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Abstract: This paper addresses the design of gain-scheduled state-feedback controllers for
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Krasovskii functionals. The designed controllers ensure both closed-loop stability and guaranteed
L2-gain costs. The effectiveness of the proposed approach is assessed through numerical
simulations.
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1. INTRODUCTION

When it comes to the digital implementation of controllers
for sampled-data nonlinear systems, a key issue is the
proper determination of the sampling times. Ideally, larger
sampling times are desirable to save resources (micropro-
cessors, sensors and data transfer, for instance) and to
provide more economical solutions. On the other hand, the
closed-loop systems must remain stable despite the size of
the sampling intervals (Hooshmandi et al., 2018).

In the past years, gain-scheduled controllers have been
largely used in the context of polynomial linear parameter-
varying (PLPV) systems (Blanchini and Miani, 2003;
de Caigny et al., 2010; Pandey and de Oliveira, 2019;
Sadeghzadeh, 2019). Performance constraints can be addi-
tionally imposed for guaranteeing a desired behavior to the
closed-loop system with the controller to be designed. Two
commonly used performance criteria are the disturbance
rejection (minimization of the L2-gain) and the minimiza-
tion of the system energy (also known as H2 guaranteed
cost) (Mohammadpour and Scherer, 2012; Briat, 2015).

Additionally, given that nonlinear systems exhibit some
properties, such as smoothness, they can be cast to the
framework of PLPV systems, being denoted as quasi-
PLPV systems (Leith and Leithead, 2000; Rugh and
Shamma, 2000; Lacerda et al., 2011; Hooshmandi et al.,
2018; Rodrigues et al., 2018). Such denomination comes
from the fact that the converted systems actually depend
on their internal state variables, in spite of some other
external signal. In other words, quasi-PLPV realizations
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hide the nonlinearities of the nonlinear systems among
the scheduling parameters (Rotondo et al., 2013). As a
result, the knowledge of the boundaries of both the range
of values and the variation rates of such parameters is
required. The main interest behind (quasi-)PLPV models
lies in the possibility of applying powerful tools, usually
dedicated to linear systems, to certify the stability and
to synthesize controllers and filters for nonlinear systems
(Rotondo et al., 2013).

On the other hand, according to Goebel et al. (2009),
in a typical control scenario, a continuous-time system
is controlled by means of a sampled-data controller. For
instance, in the framework of state-feedback controllers, a
controller samples the states of a nonlinear system, and
computes the control signal, which is then held constant
over two successive sampling instants. Hence, from the
controller perspective, the nonlinear system to be con-
trolled can be cast as a sampled-data system.

Different sampled-data control strategies for the control of
quasi-PLPV systems are found in the scientific literature,
which can be grouped in three major areas: emulation,
approximate discretization, and direct sampled-data. The
emulation approach designs a continuous-time controller,
which is discretized for obtaining a sampled-data controller
(Tóth et al., 2010). The downsides of such method are
the need for considering the discretization error when
discretizing the continuous-time controller, and the as-
sumption that the scheduling parameters are held constant
between two successive sampling instants. In the approx-
imate discretization method, a stabilizing sampled-data
controller is designed for the approximate discrete-time
quasi-PLPV model (Lam and Zhou, 2008; de Caigny et al.,
2010). In this concept, not only the time dependence of the
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scheduling parameters but also the behavior of the non-
linear system are ignored during the sampling intervals.
In the direct sampled-data approach, a time-varying input
delay can be considered for the control of quasi-PLPV sys-
tems, modeled as continuous-time systems (Ramezanifar
et al., 2012; Gomes da Silva Jr et al., 2018; Hooshmandi
et al., 2018). This method does not require neither the
quasi-PLPV dynamics nor the designed controller to be
discretized. Furthermore, the scheduling parameters can
vary over time, under the assumption that the bounds
on the range of values and on the variation rates of the
scheduling parameters exist and are assumed to be known.

Regarding the above discussion, the main contribution
of this work is the proposition of new sufficient PLMI
conditions to the synthesis of gain-scheduled controllers for
sampled-data nonlinear systems, whose nonlinearities are
bounded and have known variation rate. It is assumed that
the nonlinear systems can be described in terms of quasi-
PLPV realizations. The new sufficient PLMI conditions
are derived after an expanded version of the Lyapunov-
Krasovskii functional (LKF) adopted in Hooshmandi et al.
(2018), and the reduced conservativeness of the proposed
approach is attained by applying Wirtinger’s Inequality
to the resulting PLMI conditions (Seuret and Gouaisbaut,
2013). Furthermore, this paper also investigates the impact
of the sampling time on the performance of the closed-loop
sampled-data nonlinear systems. Such analysis can lead
to the determination of a maximum allowable sampling
period (MASP) for which both stability and performance
are ensured.

