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Abstract: This paper deals with the trajectory tracking problem of a tilt-rotor unmanned aerial
vehicle carrying a suspended load. An explicit model predictive control (eMPC) based on multi-
parametric optimization is used to derive optimal control laws which could be implemented in
an embedded system. The eMPC is designed based on the nominal linearized error model of the
system, which is obtained around a generic trajectory. The optimal control problem (OCP) is
solved taking into account input and state constraints. Additionally, a terminal cost is considered
to guarantee stability. Euler-Lagrange formulation is used to derive the multibody non-linear
dynamic model. Numerical experiments are performed to evaluate the proposed controller when
the system is affected by constant disturbances at different instants of time and parametric
uncertainties.
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1. INTRODUCTION

Over the past few years, autonomous aircraft have been
widely involved in civilian applications, where usually is
required load transportation of medicines, food, supplies,
and sensors. In this context, multi-rotor unmanned aerial
vehicles (UAVs) are suitable to perform these tasks, con-
sidering their capabilities of vertical take-off and landing,
hovering, and high maneuverability. However, in some
missions, it is necessary to achieve long distances with
higher speeds while maintaining the benefits of a multi-
rotor aircraft. A proper UAV architecture to cover these
requirements is derived from the tiltrotor configuration,
which can perform transition among two flight modes:
rotary-wing and fixed-wing.

In the literature, some works have used tiltrotor UAVs for
suspended load transportation due to the aforementioned
advantages. In de Almeida and Raffo (2015), a nonlinear
cascade control strategy is proposed to solve the suspended
load transportation problem using a tiltrotor unmanned
aerial vehicle. The latter work was extended in Raffo and
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Almeida (2018) by using a two-level cascade controller,
in which an input-output feedback linearization control
law with dynamic extension was designed to control the
attitude, altitude and tilting mechanisms. Thus, the outer-
loop control law was in charge of guiding the aircraft
and reducing the load swing. In Rego and Raffo (2019)
the cargo transportation problem is formulated from the
load point of view, in which the load is required to
track a reference trajectory. To perform the suspended
load trajectory tracking a mixed H2/H∞ discrete-time
controller with pole placement constraints is designed.

Recently, Model Predictive Control (MPC) is being used to
control fast dynamic systems due to its ability to explicitly
deal with operational constraints in MIMO systems. For
example, in Santos et al. (2017), an MPC strategy is
proposed for path tracking of the suspended load with
stabilization of the tiltrotor UAV when parametric uncer-
tainties and external disturbances affect the load. However,
the main drawback of MPC is the high computational de-
mand to calculate the optimal control sequence, preventing
its implementation in fast mechatronic embedded systems,
which need to be controlled in the range of milliseconds.

In order to deal with this problem, some control techniques
were developed. In Bemporad et al. (2002), the explicit
model predictive control (eMPC) algorithm was proposed,
in which a group of optimal control affine functions is
determined off-line and explicitly. Consequently, it can be
implemented analytically in an embedded system and deal
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with fast dynamic systems. Nonetheless, as the solution
needs to be stored, it demands a lot of memory that
depends on the system dimension. Tøndel et al. (2003)
extend the theoretical results of Bemporad et al. (2002),
improving the efficiency of the previous algorithm, by ana-
lyzing several related properties of the polyhedral partition
geometry with the active constraints’ combination at the
optimum. In Kouramas et al. (2011), a method employing
dynamic and multi-parametric programming techniques
was developed to disassemble the MPC formulation into
a set of smaller stage optimization sub-problems, con-
sidering optimal control variables for each stage as a
function of the system states. Furthermore, Pistikopou-
los (2012) presented recent advances and applications of
multi-parametric programming and eMPC, together with
the concept of MPC on-a-chip. In Voelker et al. (2013),
a MPC using multi-parametric programming is presented
based on a simultaneous explicit design methodology for a
constrained moving horizon estimation.

In order to reduces the computational complexity while
maintaining the controller performance, Lee and Chang
(2018) designed an eMPC to perform a double-lane-change
(DLC) maneuver for discrete linear time-variant (LTV)
systems. Besides, the reduction of the number of critical
regions is used as an alternative to decrease the high mem-
ory demand of the eMPC, as presented in Kvasnica and
Fikar (2010), in which the regions where the control law
becomes saturated are eliminated by using the neighbors
unsaturated regions. In Maddalena et al. (2019b), a region
elimination procedure is presented based on the premise
of knowing the initial state or the limits of the initial
condition. This algorithm assumes that an initial condition
spreads over n regions of the original polyhedral partition.
On the other hand, in Maddalena et al. (2019a), a neuronal
network is trained and the training weights are used to
compute a new explicit affine control laws, which results in
a lower number of regions with an approximated behavior
to the original controller.

