
ten system (12) with respect to the tracking error vari-
ables, the following error dynamic state-space system is
obtained

ẋ = f(x,qs, t) + g(x,qs, t)u+ k(x,qs, t)d, (16)

where,

f(x,qs, t) , T−1
0 FT0x,

F ,

−M−1
or Cor −M−1

or Coc 0 0

−M−1
ic Cir −M−1

ic Cic 0 0

0 T−1
22 1−T−1

22 T23 −1−T−1
22 (T23 −T24)

0 0 1 −1

 ,
g(x,qs, t) = k(x,qs, t) , T−1

0

M−1
or 0

0 M−1
ic

0 0
0 0

 ,
and the transformed control input and external distur-
bances vector are given by ū = Tc(−N + Γ), and d̄ =

M(q)TcM−1(q)δ̄, respectively, in which N , Mcc(q̈cr −
T−1

1 T2
˙̃qc−T−1

1 T3q̃c)+Gc+Ccc(q̇cr−T−1
1 T2q̃c−T−1

1 T3

∫
q̃cdt),

and Tc , blkdiag(T1,T2),where blkdiag(·) stands for a block
diagonal matrix.

Finally, the plant to be controlled is given by

P1 :

ẋ = f(x,qs, t) + g(x,qs, t)u+ k(x,qs, t)d,

ζ = W

[
x

ū

]
(17)

where ζ is the cost variable. The classic nonlinear H∞
control problem is posed as

VH∞ = min
ū∈Ū

max
d̄∈W̄

1

2
|ζ|2L2

−
1

2
γ2

∣∣d̄∣∣2
L2

(18)

where Ū , W̄ ∈ L2[0,∞), and γ is the H∞ attenuation level.

The optimization problem (18) is formulated using dynamic-
programming, from which the associated Hamiltonian is
given by

HH∞ =
∂VH∞

∂x
ẋ+

∂′VH∞

∂qs
q̇s +

1

2
x′Qx+ x′Sū+

1

2
ū′Rū

−
1

2
γ2d̄′d̄, (19)

with the boundary condition VH∞(0) = 0, in which Q, S ,

and R are weighting matrices, and W′W =

[
Q S
S′ R

]
.

The optimal control law, ū∗, and the worst case of distur-
bances, d̄∗, are computed by taking the following partial
derivatives:

∂HH∞

∂ū
= Tmg′(x,qs, t)

∂VH∞

∂x
+ S′x+Rū = 0, (20)

∂HH∞

∂d̄
= Tmk′(x,qs, t)

∂VH∞

∂x
− γ2d̄ = 0. (21)

After some algebraic manipulations, the above derivatives
lead to

ū∗ = −R−1
(
T′
mg(x,qs, t)

∂VH∞

∂x
+ S′x

)
, (22)

d̄∗ =
1

γ2
Tmk′(x,qs, t)

∂VH∞

∂x
. (23)

The HJ equation associated with this optimization prob-
lem is obtained by replacing the optimal control law (22)
and the worst case of the disturbances (23) in (19), result-
ing in

∂VH∞ (x, t)

∂t
+ HH∞ (VH∞ (x, t),x,qs, ū

∗, d̄∗, t) = 0. (24)

A particular solution to the HJ PDE (24) is given in
Theorem 1 of Raffo et al. (2011) 3 . From the results of this
theorem, the following optimal control law is obtained

ū∗ = −TmR−1(S′ +T)x. (25)

By replacing the optimal control law (25) into (15), as-
suming d̄ = 0 and after some manipulations, the following
transformed generalized force vector is obtained as

Γ = M(q)q̈+C(q, q̇)q̇+G(q), (26)

with

q̈ =

[
0

q̈cr

]
−KD

[
qs
˙̃qc

]
−KP

[
0
q̃c

]
−KI

[
0

∫ q̃cdt

]
. (27)

The matrices KD, KP , and KI are given in Appendix A.
Consequently, the applied control input to the system (10)
is given by

Γ = B(q)#Tm
−1(q)Γ (28)

3 For more details about the proof of this theorem see Raffo et al.
(2011) and for the stability proof of the proposed H∞ controller see
Raffo et al. (2015)



where (·)# denotes the pseudo-inverse. 4

3.2 Nonlinear W∞ control design

The W∞ controller formulation presented in this section is
based on the formulation introduced by Neri et al. (2018).
The first step to design this controller is to rewrite system
(10) as the following tracking error dynamics

M(qs, q̃c+qcr )

[
q̈s

¨̃qc + q̈cr

]
+C(qs, q̃c+qcr , q̇s,

˙̃qc+q̇cr )

[
q̇s

˙̃qc + q̇cr

]
+G(qs, q̃c + qcr ) = B(qs, q̃c + qcr )Γ+ δ(t), (29)

where q̃c and qcr are defined as in (13).

