
Attitude and Position Estimation in UAVs

using Artificial Landmarks and MEMS

Sensors in a Virtual Environment

Abstract: This work discusses the development of a hybrid estimation algorithm based on
computer vision and microelectromechanical system sensors. A mathematical enviroment was
developed to simulate the dynamics of the quadrotor and its sensors, a 3D simulation software
was also developed, simulating a on-board camera. The results obtained were compared to a
TRIAD/MEMS attitude and position estimation technique. A fourty times increase in precision
was shown, at the cost of five times additional computational processing time.

Keywords: Artificial landmarks; Attitude estimation; Position Estimation; Computer vision;
Microelectromechanical systems sensors; UAV.

1. INTRODUCTION

Precise estimation of attitude and position is an unavoid-
able step for an efficient control in quadrotors applications.
Every controller action depends on, both, the system’s
states and the desired target. If sensor information is not
reliable, the controller will not be able to operate on its
full potential.

According to Gulmammadov (2009), inertial sensors have
been considered an essential navigational tool, especially
in the aerospace and automotive industries and, further-
more, in robotics, Mainly due to its relative low-price and
its small size. Also, according to Perlmutter and Robin
(2012), for medium to high volume applications, MEMS
accelerometers and gyroscopes will be dominating the mar-
ket for a few decades.

Generally speaking, a quadrotor employs, at least, two
MEMS sensors (Nwe et al., 2008). The first sensor is
an accelerometer which is used to measure the body’s
acceleration and, consequently, to estimate the gravity
vector. The second sensor is a gyroscope which is used
to measure the body’s angular velocity. Another optional
sensor is a magnetometer (Chan et al., 2011) which is used
to measure the earth’s magnetic field at the quadrotor’s
position. All these sensors measurements are taken with
respect to the body frame of reference.

Despite its importance, even the best MEMS sensors
are liable to certain types of errors that interfere its
measurements. The most common errors are white (or
Gaussian) noise and bias drift, being the latter the most
problematic (Gulmammadov, 2009). Some techniques may
reduce the estimation error, such as Kalman filters, which
is an estimation technique that might reduce white noise
dependent error, however it relies on the knowledge of
the sensor’s variance and on consecutive measurements (Li
et al., 2015).

A way to reduce the measurements degradation produced
by these intrinsic errors could consider some prior knowl-
edge of the landscape through the use of natural or artifi-
cial landmarks, i.e. a recognizable feature whose position
is already known. In many mobile robot navigation prob-
lems, methods based on artificial landmarks are used to

estimate position, exploiting computer vision techniques,
which are capable of recognizing the landmarks and ex-
tract useful features from them (Mata et al., 2001).

Artificial landmark position estimation is useful in these
scenarios as it provides absolute positioning, in contrast to
MEMS sensors, which are based on relative positioning.
According to Liu and Pang (2001), relative positioning
determination relies on previous position measurements,
while absolute positioning does not have such dependence.

2. OBJECTIVES

This work aims to propose an hybrid sensor system based
on artificial landmarks identification and on-board MEMs
sensors to estimate the quadrotor’s attitude and posi-
tion. The methodology described here employs the Python
language and OpenCV library - an open-source project
focused on computer vision and machine learning appli-
cations (Bradski and Kaehler, 2000) - to detect and ex-
tract useful features from an artificial landmark within a
virtual environment created specifically for this purpose -
which is based on a Python based engine called Panda3D
(Panda3D, 2019). The estimation algorithm proposed is
composed of a lower frequency computer vision algorithm,
which, using the artificial landmarks, estimates the atti-
tude and the position, and a higher frequency conven-
tional MEMS sensing algorithm. The additional power
consumption of coupling these two sensing algorithms is
well compensated by a considerable reduction in state
estimation error.