In this paper, the trajectory tracking problem of a tiltrotor
UAV, ensuring swing-load free transportation, is solved
with an explicit linear model predictive controller sub-
jected to state and control constraints. This controller
is based on a non-incremental linearized nominal error
model of the states when following the reference state
trajectory. In order to ensure constant disturbance rejec-
tion, an integral action of the position state error is also
included. Moreover, a terminal cost is formulated for this
eMPC using linear matrix inequalities (LMIs). Finally, the
explicit solutions are stored using three dimensional matri-
ces, which permit to search and compute the control law by
parallel computation in order to reduce the computational
time of the eMPC.

The rest of the paper is organized as follows: Section 2
develops the dynamic model of the tiltrotor UAV with sus-
pended load; in Section 3 the non-linear model is linearized
around a desired trajectory. The explicit MPC formulation
is described in Section 4, while implementations aspects
of the formulation are presented in Section 5. Numerical
results are depicted in Section 6. Finally, conclusion com-
ments are presented.

2. TILTROTOR DYNAMIC MODEL

As presented in Figure 1, the mechanical system is com-
posed by four rigid bodies, where for mathematical pur-
poses, six references axis are defined, with Ci being four
axes rigidly fixed to the center of mass of the bodies, frame
B is fixed to the UAV geometric center, and the inertia
frame J is fixed to the Earth.

The vector ξ = [x y z]
′ 1 describes the translational posi-

tion of frame B with respect to J . Besides, the rotational
position of frame B with respect to J is parametrized
by the roll, pitch and yaw angles, η = [φ θ ψ]

′
, known

as Euler angles and using the ZYX convention around
the local axes. The vector γ = [γ1 γ2]

′
gives the angu-

lar position of the suspended load, while the angles αr
and αl represent the angular position, with respect to
frame B, of the right and left rotors, respectively. In this
context, the generalized coordinates vector is defined as
q = [ξ η αr αl γ]

′
.

Figure 1. The tiltrotor UAV with suspended load descrip-
tion, in which the reference frames, kinematic param-
eters, control inputs and generalized coordinates are
illustrated.

The non-linear model of the tiltrotor UAV with suspended
load is obtained via Euler-Lagrange formulation, which is
given by

M(q)q̈ +C(q, q̇)q̇ +G(q) = F (q) + Fdrag, (1)

where the inertia matrix M(q) is derived from the sum of
the kinetic energies of all bodies, given byK = 1

2 q̇
′M(q)q̇.

The Coriolis and centripetal forces matrix C(q, q̇) is
obtained from the inertia matrix using the Chirstoffel
symbols of the first kind. Further, the gravitational force
vector is computed as G(q) = ∂P

∂q , with P being the

potential energies summation of the aircraft’s bodies.
Finally, F (q) is the generalized forces/torques vector, and
Fdrag is the viscous friction force vector present in the
tilting mechanisms and the load joint.

1 The prime ′ notation denotes the transpose operator.



The generalized forces/torques vector can be expanded
as F (q) = B(q)u(t). The control input vector, u(t) =

[fr fl τr τl]
′
, is composed by fr and fl, the right and left

thrust forces generated by the propellers, and τr and τl, the
right and left torques applied to the servomotors. In the
same context, the viscous friction vector can be assumed
as Fdrag = −Ψ · q̇, where Ψ is a semidefinite constant
matrix.

In order to obtain the state space representation of the
non-linear model of the system, ẋs(t) = f(xs(t),u(t)),

the state space vector can be defined as xs(t) ,
[
q′ q̇′

]′
.

The system’s equilibrium point (u∗,q∗,q̇∗) can be found
solving the following algebraic equation[

q̇∗

M−1(B(q∗)u∗ − [C(q∗, q̇∗) + Ψ]q̇∗ −G(q∗))

]
= 0.

(2)
A more detailed description about the tiltrotor UAV with
suspended load is available in Raffo and Almeida (2018).

3. LINEARIZED MODEL

In this section, a linear time-varying model is obtained
by performing a linearization of the non-linear model of
the tiltrotor UAV with suspended load around a generic
desired trajectory. The UAV with a suspended load is an
underactuated system since it has ten degrees of freedom
and only four control signals. Therefore, it is only possible
to perform trajectory tracking of four degrees of freedom,
and the remaining ones must be stabilized around the
equilibrium point given by (2).