This paper is organized as follows: Section 1 presents
the state-of-the-art of the synthesis of gain-sheduling con-
trollers for sampled-data nonlinear systems. Section 2
establishes a framework for the description of sampled-
data nonlinear systems by means of quasi-PLPV models.
In Section 3, the problem of synthesizing gain-scheduled
sampled-data state-feedback controllers is addressed, while
Section 4 discusses some computational aspects relevant
for the definition of an SDP problem in terms of PLMI
conditions. Furthermore, some numerical examples are
exploited in this section to show the effectiveness of the
proposed approach. Finally, Section 5 concludes this paper
with final remarks and proposes possible future investiga-
tions.

Notation: Rn and Rn×m describe the real n-dimension
euclidean space and the set of n × m real matrices, re-
spectively. XT is the transpose of X. XH is the Hermitian
operator defined as XH = X + XT . X � 0 (X ≺ 0)
implies that X is a positive (negative) definite matrix.
The symbol (∗) denotes a symmetric term inside matrices.
diag(A, B) is a block-diagonal matrix composed by the
blocks A and B. In is the identity matrix of size n. 0n×m
is a null matrix of dimension n×m. f : Rn 7→ Rm defines
a real function f which maps n inputs to m outputs.

2. PROBLEM STATEMENT

Consider a nonlinear system described by the following set
of equations:

ẋ(t) = f(x(t), u(t), w(t)),

y(t) = h(x(t), u(t), w(t)),
(1)

in which x(t) ∈ Rnx is the state, w(t) ∈ Rnw is the
disturbance, u(t) ∈ Rnu is the control input, and y(t) ∈
Rny is the output. f : Rnx+nu+nw 7→ Rnx and h :
Rnx+nu+nw 7→ Rny are functions mapping x(t), u(t),
and w(t) to ẋ(t) and to y(t), respectively.

The description of nonlinear systems as quasi-PLPV mod-
els is made with the bounding-box method (Rotondo et al.
(2013)). A polytopic, continuous, linear and quasi-PLPV
realization of (1) can be then written as

ẋ(t) =A(η(t))x(t) + B1(η(t))w(t) + B2(η(t))u(t),

y(t) =C(η(t))x(t) + D1(η(t))w(t) + D2(η(t))u(t),
(2)

where A(η(t)), B1(η(t)), B2(η(t)), C(η(t)), D1(η(t)), and
D2(η(t)), with compatible dimensions, are matrices de-
pending on the parameter vector η(t) ∈ RN . An affine
representation of the system matrices is adopted, generi-
cally described as follows:

X(η(t)) =

N∑
i=1

ηi(t)Xi, ∀η(t) ∈ ΛN , (3)

with Xi, for i = 1, . . . , N , the vertices of X(η(t)) and ΛN
an N -dimensional space described as

ΛN =
{
η : R+ → RN | η(t) ∈ ∆η, η̇(t) ∈ ∆η̇

}
, (4)

being ∆η and ∆η̇ compact admissible sets of the parameter
and its derivative, which are defined by

∆η =
{
η ∈ RN : η

i
≤ ηi(t) ≤ ηi, i = 1, . . . , N

}
,

∆η̇ =
{
η̇ ∈ RN : |η̇i(t)| ≤ vi, i = 1, . . . , N

}
,

(5)

with η
i

e ηi, respectively, the lower and upper bounds

of ηi(t), and vi the maximum absolute value for the
variation rate of ηi(t) (Hooshmandi et al., 2018).

Describing nonlinear systems as quasi-PLPV models, with
the bounding-box method, requires the sets ∆η and ∆η̇ to
be a priori known. In other words, the domain of discourse
associated to the quasi-PLPV model (2) should be given.
Such domain of discourse can be thus understood as a
convex polyhedron whose vertices are either the bounds of
the parameters ηi or the bounds of the time derivatives η̇i
(Rotondo et al., 2013).

3. CONTROLLER SYNTHESIS

This section proposes a gain-scheduled sampled-data
state-feedback control law in the form

u(t) = u(tn) = K(η(tn))x(tn), t ∈ [tn,tn+1) (6)

to stabilize system (2) in closed-loop with an L2-gain
guaranteed cost.

The control signal, held constant between two successive
sampling instants, is equivalent to a time-delayed control
input with respect to t. Thus, the control signal u(t) can be
understood as a delayed signal, whose delay τ(t) is given
by

τ(t) = t− tn ≤ Tm, t ∈ [tn,tn+1). (7)

The induced delay τ(t) is the time elapsed since the last
sampling instant tn and it cannot exceed the MASP Tm.