Then, the following change of variables over the control
inputs is considered in (29),

u = B(qs, q̃c + qcr )Γ−G(qs, q̃c + qcr )−M(qs, q̃c + qcr )

[
0

q̈cr

]
−C(qs, q̃c + qcr , q̇s,

˙̃qc + q̇cr )

[
0

q̇cr

]
. (30)

The main idea is to include in the optimization problem
only forces and torques that affect the kinetic energy of
the system. Considering (30), equation (29) result in

M(qs, q̃c + qcr )

[
q̈s
¨̃qc

]
+C(qs, q̃c + qcr , q̇s,

˙̃qc + q̇cr )

[
q̇s
q̇cr

]
= u+ δ,

(31)

which is similar to the transformation (15) used in the
nonlinear H∞ control design, but without the need to
normalize the system.

In addition, considering the state vector defined in (13),
equation (31) is expressed in the state-space as

ẋ =

[
M−1C 0 0[
0 1

]
0 0

0 1 0

]
︸ ︷︷ ︸

f(x,qs)

x+

[
M−1

0
0

]
︸ ︷︷ ︸
g(x,qs)

u+

[
M−1

0
0

]
︸ ︷︷ ︸
k(x,qs)

δ. (32)

Then, the plant to be controlled is given by

P2 :


ẋ = f(x,qs) + g(x,qs)u+ k(x,qs)δ,

zc =

∫ t

0

q̃c(t)dt,

zs = ˙̃qs(t),

(33)

where zc and zs are the cost variables associated with the
controlled and stabilized DOF, respectively.

The nonlinear W∞ control problem is then posed as 5

VW∞ = min
u∈U

max
δ∈W

1

2
‖zc‖2W3,2,Λ

+
1

2
‖zs‖2W1,2,Υ

−
1

2
γ2||δ||2L2

(34)

where U ⊆ Rc,W ∈ L2[0,∞), andΛ = {Λ0, Λ1, Λ2, Λ3}
and Υ = {Υ0, Υ1} are composed of symmetric and

4 It is assumed that the controller is robust enough to handle errors
generated by the use of the pseudo-inverse.
5 The weighted Sobolev Wm,p,σ−norm of a function z(t) : R+ →
R, for m ∈ N and p ∈ N ∪ {∞}, is defined as ||z(t)||Wm,p,σ=( m∑
α=0

|| d
αz(t)
dtα

||pLp,σα

)1/p
, where σ = {σ0, ...,σm}, in which σα is

a symmetric and positive definite weighting matrix with appropriate
dimension, and ||·||Lp,σα stands for the Lp − norm weighted by the
matrix σα.

positive definite tuning matrices, that weight the influence
of the states in the control objective, and γ is the W∞
attenuation level.

The optimization problem (34) is formulated using dynamic-
programming, from which the associated Hamiltonian is
given by

HW∞ (VW∞ ,x,qs,u, t)=
∂′VW∞

∂x
ẋ+

1

2
z′cΛ0zc+

1

2
ż′cΛ1żc

+
1

2
z̈cΛ2z̈c+

1

2

...
z ′
cΛ3

...
z c+

1

2
z′sΥ0zs+

1

2
ż′sΥ1żs−

1

2
γ2δ′δ. (35)

with the boundary condition VW∞(0) = 0.

The optimal control law and the worst case of disturbances
are computed by taking the partial derivatives of (35) as
follows

∂HW∞

∂u
= g′ ∂VW∞

∂x
−ΠC ˙̃q+Πδ∗ +Πu∗ = 0, (36)

∂HW∞

∂δ
= k′ ∂VW∞

∂x
−ΠC ˙̃q+Πδ∗ +Πu∗ − γ2δ∗ = 0, (37)

where Π , M−1EM−1 with E , blkdiag(Υ1,Λ3).
According, the optimal control law is obtained from (36),
with some algebraic manipulations, and is given by

u∗ = −Πg′ ∂VW∞

∂x
+Cq̃− δ∗. (38)

In addition, the worst case of the disturbances is computed
by subtracting (37) from (36), yielding

δ∗ =
1

γ2

(
k′ − g′

) ∂VW∞

∂x
. (39)

The HJ equation associated with the optimization problem
is obtained by replacing the optimal control law and the
worst case of the disturbances in (35), which results in

∂VW∞ (x, t)

∂t
+ HW∞ (VW∞ (x, t),x,qs,u

∗, δ∗, t) = 0. (40)

A particular solution to the HJ PDE (40) is given in
Theorem 1 of Neri et al. (2018). From the results of this
Theorem, the optimal control law (38) and system (29),
assuming δ = 0, the applied control input is given by