The linear error model is computed using a generic ref-
erence trajectory. The reference state vector is defined
as xsr(t) = [xr(t) yr(t) zr(t) φ

∗ θ∗ ψr(t) α
∗
r α
∗
l γ
∗
1 γ∗2

ẋr(t) ẏr(t) żr(t) 0 0 0 0 0 0 0]′, and the refer-
ence control vector is computed by solving ur(t) =
B(qr)#(M(qr)q̈r+[C(qr, q̇r)+γ]qr+G(qr)), assuming
a feasible reference trajectory. 2

Then, the linear dynamic model of the error is obtained
using the first order Taylor series, with the error state
vector x̃s(t) = xs(t)− xsr(t) and the error control vector
ũ(t) = u(t) − ur(t). Consequently, the system is written
as

˙̃xs(t) = A(t)x̃s(t) +Bũ(t)

ỹs(t) = Cx̃s(t), (3)

where A(t) = ∂f(xs,u)
∂xs

∣∣∣
u=ur

xs=xsr , B = ∂f(xs,u)
∂u

∣∣∣
u=ur

xs=xsr , and

C =

[
I3×3 03×21
01×3 [0 0 1 0 · · · 0]

]
.

System (3) is a linear time-varying model (LTV) due to
the fact that A(t) varies with the time-varying reference
trajectory.

Moreover, the state vector is extended with the integral
action of the position error in x, y, z and ψ, in order to
achieve offset free path tracking and rejection of constant
disturbances. Thus, the augmented system is rewritten as

˙̃xa(t) = Aa(t)x̃a(t) +Baũ(t), (4)

2 # means the pseudo inverse operator of a matrix.

with Aa(t) =

[
A(t) 0
C 0

]
, Ba =

[
B
0

]
, and the augmented

error state vector given by

x̃a(t) =

[
x̃s(t)

′
∫

(x̃(t))

∫
(ỹ(t))

∫
(z̃(t))

∫
(ψ̃(t))

]′
. (5)

Finally, in order to apply the explicit model predictive
formulation, the Euler approximation is used to discretize
the system (4), defining the discrete state matrix as
Az(kT ) = I − Aa(t) · T and the discrete control matrix
as Bz = Ba · T , with T being the sampling time. Hence,
the discrete time-varying model is written as

x̃a(k + 1) = Az(k)x̃a(k) +Bzũ(k). (6)

For notational simplicity, the discrete terms a(kT ) will be
written as a(k).

4. EXPLICIT MODEL PREDICTIVE CONTROL
FORMULATION FOR THE TILT-ROTOR UAV

In this section, the proposed eMPC is developed, which
is an extension of the MPC presented in Andrade
et al. (2016), using multi-parametric optimization. For the
eMPC design proposes, it is considered the nominal error
linear model (i.e. Az(k) = Āz), which is given by

x̃a(k + 1) = Āzx̃a(k) +Bzũ(k). (7)

Consider the prediction of the discrete model at the instant
j, ˆ̃xa(k + j), j = 1, 2..., N , with N being the prediction
horizon, and M the control horizon. The prediction error
vector, x̂, and the predicted control error vector, û, are
defined as

x̂ =


ˆ̃xa(k + 1)
ˆ̃xa(k + 2)
ˆ̃xa(k + 3)

...
ˆ̃xa(k +N)

 , û =


ˆ̃u(k)

ˆ̃u(k + 1)
ˆ̃u(k + 2)

...
ˆ̃u(k +M − 1)

 . (8)

The predicted error is computed recursively by x̂ = P û+
Qx̃a(k), where matrices P and Q are given by

P =


Bz . . . 0
ĀzBz . . . 0

...
. . .

...

Āz
N−1

Bz . . . Āz
N−M

Bz

, Q=


Āz
Āz

2

...

Āz
N

 .
As outlined in Mayne et al. (2000), in order to compute
an optimal control action and guarantee stability of the
closed-loop in a finite horizon, the cost function of the
optimization problem can be chosen as

J(ũ(k, j)) =

N−1∑
i=1

ˆ̃xa(k + i)′ Σρ ˆ̃xa(k + i) + (9)

M−1∑
j=0

ˆ̃u(k + j)′ Σλ ˆ̃u(k + j) + ˆ̃xa(k +N)′ L ˆ̃xa(k +N),

where the state weighting matrix is given by Σρ =
diag(ρ1, ρ2, ρ3, ...., ρn), and the control weighting matrix
by Σλ = diag(λ1, λ2, λ3, λm).