3. METHODOLOGY

The most important aspects of the proposed sensing sys-
tem are its viability and its effectiveness. A viable option
was to simulate the entire system in a computational envi-
ronment, avoiding unnecessary equipment acquisition and
unexpected catastrophic failures. This simulation software
was developed-in house and will be briefly discussed in
Section 3.4. In the following, the main aspects related to
the dynamics of the quadrotor are presented.

creacteve_alessandra
Texto digitado
DOI: 10.48011/asba.v2i1.1656

3.1 Dynamics Simulation

The mathematical equations governing the quadrotor’s
dynamic are based in (de Oliveira et al., 2019). These
equations include the following dynamic aspects:

• Translational and rotational drag (Eqs. (2) and (5));
• Position and velocity in the inertial frame of reference

(Eq. (4));
• Propeller gyroscopic effect (Eq. (7));
• Quaternion representation for attitude (Eqs. (11)). fthrust
mthrust,x

mthrust,y

mthrust,z

 =

 1 1 1 1
−1 0 1 0
0 1 0 −1
−1 1 −1 1

u1u2u3
u4

 (1)

[
fdrag,x
fdrag,y
fdrag,z

]
= −ρCdlD

[|ẋb|ẋb
|ẏb|ẏb
2|żb|żb

]
(2)

[
fxb
fyb
fzb

]
=

[
0
0

fthrust

]
+

[
fdrag,x
fdrag,y
fdrag,z

]
(3)

ẌŸ
Z̈

 =
RI

b

M

[
fxb
fyb
fzb

]
−

[
0
0
G

]
(4)

[
mdrag,x

mdrag,y

mdrag,z

]
= −1

3
ρD4lCd

[|wx|wx

|wy|wy

2|wz|wz

]
(5)

wr = −w1 + w2 − w3 + w4 (6)[
mgyro,x

mgyro,y

mgyro,z

]
= IRωr

[−wx

wy

0

]
(7)

[
mx

my

mz

]
=

[
mthrust,x

mthrust,y

mthrust,z

]
+

[
mgyro,x

mgyro,y

mgyro,z

]
+

[
wdrag,x

wdrag,y

wdrag,z

]
(8)

[
ẇx

ẇy

ẇz

]
= J−1

([
mx

my

mz

]
−

[
wx

wy

wz

]
× J

[
wx

wy

wz

])
(9)

(10)q̇0q̇1q̇2
q̇3

 =
1

2

 0 −wx −wy −wz

wx 0 wz −wy

wy −wz 0 wx

wz wy −wx 0

q0q1q2
q3

 =
1

2
W̄ #»q (11)

where ui and wi are the i-th propeller thrust and angular
velocity, respectively; ẋb, ẏb and żb are the components of
the quadrotor translational velocity and wx, wy and wz,
the components of its angular velocity, both taken in the
body frame; Ẍ, Ÿ , Z̈ being the quadrotor acceleration in
the inertial frame; ρ, Cd, l, D and RI

b are, respectively,
the air density, the drag coefficient, the quadrotor arm
thickness, the propeller center to body center of gravity
horizontal distance and the body to inertial rotation ma-
trix (see Chou (1992) for further information on how to
calculate this matrix). Knowing the quadrotor physical
constants, it is possible to numerically integrate (4), (9)
and (11), in order to obtain all the current states of the
system.

3.2 MEMS Sensors Simulation and Conventional Estimation
Algorithms

In the proposed simulation environment (Section 3.4), it is
necessary to simulate the main intrinsic characteristics of
MEMS sensors, i.e. the inertial measurements alongside
white noise and bias drift. Those main characteristics
should resemble real sensors. The proposed method is a
simplified stochastic approach, defined by a perfect Gaus-
sian noise with zero mean and a predetermined standard
deviation added to the measurements. The bias drift is
defined at the first iteration of the algorithm as a zero
mean random variable bounded by a given limit, and
added to each measurement.

From Figure 1 it is shown schematically a conventional
estimation algorithm. The real (by ’real’ in the virtual en-
vironment, meaning the simulated inertial measurements)

angular and position states wk and Ẍk are observed by
the sensors in the observed states q̇k,obs and Ẍk,obs. Those
observed states are also degraded by the noise introduced
by the sensors.