Assuming the structure of the gain-scheduled control law
is known and given by (6), the quasi-PLPV dynamics (2)
in closed loop are rewritten as



ẋ(t) =A(η(t))x(t) + B1(η(t))w(t)

+ B2(η(t))K(η(tn))x(tn),

y(t) =C(η(t))x(t) + D1(η(t))w(t)

+ D2(η(t))K(η(tn))x(tn).

(8)

In order to obtain a uniform representation of (8), an

expanded parameter vector ρ(t) =
[
ηT (tn) δT (t)

]T
is

adopted, where δ(t) = η(t) − η(tn) is the uncertainty
between the real continuous parameters η(t) and the
sampled parameters η(tn).

The expanded parameter vector ρ(t) is defined in the
space Θ, so that

Θ =
{
ρ ∈ R2N : ρ(t) ∈ ∆ρ, ρ̇(t) ∈ ∆ρ̇

}
, (9)

in which ∆ρ and ∆ρ̇ are compact sets as formulated in (5).
With the expanded parameter vector ρ(t), the dynamics
of the state vector x(t) and the output vector y(t) can be
rewritten as follows:

ẋ(t) =A(ρ(t))x(t) + B1(ρ(t))w(t)

+ B2(ρ(t))K(ρ(t))x(tn),

y(t) =C(ρ(t))x(t) + D1(ρ(t))w(t)

+ D2(ρ(t))K(ρ(t))x(tn).

(10)

Sufficient conditions for synthesizing gain-scheduled sampled-
data controllers with guaranteed L2-gain cost are provided
in Theorem 1, in which the system structure described
in (10) is used. For the sake of simplicity, the time depen-
dency of ρ(t) is omitted. Theorem 1 is derived with the aid
of Wirtinger’s Inequality (Seuret and Gouaisbaut, 2013),
described in the following lemma:

Lemma 1. (Wirtinger’s Inequality). Given a constant sym-
metric positive-definite matrix R, the following inequality
is verified for every function ω(u) continuously differen-
tiable on the interval [a,b]→ Rn:∫ b

a

ω̇T (u)Rω̇(u)du ≥ 1

b− a
ΩT1 RΩ1 +

3

b− a
ΩT2 RΩ2,

where Ω1 = ω(b) − ω(a) and Ω2 = ω(b) + ω(a) −
2
b−a

∫ b
a
ω(u)du.

Theorem 1. Given scalars Tm > 0 and λ, if there
exist symmetric positive-definite matrices Q(η(tn)) =
Q(ρ) ∈ Rnx×nx , Γ1(η(tn)) = Γ1(ρ), Λ1(η(tn)) =
Λ1(ρ) ∈ R2nx×2nx , Λ2(η(tn)) = Λ2(ρ) ∈ Rnx×nx , ma-
trices Y (η(tn)) = Y (ρ) ∈ Rnu×nx , N1(ρ), N2(ρ) ∈
R2nx×3nx+nw , L(ρ), G(ρ), Υ(ρ) ∈ R2nx×2nx , and a scalar
γ > 0 satisfying the following PLMIs:

ST1 Q(ρ)S1 +TmλS
T
2 Q(ρ)L0S2 +

T 2
m

4
ST3 Λ2(ρ)S3 � 0 (11)[

Π1 + TmΠ2 ∗ ∗
TmL5 −TmΛ1(ρ) ∗

Φ 0 −γI

]
≺ 0 (12)


Π1 + TmΠ3 ∗ ∗ ∗
TmN1(ρ) −TmΓ1(ρ) ∗ ∗
3TmN2(ρ) 0 −3TmΓ1(ρ) ∗

Φ 0 0 −γI

 ≺ 0 (13)

[
Λ1(ρ) +

(
ΥT (ρ)

(
Q(ρ) + LT (ρ)

))H
∗

−LT (ρ) +GT (ρ)Υ(ρ) Γ1(ρ)−GH(ρ)

]
≺ 0

(14)

for all ρ ∈ Θ, in which

Π1 =
(
LT4 L1

)H − λLT2Q(ρ)L0L2 − γLT8 L8

+
(
N
T

1 (ρ)M1 + 3N
T

2 (ρ)M2

)H
Π2 =λ

(
LT6 L0L2

)H
+
(
LT7 Λ2(ρ)L3)H + LT3 Λ2(ρ)L3

Π3 =
(
N
T

1 (ρ)Mt

)H − LT3 Λ2(ρ)L3

M1 =

[
I −I 0 0
0 0 0 0

]
, M2 =

[
I I −2I 0
0 0 0 0

]