Γ = B#(qs, q̃c + qcr )

(
G+M

[
0

q̈cr

]
+Cq̇

− M

[
Υ−1

1 U 0 0 0

0 Λ−1
3 Q Λ−1

3 K Λ−1
3 F

]
x

)
, (41)

with U =
√
Υ0

√
Υ1, F =

√
Λ0

√
Λ3, and Q and K given

by the solution of the following pair of Riccati equations

−KΛ−1
3 K+ 2Q

√
Λ0

√
Λ3 +Λ1 = 0, (42)

−QΛ−1
3 Q+ 2K+Λ2 = 0. (43)

4. NUMERICAL EXPERIMENTS

This section presents the results of numerical experiments
in order to evaluate the performance and compare the
nonlinear H∞ and W∞ controllers.

The experiments were conducted using the high fidelity
ProVANT simulator (Lara et al., 2018) in a HIL framework
(see Figure 5). The UAM was simulated in a computer
equipped with an Intel Core i7-7500U dual-core processor
running at 2.9 GHz, 16 GB of RAM and an NVidia 920MX
GPU with Ubuntu Linux version 18.04, while the con-
trollers were executed in an embedded system consisting



of a STM32 Discovery development kit equipped with an
STM32F407VGT6 with 1 MB of Flash storage and 192 KB
of RAM. The computer and the embedded system com-
municate using a virtual serial port running at 115200bps
baud rate through a USB connection. This embedded
system will be later part of the physical prototype. The
aim is to validate the control laws before performing real
flight experiments.

During the numerical experiments, the UAM performs a
mission composed of the following stretches: (i) the UAM
starts displaced from the desired trajectory at position
x = 0.5, y = 2.7, z = 0, and with the remaining states
equal to zero; (ii) the UAM goes through an intermediate
point in the position x = y = 1.5, and z = 1; (iii) the
UAM goes to the target position x = 2.5, y = 2.7, z = 1
and hovers while extending its manipulator arm; (iv) the
UAM retracts the manipulator arm; (v) the UAM returns
to the starting position and lands.

Considering these waypoints, a RRT path planner (Choset;
et al., 2005) was implemented in order to generate the
reference trajectory to be used by the controllers. The aim
is to evaluate the following features: the performance of the
UAM operating in hovering mode; the ability of tracking
a time-varying trajectory with small enough error; the
behavior of the system under movements of the robotic
arm; the ability of operating when affected by bounded
external disturbances.

The H∞ controller was implemented taking into ac-
count the control law (28) and was tuned with ωus =
0.55, ωuc = 8.45, ω1s = 3.2, ω1c = 0.55, ω2c =
0.75, ω3c = 2.75. The W∞ controller was implemented
taking into account (41) and was tuned with Υ0 =
diag(50, 50), Υ1 = 12×2, Λ0 = diag(0.35, 0.001, 0.001,
0.001, 0.05, 0.08, 0.08), Λ1 = diag(1, 1, 1, 1, 0.1, 0.1, 0.1),
Λ2 = diag(0.1, 0.01, 0.01, 1, 0.1, 0.1, 0.1), Λ3 = diag(0.01,
0.01, 0.01, 0.1, 0.01, 0.01, 0.01), where diag(·) stands for a
diagonal matrix.

During the numerical experiments, the following external
disturbances (see (6)) are applied to the system starting
at 82.5 seconds: δz = 1.8 [N ], δx = δy = 0.1 [N ], δφ = δθ =
δψ = δβ1

= δβ2
= δβ3

= 0.02 [N ·m]. These disturbances
can be seen as the effects generated by the pick-up and
transportation of an object with approximately 200g of
mass. Additionally, disturbances δz = 3 [N ] and δy =
1 [N ], that affect the whole system due to the dynamical
coupling, were applied in the interval between 40 and 60
seconds. The results are shown 6 in Figures 2 and 3.

At the beginning of the experiments, the UAM starts
vertically displaced from the desired trajectory and con-
verges to it after only few seconds. After 60 seconds of
simulation, the UAM extends its manipulator arm. Despite
the existence of small oscillations, it remains stable while
executing the maneuver. Besides, the effects of the external
disturbances are attenuated by both control strategies.

It is also verified that the W∞ controller provides less
oscillatory closed-loop behavior. This happens thanks to
the fact that the time derivatives of the cost variable
are considered in the cost functional of the W∞ control

6 A video recording of the experiments is available in https://
youtu.be/3SSt-1OIXu4.
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Figure 2. Roll and pitch angles, error of translational
position and yaw angle, and angles of the manipulator
arm.

formulation (see eq. (34)). In addition, the system is more
responsive to the effects of external disturbances. More-
over, as can be seen in Appendix A, in the formulation
of the nonlinear H∞ controller presented in Section 3,
the weighting matrices must be considered as positive real
scalars multiplied by the identity matrix, preventing the
appropriate tuning of the control law parameters for the
UAM.