TRIAD

#»

V mag,obs,
#»

V grav,obs

GyroscopeNoise

#»wk

∫
X Accel.

#̈»x b,k

Noise

RI
b,obs

#̇»q k,obs

∫ ∫
#»q k,M

#»

Xk,M ,
#̇»

Xk,M

#̈»

Xk,obs

Figure 1. Conventional attitude and position estimation
algorithm.

Note that this traditional algorithm is also dependent on
the previously estimated states, that happens due to the
numerical integration used to calculate the accelerometer
and gyroscope measurements in order to obtain the current
states. Any numerical integration is heavily dependent on
previous results.

If the on-board sensor were capable to measure perfectly
the state of the system, ideally none error would be
introduced in the estimation process. However that is not
the case as some noise is introduced by the sensor in the
measures. As already discussed, there are normally two
kinds of noise, the white noise and the bias drift. White
noise, per definition, will cancel itself out over some time,
as its mean is zero, or close to it. On the other hand, bias
drift noise is not easily predictable, its mean is not zero
and, moreover, it will affect the estimation cumulatively,
as the algorithm progresses through time. In each iteration

of estimation, some bias is introduced by the sensor, being
added by the integration block, causing the estimated
states to drift away from the real ones.

Here, the sensor noise is defined as a stochastic process,
governed by Eqs. (12)-(14). BDi stands for Bias Drift of
the i-th sensor, Di(k), and WNi(k) stands for drift and
white noise of the i-th sensor, on timestep k, respectively.

»

BDi =
#»U (−σBD,i,+σBD,i) (12)

#»

Di(k) =
#»

Di(k − 1) +
»

BDi∆t (13)

»

WN i(k) =
#»N (−σWN,i,+σWN,i) (14)

The drift noise simulation process considered here consists
of randomizing sensors’ bias drift in the first time step of
estimation, by a uniform distribution bounded by σBD,i,
and adding it over the process of estimation. The white
noise simulation consists of a normal distributed random
variable with zero mean and a given variance of σWN,i, for
each time step of estimation. Both noises are added to the
real state of the system.

The TRIAD algorithm (Black, 1964) is used to estimate
the attitude of a given system. This algorithm can obtain a
rotation matrix of the system RI

b,obs, from the body frame
to the inertial frame, given four known vectors: two in the
body frame, and two in the inertial frame. These two first
vectors are provided by on-board sensors, accelerometer,
and magnetometer, and the latter two vectors are known,
normally the magnetic field in the area and the gravity
vector, both in NEU (North, East, Up) coordinates.

With the rotation matrix RI
b,obs and sensors’ measure-

ments
#»

Aobs and #»wobs, it is possible to estimate the state
of the system, Eqs. (15)-(18).

#̈»

Xk,obs = RI
b,obs

#»

Aobs (15)

#̇»

Xk,obs =
#̇»

Xk−1,obs +
#̈»

Xk,obs ·∆t (16)

#»

Xk,obs =
#»

Xk−1,obs +
#̇»

Xk,obs ·∆t (17)

#»q k,obs = #»q k−1,obs +
1

2
(W̄k,obs

#»q k,obs)∆t (18)

Note that the sensors’ measurements may be written as a
function of the measurement noise (19)-(20).

#»

Aobs =
#»

A +
»

WNa(k) +
#»

Da(k − 1) +
»

BDa ·∆t (19)

#»wobs = #»w +
»

WNg(k) +
#»

Dg(k − 1) +
»

BDg ·∆t (20)

The estimation drift can be obtained replacing Eqs. (19)-
(20) in (15)-(18).

3.3 Quadrotor Controller

Attitude and position control in any quadrotor is not an
easy task. It is a six degrees of freedom system with twelve
relevant states, it is also unstable, under actuated, and
nonlinear (Gupte et al., 2012). A multitude of controllers

were developed to cope with those characteristics. Early
attempts used PID controllers for near-linear regions of the
problem (Erginer and Altug, 2007). More recently, nonlin-
ear controllers were successful to control the system, e.g.
SDRE control (de Oliveira et al., 2019) and back-stepping
control (de Avellar Frederico et al., 2016). Although the
controller developed for the system is not within the scope
of this work, it will be mentioned briefly.