Mt =

[
0 0 0 0
0 I 0 0

]

S1 = [I 0 0] , S2 =

[
I 0 0
0 I 0

]
, S3 = [0 0 I]

L0 = [I −I]T [I −I]

L1 = [I 0 0 0] , L2 =

[
I 0 0 0
0 I 0 0

]
, L3 = [0 0 I 0]

L4 = [A(ρ)Q(ρ) B2(ρ)Y (ρ) 0 B1(ρ)]

L5 =

[
A(ρ)Q(ρ) B2(ρ)Y (ρ) 0 B1(ρ)

0 Q(ρ) 0 0

]
L6 =

[
A(ρ)Q(ρ) B2(ρ)Y (ρ) 0 B1(ρ)

0 0 0 0

]
L7 = [I −I −I 0] , L8 = [0 0 0 I]

Q(ρ) = diag
(
Q(ρ), Q(ρ)

)
Φ = [C(ρ)Q(ρ) D2(ρ)Y (ρ) 0 D1(ρ)]

then, system (10) is asymptotically stable with aperi-
odic samplings lower than Tm and with a gain-scheduled
sampled-data state-feedback controller given by K(ρ) =
Y (ρ)Q−1(ρ). Furthermore, γ is an upper bound to the L2-
gain of the closed-loop system.

Proof. Consider the following time-dependent LKF:

W (x, t) = V (x) + V0(x, t) = V (x) +
3∑
i=1

Vi(x, t), (15)

in which

V (x) = xT (t)P (ρ)x(t)

V1(x, t) = (tn+1 − t)
∫ t

tn

[
ẋ(q)
x(tn)

]T
E(ρ)

[
ẋ(q)
x(tn)

]
dq

V2(x, t) = (tn+1 − t)
[
x(t)
x(tn)

]T
X(ρ)

[
x(t)
x(tn)

]
V3(x, t) = (tn+1 − t)(t− tn)νT (t)F (ρ)ν(t)

with ν(t) = 1
τ(t)

∫ t
tn
x(q)dq, P (ρ) = P (η(tn)), F (ρ) =

F (η(tn)), E(ρ) = E(η(tn)) symmetric positive-definite
matrices, and X(ρ) defined as follows:

X(ρ) =

[
X1(ρ) −X1(ρ)
−X1(ρ) X1(ρ)

]
,

with X1(ρ) a symmetric matrix.

In order to ensure simultaneously closed-loop stability for
quasi-PLPV models (10) and guaranteed L2-gain cost,
the following conditions must be both respected for all
t ∈ [tn,tn+1):



W (x, t) > 0 (16)

Ẇ (x, t) +
1

γ
yT (t)y(t)− γwT (t)w(t) < 0 (17)

Since E(ρ) � 0 by assumption, (16) is satisfied if the
sum of the non-integral terms is positive. By defining

ξ(t) =
[
xT (t) xT (tn) νT (t)

]T
and combining the non-

integral terms, one gets the PLMI

ξ
T

(t)

[
ST1 P (ρ)S1 + (t− tn)ST2 X(ρ)S2

+ (tn+1 − t)(t− tn)ST3 F (ρ)S3

]
ξ(t) > 0.

(18)

By assumption, t − tn ≤ Tm and tn+1 − t ≤ Tm for
all t ∈ [tn,tn+1). The maximum value of the quadratic

relation (tn+1 − t)(t − tn) is
T 2
m

4 and occurs when t =
tn+1+tn

2 . Considering the bounds of the time-dependent
terms in (18), the feasibility of PLMI condition

ST1 P (ρ)S1 + TmS
T
2 X(ρ)S2 +

T 2
m

4
ST3 F (ρ)S3 � 0 (19)

guarantees that condition (18) is met.

Expanding (17), one has (20), with ξ(t) =
[
ξ
T

(t) wT (t)

]T
and

S4 = [A(ρ) B2(ρ)K(ρ) 0 B1(ρ)]

S5 =

[
A(ρ) B2(ρ)K(ρ) 0 B1(ρ)
0 I 0 0

]
S6 =

[
A(ρ) B2(ρ)K(ρ) 0 B1(ρ)
0 0 0 0

]
φ = [C(ρ) D2(ρ)K(ρ) 0 D1(ρ)]

An upper bound for the integral term in (20) can be
found by means of Lemma 1, where E(ρ) is held constant
between two successive sampling instants:

−
∫ t

tn

[
ẋ(q)
x(tn)

]T
E(ρ)

[
ẋ(q)
x(tn)