The matrix L of the terminal cost function is computed by
an LQR control problem using LMIs, where the discrete



LTV model (6) can be represented as a linear parameter
varying system. Since the matrix Az(k) varies in time
due to the evolution of the reference acceleration ẍr, ÿr,
z̈r, matrices Ai with i = 1, . . . , 3, are computed at the
vertices of the polytope obtained assuming the maximum
and minimum values. Then, the stability condition will
be guaranteed inside this polytope by the solution of the
following LMI (Andrade et al. (2016)):

min κ (10)

subject to :[
κ 0
0 M

]
> 0 −M M · C

′

z + Y
′
·D

′

z M ·A
′

i + Y
′
·B

′

Cz ·M +Dz · Y −I 0
Ai ·M +B · Y 0 −M

<0

M > 0.

where matrices Cz and Dz must satisfy Cz ∗ Dz = 0,
Cz ∗ C ′z = Σρ, and Dz ∗D′z = Σλ. Besides, the matrix M
is symmetric and M = L−1, which leads to K = Y ∗M−1.

Therefore, the matrix form of equation (9) is given by

J(û) = x̂′Wy x̂+ û′Wu û, (11)

where Wu is an input weighting block diagonal ma-
trix with M copies of the matrix Σλ, and the state
weighting block diagonal matrix Wy is given by Wy =
blkdiag (Σρ,Σρ, . . . ,Σρ,L). The explicit solution of the
above MPC formulation is obtained by applying a multi-
parametric optimization algorithm to the following opti-
mization problem

V (x̃a(k)) = min
û

{
x̂′Wy x̂+ û′Wu û

}
s. t.: x̂ = P û+Qx̃a(k),

ûmin ≤ u ≤ ûmax,
x̂min ≤ x ≤ x̂max,

(12)

in which V (x̃a(k)) is the optimal cost and also used as
a Lyapunov function for stability analysis. The vectors
ûmin, ûmax, are the input bounds considering physical
limitations of actuators as

ûmin =


ũmin
ũmin

...
ũmin

 , ûmax =


ũmax
ũmax

...
ũmax

 , (13)

with ũmax = umax−urmax and ũmin = umin−urmin.
Note that umax and umin are the upper and lower bounds
of the actuators, respectively, while urmax and urmin
are the upper and lower values of the control reference.
Besides, state constraints, x̂min and x̂max, are considered
to take into account a trajectory tracking into a confined
environment, which are given by

x̂min =


x̃min
x̃min

...
x̃min

 , x̂max =


x̃max
x̃max

...
x̃max

 , (14)

with x̃max = xmax−xrmax and x̃min = xmin−xrmin,
being xmax and xmin the space limits of the environment,
while xrmax and xrmin are the maximum and minimum
values of the reference trajectory. Finally, we can transform

the optimization problem (12) into a parametric quadratic
programming (pQP) as

min
û

{1

2
û′ H û+ x̃a

′ F û+
1

2
x̃a
′ Y x̃a

}
(15)

s.t. G û ≤ W +E x̃a

where H = P ′WyP +Wu, F = Q′WyP , Y = Q′WyQ,
H ≥ 0, and x̃a is considered as a parametric variable.
Also, in order to place the constraints in the pQP form,
the inequality constraints of problem (12) can be rewritten
as  Im−ImP

−P


︸ ︷︷ ︸

G

≤

 ûmax−ûmin
x̂max
−x̂min


︸ ︷︷ ︸

W

+

 0
0
−Q
Q


︸ ︷︷ ︸
E

x̃a (16)

where Im is an identity matrix of appropriate dimensions.
According with Jones and Morari (2006), in order to
apply the multi-parametric optimization, the problem (15)
is solved using the linear complementary programming
(LCP) formulation, where the pQP problem is placed into
the standard form using the Lagrange dual problem

min
µ

{1

2
µ′ Hd µ+ (Fdx̃a + cd)′µ

}
s.t. Gd µ ≥ Wd +Ed x̃a

µ ≥ 0.

where µ is the dual variable, Hd is a positive semi-definite
matrix, and matrices Fd,Gd,Ed and vectors Wd, cd are
derived from the Lagrange dual method applied to the
problem (15).