The quadrotor considered here is controlled by a neu-
ral network and its actuation limits are bounded by its
propeller and electric motor pair characteristics. Given
an arbitrary state S0, the task of the controller is to
conduct the system to the zero state, which means, to take
the vehicle to the origin with null velocity and a neutral
angular position.

The neural network controller has 20,293 variables and
was trained by a deep learning algorithm known as PPO
(Proximal Policy Optimization) (Schulman et al., 2017).
This technique is relatively new, bringing some advantages
over its predecessor, the TRPO (Trust Region Policy
Optimization) algorithm (Schulman et al., 2015).

The controller training took about six hours in a computer
with an Intel i5-4460 processor and 16 GB of RAM. In each
training episode, the system was initialized in a random
state, governed by the Eqs. (21)-(24).

#»

X =
#»U (−2.5, 2.5) m (21)

#»

Ẋ =
#»U (−2.5, 2.5) m · s−1 (22)[

φ
θ
ψ

]
=

#»U (−0.5, 0.5) rad (23)

#»w =
#»U (−0.5, 0.5) rad · s−1 (24)

The goal of the training is to achieve a square sum of all
the system states (position, velocity, angular position and
velocity), lower than 0.01, in at least 95% of the last 100
training episodes. On Figure 2 it is possible to observe
the average absolute position of the controlled quadcopter
over a span of 30 episodes, lighter color represents the
variance. The initial state was governed by Eqs. (21)-
(24), the average steady state error was 0.005 meters, the
average 5% settling time was 5.24 seconds.

3.4 Three Dimensional Environment Simulation

A mathematical environment was developed in-house, aim-
ing to include all the quadrotor and its sensors dynamics.
This mathematical environment is able to determine the
quadrotor states and sensors readings over the simulation
time. On top of this mathematical simulation a 3D rep-
resentation software was developed, this software is able
to simulate a on-board camera of said quadrotor. This
3D representation was implemented using a Python 3D
engine called Panda3D, which is commonly used for the
development of digital games (Panda3D, 2019). In the
3D environment developed, it is possible to simulate the
quadrotor in any given scenario, with all the quadrotor’s
dynamics inherited directly from its equations of motion.

Figure 2. Controlled quadrotor all axis average absolute
position.

Figure 3 shows a screen-shoot of the developed 3D envi-
ronment.

Figure 3. Render of the 3D environment.

It was also necessary to emulate an on-board camera,
which was responsible for capturing images of the 3D en-
vironment, pointed to the negative z-axis of the quadrotor
body frame. One example of these photos is represented
in Figure 4. In each simulation time step, a photo is taken
and then sent to the OpenCV based algorithm.

Figure 4. Render of the on-board camera.

3.5 Camera Calibration

According to Weng et al. (1992), the camera calibration
“(...) is crucial for applications that involve quantitative

measurements such as dimensional measurements, depth
from stereoscope, or motion from images”. Only with a
calibrated camera, it is possible to determine various re-
lationships between an object and its picture. The cam-
era calibration process consists mainly in determining the
camera intrinsic parameters matrix, Eq. (25), and five lens
distortion coefficients, Eq. (26) (Zhang, 2000).

mtxcam =

[
fx 0 cx
0 fy cy
0 0 1

]
(25)

distcam = [k1 k2 p1 p2 k3] (26)

The calibration algorithm used is part of the OpenCV’s
standard library, and it is based on (Zhang, 2000). This
algorithm uses a given number of distinct photos of a
chessboard pattern, all of them in different angles and
distances. It is possible to observe one of those poses in
Figure 5.

Figure 5. Calibration pose example.