]
dq ≤

ξT (t)

{
− 1

τ(t)
(Ω∗1)TE(ρ)(Ω∗1)

− 3

τ(t)
(Ω∗2)TE(ρ)(Ω∗2)

}
ξ(t) (21)

in which Ω∗1 = M1 + τ(t)Mt and Ω∗2 = M2. Using the
relation

(E(ρ)Ω∗i + τ(t)Ni(ρ))TE−1(ρ)(E(ρ)Ω∗i + τ(t)Ni(ρ)) � 0,

for i = 1, 2, an upper bound for (21) is given by

−
∫ t

tn

[
ẋ(q)
x(tn)

]T
E(ρ)

[
ẋ(q)
x(tn)

]
dq ≤

ξT (t)

{[
NT

1 (ρ)(Ω∗1)
]H

+ τ(t)NT
1 (ρ)E−1(ρ)N1(ρ)

+
[
3NT

2 (ρ)(Ω∗2)
]H

+ 3τ(t)NT
2 (ρ)E−1(ρ)N2(ρ)

}
ξ(t)

(22)

Considering (22) and in order to linearize the product of
variables in (20), choose

P (ρ) = Q−1(ρ), X1(ρ) = λQ−1(ρ),
E(ρ) = Λ−11 (ρ), F (ρ) = Q−1(ρ)Λ2(ρ)Q−1(ρ),

and apply the congruence transformation

Ω̃ = diag
(
Q(ρ), Q(ρ), Q(ρ), Inw

)
to both sides of (20), yielding, after some manipula-
tions, (23).

Since matrices Ω∗1 and Ω∗2 are composed of constant
submatrices and they are independent with respect to the
disturbances w(t), one has the following equivalence

Ω∗i Ω̃ ≡ Q(ρ)Ω∗i ,

for i = 1, 2. Hence, the changes of variables

N i(ρ) = Q(ρ)Ni(ρ)Ω̃,

for i = 1, 2, is adopted.

As performed in Hooshmandi et al. (2018), the lineariza-
tion of condition (23) can be achieved by imposing the
relaxation

Γ−11 (ρ) � Q−1(ρ)Λ1(ρ)Q
−1

(ρ). (24)

Substituting (24) in (23), the resulting terms can then be
grouped based on their dependence on time:[

Π1 +
1

γ
ΦTΦ

]
+ (tn+1 − t)

[
Π2 + LT5 Λ−11 (ρ)L5

]

+ (t− tn)

[
Π3 +N

T

1 Γ−11 (ρ)N1 + 3N
T

2 Γ−11 (ρ)N2

]
≺ 0

(25)

Provided that (25) is affine with respect to t, it is sufficient
to ensure that (17) holds for both t = tn and t = tn+1.
By applying Schur complements, these two conditions
are guaranteed by means of the PLMI conditions (12)
and (13), respectively.

Notice also that inequality (24) is non convex due to the
product of three decision variables. The linearization of
such term is borrowed from Hooshmandi et al. (2018), and
the PLMI presented in (14) ensures that (24) holds for all
t ∈ [tn,tn+1), considering that matrix Υ(ρ) is known when
computing the control gain K(ρ).

With the proposed changes of variables, the PLMIs condi-
tions ensuring (16) must be accordingly adapted. Applying
the congruence transformation diag

(
Q(ρ), Q(ρ), Q(ρ)

)
to both sides of (19), expanding and collecting terms
yields (11), which is a sufficient condition to ensure (16).
This completes the proof.

Remark 1. The adopted LKF is a looped functional, since
V0(x, tn) = V0(x, tn+1) = 0. The main interest behind
looped functionals lies in guaranteeing that W (x, t) =
V (x) at any jump instant. As a result, expansive jumps
are allowed within a sample interval, as long as the
storage function accordingly decreases. If a monotonically
decreasing V (x) is considered, then system stability is
ensured. For further details, please refer to (Seuret and
Gouaisbaut, 2013).

4. NUMERICAL SIMULATIONS

In this section, the effectiveness of the proposed approach
is presented by means of numerical simulations. The



ξT (t)

{(
ST4 P (ρ)L1

)H
+ (tn+1 − t)ST5 E(ρ)S5 + (tn+1 − t)

[(
ST6 X(ρ)L2

)H
+ LT2 Ẋ(ρ)L2

]
− LT2X(ρ)L2

+(tn+1−t)

[(
LT7 F (ρ)L3)H+LT3 F (ρ)L3

]
−(t−tn)LT3 F (ρ)L3+

1

γ
φTφ−γLT8 L8

}
ξ(t)−

∫ t

tn

[
ẋ(q)
x(tn)