Then, it is possible to write the problem in the pLCP form,
applying the Karush-Kuhn-Tucker(KKT) conditions, as[

υ
σ

]
−
[
Hd −Gd′
Gd 0

] [
µ
λ

]
=

[
Fd
−Ed

]
x̃a +

[
cd
−Wd

]
[
υ
σ

]′ [
µ
λ

]
= 0, υ, σ,µ, λ ≥ 0

where σ = Gd −Edx̃a, and λ, υ are Lagrange multipliers
vectors. The control inputs are given by the solution of the
following multi-parametric LCP problem:

find w, z

s.t. w −Mz = q +Qx̃a
w′z = 0

w, z ≥ 0

x̃a ∈ X .
where w = [υ σ]′, z = [µ λ]

′
, q = [cd −Wd], Q = [Fd −

Ed]′ and M =

[
Hd −Gd′
Gd 0

]
.

By using the algorithm presented in Jones and Morari
(2006), the solution is a set of explicit affine functions in
the form

ũ(k) =


K1x̃a(k) + cR1 if x̃a(k) ∈ CR1

K2x̃a(k) + cR2 if x̃a(k) ∈ CR2

...
...

Ksx̃a(k) + cRs if x̃a(k) ∈ CRs

(17)

where s is the number of critical regions derived from the
optimization problem, matrix Ks and vector cs are the



control gains related to the critical region CRs. Since (17)
provides the error control signal at instant k, the applied
control input u(k) is given by

u(k) = ur(k) + ũ(k). (18)

5. IMPLEMENTATION ASPECTS

The explicit MPC was formulated using the multi-
parametric toolbox (MPT3)(Herceg et al. (2013)). First,
problem (15) is formulated using YALMIP, then it is
converted into an MPT format and finally, it is solved
using the algorithm of Jones and Morari (2006). Thus, the
parametric optimization generated 3761 critical regions
for the trajectory traking problem of the tilt-rotor UAV
carrying a suspended load. The regions CRi are charac-
terized by Polyhedrons in the form of ARx̃a(k) ≤ bR. As
presented in Figure 2, the regions are stored in a multi-
dimensional matrix CR ∈ R59×25×3761, where each slide
of the matrix contains the region information which is
defined as CRj = [ARj bRj ], being ARj ∈ R59x24 and

bRj ∈ R59x1, for j = 0, 1, .., s. In the same way, the control

laws are stored in a matrix KR ∈ R4×25×3761 , where each
slide is composed by KRj = [Kj cRj ], being Kj ∈ R4x24

and cRj ∈ R4x1 for j = 0, 1, .., s.

Figure 2. Critical Regions Multi-dimensional Matrix.

In order to compute the control law at each sample time,
it is necessary to find the critical region where the actual
state belongs.

Algorithm 1: Control Law Calculation

Input: x̃a(k)
Output: ũ(k)
/* Performing Parallel Execution */
# pragma omp parallel for;
for j ← 0 to s by 1 do

xc = [x̃a(k) − 1] ;
aux = CRj · xc(k) ;
if aux ≤ ε then

xc = [x̃a(k) 1];
ũ(k) = KRj · xc(k);
break;

As presented into Algorithm 1, a concurrent program
accesses each slide and performs an operation to determine
if the state belongs to that region, if it is not, the program
continues looking for some valid critical region. Note that,

as the program uses parallel programming, the access is
performed by multiple threads at the same time, so the
search time is reduced.

Furthermore, for the parallel programming, the mtimex c
library was used and compiled with OpenMP to perform
multi-thread operations. Also, the whole system was sim-
ulated using MATLAB and a core i7 platform with 12GB
RAM memory.

6. NUMERICAL RESULTS

With the objective of verifying the performance of the
proposed eMPC formulation, some numerical experiments
are performed 3 . The simulations consider the non-linear
model of a tiltrotor UAV with suspended load (Almeida
et al. (2014)). In addition, constant aerodynamic forces
and moments are applied to the 10DOF at different
time instants, in order to verify the disturbance rejection
capability, as in Andrade et al. (2016).

To measure the performance of this formulation, the mean
square error (MSE) of the states and the total variation
of the control signals metrics are compared with the on-
line MPC proposed in Andrade et al. (2016). In this con-
text, the equilibrium point, predefined reference trajectory,
MPC tuning parameters, and constraints intervals are the
same as defined in Andrade et al. (2016). Additionally, the
parameter ε of Algorithm 1 is settled at 1e−8.