Given the pictures, the algorithm findChessboardCorners
detects the chessboard vertices in each of the images.
All of those obtained vertices are then fed to another
algorithm called calibrateCamera, which generates the
camera intrinsic parameters matrix, based on knowledge
of the real size of the chessboard pattern (OpenCV, 2019).
The emulated on-board camera is considered perfectly
planar, i.e there are no lens distortions, as lens distortion
is only possible on a real lens with optical glasses, leading
all coefficients of Eq. (26) to zero.

3.6 Attitude and Position Estimation Algorithm Based on
Artificial Landmarks

The artificial landmark used in this algorithm is the
same chessboard pattern used to calibrate the camera,
illustrated in Figure 5. It is important to note that various
types of patterns can be used as artificial landmarks, e.g.
QR codes. The pattern, that just needs to be recognizable
by some algorithm, has a defined size and spacing, and
it is advisable not to use an ambiguous pattern, i.e. the
pattern must look different when rotated 90◦ or 180◦.

To estimate the quadrotor attitude and position, the
algorithm findChessboardCorners is used once again, as
the vertices of the found pattern are used by OpenCV’s
solvepnp algorithm to determine the pattern rotation axis

and transform vector (OpenCV, 2019). For a given image,
if there is a chessboard pattern in it, the first algorithm will
return its vertices position. Once the camera is calibrated,
the later algorithm will return the pattern position on
the camera’s coordinate system, and its axis of rotation.
This information is then transformed into the appropriate
coordinate system.

Coordinate system transformations are necessary for sev-
eral reasons. First of all, the default coordinate system of
OpenCV is right-handed, with its origin defined at the top
left of the image, x-axis to the right, y-axis down, and z-
axis from to plane of the image inward. This coordinate
system is also known as east, south, down (ESD), different
from the coordinate system used in this work, which is
north, east and up (NEU).

A second set of transformations is necessary to obtain the
quadrotor position and attitude with respect to the inertial
coordinate system, as the OpenCV’s algorithm returns
the position and attitude of the pattern in relation to
the camera. The sequence of transformations needed to
rotate the coordinate system from ESD to NEU and from
the camera’s coordinate system to the inertial coordinate
system are defined by Eqs. (27)-(30):

[
φcam
θcam
ψcam

]
= Euler321(rvecs), (27)

[
φest
θest
ψest

]
=

[−φcam
−θcam
ψcam

]
, (28)

RI
c = R321 (ψcam, θcam, φcam) , (29)[

xest
yest
zest

]
=

[−1 0 0
0 −1 0
0 0 −1

]
RI

c

[
tvecsx
tvecsy
tvecsz

]
, (30)

where φcam, θcam and ψcam are the Euler angles of the
object, in the camera’s coordinate system; Euler321 is an
Euler function transformation from a rotation vector to
Euler angles; φest, θest and ψest are the estimated Euler
angles of the quadrotor in the artificial landmark/inertial
coordinate system; RI

c is the rotation matrix from camera
to pattern coordinate system and xest, yest and zest are
the estimated positions of the camera in the pattern’s
coordinate system.

One characteristic of this algorithm is its heavy compu-
tational cost. Determining if a given pattern is present in
any image and finding its vertices is a pixel by pixel effort.
Due to that, even with the power of modern computers,
the computational task may result in slower computational
time than the controller time step. Another characteristic
of this task is its complete dependency on the artificial
landmark being present in the photo taken by the on-board
camera.

Because of these two characteristics, it is not possible to
state that this algorithm may completely replace all on-
board sensors of a quadrotor, it is rather possible to state
that this technique should be coupled with other estima-
tion techniques, aiming to improve the state estimation
without compromising the total computational cost.

3.7 Hybrid Sensing System

A hybrid sensing system, using both, on-board MEMS
sensors and the estimation algorithm based on artificial
landmarks, is the ideal trade-off between computational
power and reliability. This system is significantly faster
than a conventional artificial landmark algorithm because
it runs at a slower frequency, requiring fewer calculations
per second. It is also reliable since if any absent detec-
tion occurs, e.g., the pattern not being in the frame, or
being poorly lit by a passing shadow, the conventional
sensing system will be still running normally and flying
the quadrotor stably. Moreover, as discussed previously,
MEMS sensors tend to generate drift over time, however
these type of sensor are precise for short periods. Due to
this fact, the hybrid sensing system also maintains almost
the same precision of the artificial landmark algorithm.