]T
E(ρ)

[
ẋ(q)
x(tn)

]
dq < 0

(20)

(
LT4 L1

)H
+(tn+1−t)LT5 Λ−11 (ρ)L5+(tn+1−t)

[
λ
(
LT6 L0L2

)H]−λLT2Q(ρ)L0L2+(tn+1−t)

[(
LT7 Λ2(ρ)L3)H+LT3 Λ2(ρ)L3

]
− (t− tn)LT3 Λ2(ρ)L3 +

1

γ
ΦTΦ− γLT8 L8 +

[
N
T

1 (ρ)(Ω∗1)
]H

+ τ(t)N
T

1 (ρ)Q
−1

(ρ)Λ1(ρ)Q
−1

(ρ)N1(ρ)

+
[
3N

T

2 (ρ)(Ω∗2)
]H

+ 3τ(t)N
T

2 (ρ)Q
−1

(ρ)Λ1(ρ)Q
−1

(ρ)N2(ρ) ≺ 0 (23)

adopted simulation environment is described, as well as
any constraint required for the solvability of the optimiza-
tion problem issued in Theorem 1. For the sake of simplic-
ity, first order (affine) polynomials are admitted for every
decision variable. The presented example is evaluated in
light of Theorem 1 as a way of assessing the closed-loop
stability and L2-gain performance when sampled-data con-
trollers (6) are applied. Different MASPs Tm and different
bounds on the parameters variation rate are considered.

4.1 Computational aspects

The solution of the optimization problems derived in this
paper in terms of PLMIs considers the usage of SDP. The
computational packages SeDuMi (Sturm, 1999), for the
solution of convex optimization problems, and YALMIP
(Lofberg, 2004) and ROLMIP (Agulhari et al., 2019), for
the description of the PLMI conditions, were exploited. All
programming was performed in Matlab.

For computing the control law (6), both the states x(t)
and the parameters η(t) are assumed to be available at
each sampling instant tn.

For comparison purposes, other techniques from the liter-
ature were also implemented under the same framework.

The solution for the conditions reported in Theorem 1
is attained by an iterative procedure, developed in Algo-
rithm 4.1. For that, an initial feasible solution for Υ(ρ) has
to determined. As described by Hooshmandi et al. (2018),
the inequality

Λ1(ρ) + ε2Γ1 − 2εQ(ρ) ≺ 0, (26)

can replace PLMI (14), in the first iteration, for obtain-
ing an initial solution Υ0 = −Γ−11 Q(ρ). Note that ε is
some given positive scalar and that Γ1 is a parameter-
independent matrix during initialization only.

4.2 Results

Example 1. (Hooshmandi et al. (2018)). Consider a quasi-
PLPV realization of an inverted pendulum, whose states
are the angle x1(t) of the pendulum with respect to the
vertical axis and the angular velocity x2(t). The system
matrices are given by

Algorithm 1 Iterative procedure for synthesizing gain-
scheduled L2-gain sampled-data controllers.

Initialization:
1) Adopt a value for maximum allowable sampling pe-
riod Tm.
2) Set ε = 1, λ0 = 1, λ = 1, γ0 = 10, ε = 0.01, kmax = 20,
and k = 1.
3) Given ε and λ, minimize γ under PLMI conditions (11),
(12), (13), and (26) for obtaining Q(ρ) and Γ1.
4) Set Q(ρ) = diag(Q(ρ), Q(ρ)), Υ0 = −Γ−11 Q(ρ),
and γ1 = γ.
Iterative procedure:
While k < kmax or |γk − γk−1| > ε do
5) Given Υk−1(ρ) and λk−1, minimize γ under PLMI
conditions (11), (12), (13) and (14) for determining Q(ρ),
Λ1(ρ), Λ2(ρ), Γ1(ρ), G(ρ), L(ρ), Y (ρ), N1(ρ), and N2(ρ).
6) Set Qk−1(ρ) = Q(ρ), Λ1,k−1(ρ) = Λ1(ρ),
Λ2,k−1(ρ) = Λ2(ρ), Γ1,k−1(ρ) = Γ1(ρ), Gk−1(ρ) = G(ρ),

Lk−1(ρ) = L(ρ), Yk−1(ρ) = Y (ρ), N1,k−1(ρ) = N1(ρ),

and N2,k−1(ρ) = N2(ρ).
7) Given Qk−1(ρ), Λ1,k−1(ρ), Λ2,k−1(ρ), Γ1,k−1(ρ),

Gk−1(ρ), Lk−1(ρ), Yk−1(ρ), N1,k−1(ρ), and N2,k−1(ρ),
minimize γ under PLMI conditions (11), (12), (13) and
(14) to obtain Υ(ρ) and λ.
8) Set Υk(ρ) = Υ(ρ), γk = γ, and λk = λ.
9) Set k = k + 1.
End