Three different scenarios are considered: Case 1) the air-
craft is simulated with nominal parameters using the set
of explicit affine functions computed in the last section;
Case 2) contemplates a parametric uncertainty of +30%
the mass of the tiltrotor; and Case 3) the mass is assumed
−30% than the nominal value. The aircraft take-off posi-
tion is q(0) = [0.4 0.1 1 01x7].

Trajectory

Suspended

         Load

Figure 3. Trajectory performed by the tiltrotor with the
suspended load using eMPC strategy.

Figure 3 illustrates the tiltrotor UAV and the suspended
load trajectories performed during the simulation. Notice
3 https://youtu.be/BBboZWrj8zU



that the eMPC has the capability to perform path tracking
with null error and reject constant disturbances affecting
the system. Consequently, the controller has achieved good
results in the path tracking problem for all tested cases.
The time response of Euler angles is shown in Figure 4.
Observe that the yaw angle also presents null error when
the system is disturbed, due to the integral action consid-
ered in the error of this variable. On the other side, since
it is not required reference tracking in the error of the roll
and pitch angles, these variables stabilize around different
equilibrium points, which vary with the magnitude of the
uncertainties affecting the system. Besides, one can notice
that these angular positions remain stable through the en-
tire trajectory tracking, fulfilling the imposed requirement.
In Figure 5, it is depicted the behavior of the load’s and
servomotors’ angles.
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Figure 4. Euler angles of the tiltrotor using eMPC strategy
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Figure 5. Servo-motor angles using eMPC strategy.

The control signals applied to the UAV throughout the
trajectory tracking are illustrated in Figure 6. Analysing
Case 1, the value of the thrust forces are close to the
equilibrium point. However, for Case 2 the forces are
greater, as the mass of the aircraft was increased. Contrary,
in Case 3, the magnitude of the forces goes down, since
system’s mass is lower than the value used to design the
controller. Note that the proposed controller was able to
deal with the considered parametric uncertainty.
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Figure 6. Control Signals applied to the aircraft using
eMPC strategy.

Observing Table 1, in average, the on-line MPC presents a
12% better tracking trajectory performance than proposed
eMPC, as highlighted by the MSE index. Also, the torques
control signals of online MPC present smoother behavior
than eMPC. Contrary, the force control signals generated
by the eMPC are smoother than the on-line MPC, as
presented in Table 2. In average, the eMPC control signal
forces and torques are 89.27% lower and 24.13% bigger
than the on-line MPC, respectively. In Table 3, the com-
putational time of each technique is evaluated. The worst
time used to compute the control signal by the on-line
MPC was 11.16% greater than the eMPC.

Table 1. MSE of the outputs.

States eMPC MPC
x 0.0011 0.0011
y 11.0740 4.0519
z 3.5430 4.0452
φ 0.2186 1.3088
θ 0.6149 0.1265
ψ 1.8602 0.9616
αr 2.7339 2.0276
αl 2.9695 2.6242
γ1 2.6769 2.6650
γ2 2.0806 2.2941

7. CONCLUSION

In this work an explicit model predictive control was
developed to solve the trajectory tracking problem for
a tiltrotor UAV while carrying a suspended load. The



Table 2. Total Variation of the control signal.

Controllers eMPC MPC
fr 1195.23 9906.84
fl 929.98 9892.71
tl 0.40 0.30
tr 0.43 0.33

Table 3. Computational Time Spent on the
control low calculation

time (ms) eMPC MPC
max 12.5 14.07
average 4.2 6.8
min 3.8 4.3

multi-parametric formulation generated 3761 critical re-
gions. The eMPC was derived from the nominal linearized
error model of the system, which was augmented with
an integral action in the tracking position for performing
the trajectory tracking when constant disturbances and
dynamic uncertainties are presented. In order to consider
real demands of actuators and states, the controller ex-
plicitly considers inputs and outputs constraints. Also, it
was added a terminal cost to the OCP, aiming at ensuring
stability and reducing the prediction horizon. The nu-
merical results demonstrate that the control laws derived
from the parametric optimization stabilize the UAV with
the suspended load and present a successful trajectory
tracking with good disturbance rejection. Moreover, using
the eMPC with its implementation through parallel pro-
gramming allowed to reduce in 11.16% the computational
time in comparison with an on-line MPC, sacrificing in
12% the trajectory tracking performance. As future work,
the formulation will be extended using robust criteria in
order to guarantee robust stability and achieve better
performance against uncertainties.
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