The proposed system acts directly on Eqs.(15)-(17), damp-
ening the previous MEMS estimated state with the esti-
mated state obtained by the artificial landmark algorithm,
as defined by Eqs. (31) and (33).

#»

Ẋk,obs =
[
(1− σh)

#»

Ẋobs + σh
#»

Ẋimg

]
k−1

+
#̈»

Xk,obs∆t (31)

#»

Xk,obs =
[
(1− σh)

#»

Xobs + σh
#»

Ximg

]
k−1

+
#̇»

Xk,obs∆t (32)

#»q k,obs = [(1− σh) #»q obs + σh
#»q img]k−1 + #̇»q k,obs∆t (33)

where σh is a given dampening factor,
#»

Ẋimg,
#»

Ximg, and
#»q img the computer vision estimated velocity, position and
angular position, respectively.

Figures 6 and 7 show the block diagrams of the proposed
sensing system. Both diagrams are only valid in the iter-
ation on which occurs the artificial landmark estimation,
all other iterations in between those, i.e all the iterations
out of phase relative to the computer vision algorithm,
occurs solely based on MEMS sensors, governed by the
block diagram depicted in Figure 1.

3.8 Model Parameters

The given parameters used in the simulation can be
observed from Tables 1 and 2. The on-board camera was
setup to a sensor size of 36 by 24 millimeters, and a focal
length of 45 millimeters. The 3D scenario was carefully
created to be represented in real scale, compared to the
quadrotor size. Each inner edge of the chessboard pattern
has 10 centimeters, the total area of the chessboard pattern
represents the same area of an A2 size sheet of paper.

The 3D render was done in 1920 by 1080 pixels of resolu-
tion, an 16x anisotropic texture filter was set and texture
quality configured to slow. This setup was necessary to
keep a reliable texture and shape representation of the
3D environment, mainly of the chessboard pattern, as
lower resolution or faster filters resulted in blurry images,
hampering the ability of the sensing system to detect the
vertices of the pattern.

Art. Land. Alg.

Image

σh

#»

Xk−1,img,
#̇»

Xk−1,img

TRIAD

#»

V mag,
#»

V grav

Accel.

#̈»

Xk

Noise

X

RI
b,obs

∫ ∫
(1− σh)

#̈»

Xk,obs

#»

Xhyb,
#̇»

Xhyb

Figure 6. Hybrid sensing system: accelerometer algorithm.

Art. Land. Alg.

Image

σh

#̇»q k−1,img

Gyroscope

#»w

Noise

(1− σh)
∫

#̇»q k,obs

#»q k,hyb

Figure 7. Hybrid sensing system: gyroscope Algorithm

4. RESULTS

From Tables 3-4 it is possible to observe the error behavior
of the conventional MEMS sensing system and the pro-
posed hybrid system; where error is defined as the absolute
difference between the estimated and simulated state. The
average was taken over 120,000 samples, throughout fourty
simulation episodes.

In the results presented in the Table 3, the quadrotor was
set initially at five meters height and all other states equal
zero. The goal of this test was just to keep the quadrotor
still in a hovering flight at that height. Table 4 considers
that the quadrotor was initially set in a random initial
state bounded by Eqs. (21), (23),(24), the initial velocity

was bounded by equation
#»
ẋ = #»u (−1.25, 1.25) m · s−1, the

Table 1. Quadrotor parameters.