A(η) =

[
0 1

12.63− 4.66η(t) 0

]
, B1(η) =

[
0
1

]
B2(η) =

[
0

−0.077− 0.098η(t)

]
C(η) = [1 0] , D1(η) = 0, D2(η) = 0.006 + 0.002η(t)

with

η(t) =

(
1− 1

1 + exp(−7[x1(t)− π/4])

)
×
(

1

1 + exp(−7[x1(t) + π/4])

)
, 0 ≤ η(t) ≤ 1.

Algorithm 4.1 is executed in order to synthesize gain-
scheduled controllers to the inverted pendulum system.
The attained results are compared with Hooshmandi et al.
(2018) in terms of upper bounds to the L2-gain of the
closed-loop system for several MASPs, Tm, and for several



bounds for the variation of η̇(t). The results are shown in
Tables 1 and 2, respectively.

Table 1. Upper bounds for the L2-gain for
different MASPs Tm and |η̇(t)| ≤ 0.1.

Tm (s) Hooshmandi et al. (2018) Proposed approach

0.01 0.159 0.052
0.05 0.161 0.072
0.1 0.166 0.093
0.15 0.433 0.115
0.2 Infeasible 0.166

0.239 Infeasible 0.175

Table 2. Upper bounds for the L2-gain for
different variation rates |η̇(t)| and Tm = 0.1 s.

Bounds
Hooshmandi et al. (2018) Proposed approach

on |η̇(t)|
0.3 0.171 0.097
0.5 0.177 0.099
0.8 0.193 0.105

The reported results show that the designed controller
leads to smaller (improved) L2-gain upper bounds both
for larger Tm and for larger variation bounds on |η̇(t)|.

Assuming an initial condition x(0) = [1.2 2]
T

, a distur-
bance input w(t) = 3 sin(2πt), Tm = 0.15 s and |η̇(t)| ≤
0.1, the quasi-PLPV representation of the inverted pendu-
lum is simulated. The control law

K(η(tn)) = [480.16 120.88]− [260.27 70.27] η(tn) (27)

is considered when simulating the closed-loop system for
the approach presented in (Hooshmandi et al., 2018).
Furthermore, the controller designed with the proposed
approach is given as K(η(tn)) = Y (η(tn))Q−1(η(tn)), with

Y (η(tn)) = [30.4797 85.9713]− [11.7697 22.8722] η(tn)

Q(η(tn)) =

[
0.3642 −0.8595
−0.8595 3.6956

]
+

[
0.0432 0.1699
0.1699 0.4567

]
η(tn)

Figures 1, 2 and 3 depict, respectively, a comparison of the
state x(t) responses, of the controlled output y(t) response,
and of the control signal u(t). The sampling periods are
shown in Figure 4, where each stem indicates when the
sampling occurred and its amplitude represents the time
to be elapsed to the next sampling. The figures illustrate
that the proposed control law ensures that the sampled-
data controlled system is stable, despite the amplitude
of the disturbance signal. Furthermore, the induced L2-
gain norm for the closed-loop system with the sampled-
data controller (6) designed is γ? = 0.1015, which is
below the reported upper bound in Table 1. Contrast
that with the induced L2-gain obtained by the method
of Hooshmandi et al. (2018) with the control law (27),
which is γ? = 0.2361.

Example 2. (Gomes da Silva Jr et al. (2018)). Consider the
following PLPV system:

A(η) =

[
0 1

0.1 0.4 + 0.6η(t)

]
, B1(η) =

[
0.1
0.1

]
, B2(η) =

[
0
1

]
C(η) =

[
1 0
0 0

]
, D1(η) =

[
0
0

]
, D2(η) =

[
0
1

]
with

η(t) = sin(αt), |η(t)| ≤ 1, |η̇(t)| ≤ α,
in which α is a given bound for the variation rate of the
parameter η(t).
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Figure 1. Comparison of the states response for x(0) =

[1.2 2]
T

, w(t) = 3 sin(2πt), Tm = 0.15 s, and |η̇(t)| ≤
0.1 for Example 1.
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Figure 2. Comparison of the output response for x(0) =

[1.2 2]
T

, w(t) = 3 sin(2πt), Tm = 0.15 s, and |η̇(t)| ≤
0.1 for Example 1.
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Figure 3. Comparison of the control signal for x(0) =

[1.2 2]
T

, w(t) = 3 sin(2πt), Tm = 0.15 s, and |η̇(t)| ≤
0.1 for Example 1.
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Figure 4. Aperiodic sampling time with MASP Tm = 0.15 s
for Example 1.