It is also verified that the W∞ controller reacts faster
when the system is subjected to external disturbances and
converges faster to the equilibrium point. In addition, it
achieves better performance with respect to the ISE index
even with smaller control efforts, which is verified through
the IADU index, as shown in Table 2.

Furthermore, as the system has at least three very different
dynamics (the quadrotor UAV positions, the quadrotor
UAV attitude, and the robotic manipulator angular po-
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sitions), the smaller number of tuning DOF of the H∞
controller imposes limitations in the syntonization of the
controller and consequently in performance. As the W∞
control strategy allows the separate weighting of each
DOF, it is possible to achieve a better closed-loop response,
a clear advantage over the H∞ control formulation consid-
ering only the separation of the system in stabilized and
controlled dynamics.

Figure 5. Experimental setup of the HIL simulation.

P. index Definition W∞ H∞ H∞ / W∞

IADU
∫ T
0

∑7

i=1

∣∣dΓi
dt

∣∣ dt 355740 461702 129,79%

ISE

∫ T
0

(ψ − ψr)
2 dt 2,0147 13,3548 662,87%∫ T

0
(x− xr)

2 dt 6,0066 127,3446 2120,08%∫ T
0

(y − yr)
2 dt 38,3762 118,0508 307,62%∫ T

0
(z − zr)

2 dt 158,8396 240,94 151,69%∫ T
0

(β1 − β1r )
2 dt 65,3935 178,0235 272,23%∫ T

0
(β2 − β2r )

2 dt 8,7688 72,6795 828,84%∫ T
0

(β3 − β3r )
2 dt 3,8775 41,8346 1078,91%

Table 2. Performance indexes table.

5. CONCLUSION

This work presented the dynamic modeling of a UAM
and the design of nonlinear H∞ and W∞ controllers
for a robust trajectory tracking. These controllers were
implemented using the ProVANT simulator in a HIL
framework. A comparative analysis has been conducted,
which showed that the nonlinear W∞ controller provided
better transient performance with faster reaction against
external disturbances. In addition, the W∞ controller
achieved better results when evaluating the ISE and IADU
indexes.

Moreover, in contrast to the nonlinear W∞ controller, the
H∞ control strategy requires that weighting parameters
be the same for all stabilized DOF and for all the controlled
DOF (see Appendix A). Therefore, future works will
include the reformulation of the nonlinear H∞ control
strategy to allow the individual weighting of each state
variable of the system, another proposition to address
this issue is the normalization of the system in terms
of the time constant. In addition, since we are dealing
with aerial manipulator, it is intended to reformulate
these controllers taken into account constraints to limit
its workspace. Finally, it is also intended to perform real
flight experiments.



Appendix A. H∞ CONTROL MATRICES

As in Raffo et al. (2011), the matrices KD, KP and KI in
(27) are given by

KD =

[
KDss KDsc

KDcs KDcc

]
, KP =

[
0 KPsc

0 KPcc

]
, KI =

[
0 KIsc

0 KIcc

]
,

where

KDss = M−1
or

(
Cor +

1

ω2
us

1

)
,

KDsc = M−1
or

(
Coc −MscM

−1
cc

1

ω2
uc

)
ωucω1c√
γ2 − ω2

uc

√
γ2 − ω2

us

ωusω1s
,

KPsc = M−1
or

(
Coc −MscM

−1
cc

1

ω2
uc

) ωuc
√
ω2
2c + 2ω1cω3c√
γ2 − ω2

uc

√
γ2 − ω2

us

ωusω1s
,

KIsc = M−1
or

(
Coc −MscM

−1
cc

1

ω2
uc

)
ωucω3c√
γ2 − ω2

uc

√
γ2 − ω2

us

ωusω1s
,

KDcs = M−1
ic

(
Cir −McsM

−1
ss

1

ω2
us

)
ωusω1s√
γ2 − ω2

us

√
γ2 − ω2

uc

ωucω1c
,

KDcc =

√
ω2
2c + 2ω1cω3c

ω1s
1+M−1

ic

(
Cic +

1

ω2
uc

1

)
,

KPcc =

√
ω2
2c + 2ω1cω3c

ω1s
M−1
ic

(
Cic +

1

ω2
uc

1

)
+
ω3c

ω1s
1,

KIcc = M−1
ic

(
Cic +

1

ω2
uc

1

)
ω3c

ω1s
,

in which it is considered the particular case where Q =
blkdiag(ω2

1s1, ω
2
1c1, ω

2
2c1, ω

2
3c1), R = blkdiag(ω2

ur1, ω
2
uc1),

and S = 0.
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