System Frequency fs 100Hz

Propeller center to CG
horizontal distance

D 0.26m

Arm Thickness l 0.05m

Mass m 1.03kg

X inertia moment Jxx 16.83 · 10−3kgm−2

Y inertia moment Jyy 16.83 · 10−3kgm−2

Z inertia moment Jzz 28.34 · 10−3kgm−2

Propeller inertia moment Ir 5 · 10−5kgm−2

Propeller Thrust Coeff. Kf 1.4 · 10−5 Ns2rad−2

Propeller Torque Coeff. Km 2.4 · 10−7Nms2rad−2

Body Drag Coefficient Cd 1.1

MEMS Sensing Frequency fMEMS 100Hz

Hybrid Sensing Frequency fh 10Hz

Hybrid Sensing Damping σh 0.2

Table 2. Sensors parameters.

Sensor
Model Parameters

Standard Deviation Max. Bias Drift

Accelerometer 0.1m/s2 0.0005m/s2

Gyroscope 35mrad/s 0.15mrad/s

Magnetometer 15mG 0.075mG

quadrotor goal was to reach five meters height on z axis,
with all other states being null.

Table 3. Average absolute estimation error in
30 seconds hover flight.

Sensing Average Estimation Error

System Position (cm) Quaternion (10−3)

Hybrid 1.05 ± 0.01 2.45 ± 0.01

MEMS 43.0 ± 31.2 9.99 ± 0.17

Table 4. Average absolute estimation error in
random initial state flight.

Sensing Average Estimation Error

System Position (cm) Quaternion (10−3)

Hybrid 1.39 ± 0.03 2.43 ± 0.01

MEMS 47.5 ± 33.2 9.72 ± 0.16

Figures 8-9 show the average position error over time.
This average was taken over 40 episodes and the lighter
curve represents its variance. From Figures 10 and 11 it
is possible to observe the quadrotor average position over
time, taken over 40 episodes, the lighter curve being its
variance.

The results obtained with the proposed hybrid system
were better, comparing to the conventional MEMS sensing
approach. The average error was 37 times lower in the
hybrid system, with the absolute precision of 1.22 centime-
ters, while the conventional MEMS algorithm had 45.25
centimeters of absolute precision. The hybrid approach for
estimation of angular position was also better, although
not as much, netting 4.03 times lower error in comparison
to the conventional approach.

Figure 8. Hover flight average absolute estimation error
over time.

Figure 9. Random initial state flight average absolute
estimation error over time.

From Table 5 it is possible to compare the computational
time of the conventional and hybrid approach. The hybrid
system computational time, on 10,000 samples average,
was three times slower on hover flight and seven times
slower on the random initial state, in comparison to the
conventional approach.

Table 5. Average iteration computational time.

Flight

Mode

Iteration Computational Time

Art. Land. MEMS Hybrid

Hover Flight 22.9 ms 1.16 ms 3.45 ms

Random State 69.6 ms 1.16 ms 8.12 ms

Figure 10. Hover flight average absolute position over time.

Figure 11. Random initial state flight average absolute
position over time.

The main cause of the longer average iteration time in the
random initial state flight mode is probably due to the
findChessboardCorners algorithm because, if there is no
artificial landmark present on the image (which frequently
occurs in the first moments of the flight with randon initial
state), the algorithm checks all the pixels of the image
before deciding that there is no artificial landmark in that
picture. On the other hand, if there is a landmark on
the image, the algorithm only scans until it finds it, as
the pattern is normally in the middle of the image, the
iteration time is reduced.

The effective time of one iteration of the artificial landmark
estimation is, on average, 40 times slower compared to
conventional MEMS sensing, but as its frequency is 10

times slower, the hybrid approach iteration time is diluted
in the out of phase iterations, i.e the iterations in which
only the MEMS estimation occurs, resulting on average
5.8 milliseconds per iteration.

5. CONCLUSIONS

The proposed hybrid sensing system attained good results,
providing, approximately, fourty times more accurate on
position and four times more accurate on attitude, elim-
inating the bias drift effect of the conventional MEMS
sensing algorithm. Its downside is the computational time
required, being, on average, five times slower compared to
the conventional algorithm.