Gain-scheduled sampled-data controllers for the analyzed
PLPV system are synthesized through the procedure out-
lined in Algorithm 4.1. The achieved results are compared
with the approach of Gomes da Silva Jr et al. (2018),
regarding two different scenarios: firstly, for a fixed upper
bound to the L2-gain, the maximum allowable sampling
period Tm is estimated; secondly, for a chosen maximum
allowable sampling period Tm, the upper bounds to the
L2-gain are evaluated.

For the first scenario, an upper bound of γ = 15 and a
maximum variation rate α = 0.2 for the parameter were
adopted. In this setup, the MASP attained by the proposed
method is Tm = 1.659 s, whereas the method of Gomes da
Silva Jr et al. (2018) provided Tm = 1.349 s. In the second
scenario, the same variation rate α = 0.2 is considered and
a MASP Tm = 1.349 s is used. In this case, the method of
Gomes da Silva Jr et al. (2018) yields an upper bound for
the L2-gain of γ = 6.3007, while the proposed approach
provides γ = 1.2000, which is more than five times smaller.
Contrasting the results shows that the proposed conditions
are less conservative than others available in the literature.

Choosing an initial condition x(0) = [0.15 0]
T

, a distur-
bance input w(t) = e−t sin(t), Tm = 1.349s and α = 0.2,
the PLPV model is simulated. The simulation of the
closed-loop system in the approach presented in (Gomes da
Silva Jr et al., 2018) employs the sampled-data controller

K(η(tn)) = − [0.1508 0.7422] + [0.0033 −0.5522] η(tn).
(28)

The control law designed with the proposed approach is
given as K(η(tn)) = Y (η(tn))Q−1(η(tn)), where

Y (η(tn)) = − [0.6456 0.0659] + [0.3976 −0.1519] η(tn)

Q(η(tn)) =

[
3.4173 −0.3375
−0.3375 0.2618

]
+

[
−0.7029 0.0937
0.0937 −0.0579

]
η(tn)

Figures 5, 6 and 7 show a comparison of the state x(t)
responses, of the controlled output y(t) responses, and of
the control signal u(t), respectively. The aperiodic sam-
pling instants are outlined in Figure 8. As in the previ-
ous example, the figures demonstrate that the proposed
sampled-data controller quickly brings the states to the
equilibrium point, even in the presence of external dis-
turbances. The induced L2-gain estimated by the method
of Gomes da Silva Jr et al. (2018) with the control law (28)
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Figure 5. Comparison of the states response for x(0) =

[0.15 0]
T

, w(t) = e−t sin(t), Tm = 1.349 s, and α =
0.2 for Example 2.
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Figure 6. Comparison of the outputs response for x(0) =

[0.15 0]
T

, w(t) = e−t sin(t), Tm = 1.349 s, and α =
0.2 for Example 2.

is γ? = 1.6827. Such gain is larger than the induced L2-
gain norm for the closed-loop system with the synthesized
controller (6), which is computed as γ? = 1.1362. Note
also that the proposed approach provided a tighter upper-
bound than the method of Gomes da Silva Jr et al. (2018).

5. CONCLUSION

This paper addressed the gain-scheduled sampled-data
controller synthesis for nonlinear systems, whose nonlin-
earities are bounded and have bounded rates of varia-
tion. Under these assumptions and with the bounding-
box method, nonlinear systems were recast as quasi-PLPV
models. Gain-scheduling controllers were designed for the
minimization of the L2-gain norm assuming several max-
imum allowable sampling periods Tm. The methodology
was based on the definition of a Lyapunov-Krasovskii
functional and the use of Wirtinger’s Inequality to provide
LMIs with reduced conservativeness. When compared to
previous works, the numerical examples show that the
proposed approach ensures the stability for the nonlinear
systems, represented in terms of quasi-PLPV models, with
larger Tm and improved L2-gain performance.
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Figure 7. Comparison of the control signal for x(0) =

[0.15 0]
T

, w(t) = e−t sin(t), Tm = 1.349 s, and α =
0.2 for Example 2.
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Figure 8. Aperiodic sampling time with MASP Tm =
1.349 s for Example 2.

As possible future works, the framework presented in this
paper can be extended to include in the PLMI derivation
process (i) slack variables by using Finsler’s Lemma, or
(ii) null terms, as proposed in (Seuret and Gouaisbaut,
2013). The authors also suggest (iii) the application of
the synthesized gain-scheduling controllers in real-world
systems.
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