An interesting approach that should be investigated later
would be to replace the standard chessboard detection
algorithm with a faster alternative, possibly based on deep
learning and convolutional networks. A faster detection
algorithm would probably generate even better results,
creating the possibility of on-board and offline use, since
quadrotors on-board computers are normally slower in
comparison to desktop PCs.

6. ACKNOWLEDGMENTS

This study was financed in part by CAPES.

REFERENCES

Black, H.D. (1964). A passive system for determining the
attitude of a satellite. AIAA journal, 2(7), 1350–1351.

Bradski, G. and Kaehler, A. (2000). Opencv. Dr. Dobb’s
journal of software tools, 3.

Chan, A.L., Tan, S.L., and Kwek, C.L. (2011). Sensor data
fusion for attitude stabilization in a low cost quadrotor
system. In 2011 IEEE 15th International Symposium
on Consumer Electronics (ISCE), 34–39. IEEE.

Chou, J.C. (1992). Quaternion kinematic and dynamic
differential equations. IEEE Transactions on robotics
and automation, 8(1), 53–64.

de Avellar Frederico, L., da Silva, A.L., and Martins-Filho,
L. (2016). Dinâmica e controle do voo de um vant
quadrirrotor. Proceeding Series of the Brazilian Society
of Computational and Applied Mathematics, 4(1).

de Oliveira, A.C.F., Altuna, J.A.T., and Correa, D.P.F.
(2019). Dynamic modelling and control of unmanned
aerial vehicle of the quadrotor type. In 25th ABCM
International Congress of Mechanical Engineering.

Erginer, B. and Altug, E. (2007). Modeling and pd control
of a quadrotor vtol vehicle. In 2007 IEEE Intelligent
Vehicles Symposium, 894–899. IEEE.

Gulmammadov, F. (2009). Analysis, modeling and com-
pensation of bias drift in mems inertial sensors. In
2009 4th International Conference on Recent Advances
in Space Technologies, 591–596. IEEE.

Gupte, S., Mohandas, P., and Conrad, J. (2012). A survey
of quadrotor unmanned aerial vehicles. Proceedings of
IEEE Southeastcon.

Li, Q., Li, R., Ji, K., and Dai, W. (2015). Kalman filter and
its application. In 2015 8th International Conference on
Intelligent Networks and Intelligent Systems (ICINIS),
74–77. IEEE.

Liu, H.H. and Pang, G.K. (2001). Accelerometer for mo-
bile robot positioning. IEEE Transactions on Industry
Applications, 37(3), 812–819.

Mata, M., Armingol, J.M., de la Escalera, A., and Salichs,
M.A. (2001). A visual landmark recognition system for
topological navigation of mobile robots. In Proceedings
2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No. 01CH37164), volume 2,
1124–1129. IEEE.

Nwe, T.T., Htike, T., Mon, K.M., Naing, Z.M., and
Myint, Y.M. (2008). Application of an inertial naviga-
tion system to the quad-rotor uav using mems sensors.
Engineering and Technology, 42, 578–582.

OpenCV (2019). Camera Calibration and 3D
Reconstruction. URL https://docs.opencv.org/
2.4/modules/calib3d/doc/camera_calibration_
and_3d_reconstruction.html. (accessed March 18,
2020).

Panda3D (2019). Panda3D - A Python 3D Engine.
URL https://docs.panda3d.org/1.10/python/
introduction/index. (accessed March 18, 2020).

Perlmutter, M. and Robin, L. (2012). High-performance,
low cost inertial mems: A market in motion! In
Proceedings of the 2012 IEEE/ION Position, Location
and Navigation Symposium, 225–229. IEEE.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algo-
rithms. arxiv 2017. arXiv preprint arXiv:1707.06347.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. (2015). Trust region policy optimization.
In International conference on machine learning, 1889–
1897.

Weng, J., Cohen, P., and Herniou, M. (1992). Camera
calibration with distortion models and accuracy evalua-
tion. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (10), 965–980.

Zhang, Z. (2000). A flexible new technique for camera
calibration. IEEE Transactions on pattern analysis and
machine intelligence, 22(11), 1330–1334.

