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Abstract: Electricity is a fundamental resource for modern society. However, some threats are
faced by Electrical Power Distribution Systems, which are responsible for delivering electricity
to end consumers. Analyzing how much time these hazards will threaten these systems, causing
failure events, is an essential area of study. Through statistical methods, it is possible to study
this behaviour from time until failure, as well as to observe the influence of variables at this time,
providing models to predict when a failure event will occur. In this study, Reliability Analysis
Regression techniques are used on real data, constructing a model for all failures and for different
groups of failures, using non-parametric and parametric methods to estimate the reliability and
cumulative hazard curves. An analysis of the failure causes directly linked to weather events,
using six weather variables, is also made.

Keywords: Causes of Failure, Distribution System, Failure event, Reliability/Survival
Regression.

1. INTRODUCTION

Electrical power Distribution Systems (DSs) are the part
of the power systems responsible for delivering electricity
to final customers, such as homes, hospitals and industries.
Therefore, maintaining the operation of them in normal
condition is a concern of modern society (of Economic Ad-
visers et al., 2014)(Brem, 2015). However, as DSs generally
occupy a large area they are exposed to external environ-
ment, and end up being subject to various threats that
can cause failures, that is, interruption in the supply of
electricity. As a consequence, the study of DS failures is a
current concern of researches, public agents, and society,
in order to enhance the reliability and resilience of DSs
(Zio, 2009).

The leading causes of failures in DSs (Z lotecka and Sroka,
2018)(Sroka and Z lotecka, 2019) are accidents with an-
imals (Sahai and Pahwa, 2006) or vegetation (Radmer
et al., 2002), weather events (Konal et al., 2018)(Pahwa,
2007), load transfer (Rodriguez-Garcia et al., 2019), device
failures (Li et al., 2019) and rare events like terrorism,
vandalism and cyber-attacks (Ni and Li, 2019). Therefore,
several factors may be associated with these failures, from
equipment failure to vehicle accidents colliding with net-
work elements, and for a better understanding of them, a
separation of these failures into groups (bringing together
similar threats or causes) may be interesting.

? This work was partially support FAPESP: 2014/50851-0, CNPq:
465755/2014-3; COPEL PD 2866-0504/2018 and BPE Fapesp
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Two factors are often recurrent in failure studies: how long
until it happens (time to failure or lifetime) and how long
until the system recover itself (time to repair) (Bessani
et al., 2016). For these types of studies, Reliability Analysis
Regression (also know as Survival Analysis Regression)
(Colosimo and Giolo, 2006)(Cox and Oakes, 2018) provides
models to estimate the reliability and hazard using time as
variable, making possible to determine the group of failure
that is more recurrent, unlike an analysis considering only
the number of failure events for each group. This approach
is used in areas such as Medicine (Moolgavkar et al., 2018)
and Engineering, in general problems (Dantas et al., 2010)
or more specifically, as in Reliability Engineering (Murthy
et al., 2004). For these models (Mishra et al., 2019),
three major techniques can be found in the literature: the
parametric (Zhang, 2016), the non-parametric (Rink et al.,
2013),and the semi-parametric (Shauly et al., 2011). Para-
metric Statistics need a family of probability distribution
and can be more accurate than non-parametric techniques
(Zhang, 2016). From previous works, the Weibull distri-
bution proved a good choice for problems involving DS
failures (Fogliatto et al., 2019).

For some failures groups, weather events are directly linked
with the occurrence of a failure event. Regression including
weather events as covariates can be used to evaluate the
impact of a particular weather event in a failure group, by
analyzing the value of the coefficients for these variables
with the values for the model constructed considering all
failure events. A understanding of the characteristics of
the different groups of failure events that threaten DSs is
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useful for improvements in the confiability of the system,
and real data is useful because the results achieved can be
used in locations with similar characteristics.

In this paper, the different causes of failure events in a
real DS from a brazilian city, from a period of almost
two years, are separated in five groups, according to the
characteristics of these events. A group considering all
failures events (all groups together) are used. The main
outputs of Reliability Analysis Regression, that are the
reliability and cumulative hazard functions, are plotted
by non-parametric (Kaplan-Meier and Nelson-Aalen) and
parametric (Weibull) techniques for all groups, to estimate
the dangerous of each failure group in terms of the lifetime
of the system (time intervals between failures). For all
groups, the non-parametric estimators and the Weibull
Univariate was used considering only the lifetime values,
and to include weather events as covariates the Accelerated
Failure Time (AFT) model was used. For the failure groups
that have some relation with weather events and for the
“All Failures”group, an analysis using Weibull AFT model
was used to include six covariates (from data of maximum
daily values of the number of atmospheric discharges, wind
speed, maximum and minimum temperature, precipitation
and relative humidity of the analyzed city) to measure the
impact of weather in the lifetime of the system. From
the models including weather covariates, the reliability
function graphics varying the weather values was shown
to demonstrate how these covariates modify the lifetime
of the DS. Also, tables of predictions in terms of a median
and an expected time for the survival of the system from
the three groups that weather covariates were included are
presented.

The paper is organized in four sections. Section II presents:
a brief description of the analyzed real DS; the failure
dataset, with examples of the failure groups that were
used; an example table of the weather data; an analysis
of the issue count of failures for each group, showing
the threat order of each group in percentage terms; the
statistical theory for the univariate and AFT regression
models, for the Kaplan-Meier / Nelson-Aalen methods for
the non-parametric and the Weibull distribution for the
parametric analyses. Section III summarizes the results
for the constructed models, with equations and tables
showing the coefficients for the regressions, and graphics
of the reliability and cumulative hazard functions, the
main outputs for these methods. Section IV presents the
conclusions and final remarks.

2. MATERIAL AND METHODS

The real Brazilian DS illustrated in Fig. 1 was used in this
research. Associated with this system, data from failure
events and data from weather events were used to provide a
model to predict the lifetime of the system, using reliability
analysis regression techniques.

A Failure event dataset provides the information used in
the development of the models of this text. The lifetime
and the event information are the information necessary
for the Reliability Analysis models. Lifetime, which was
calculated using the starting date and hour of the each
failure from the original failure dataset, represents the
amount of time the system has been operating under

Figure 1. DS of a midsize Brazilian city with 500.000
people, and about 85 years old, composed of 8 substa-
tions, 65 feeders, 40143 buses (distribution transform-
ers) and a network with length of 1660.17 kilometers.
A subfigure is plotted for more details. Each color
represents the feeders of the same substation.

normal conditions until a failure has occurred (time to
event/failure) and is presented in minutes. It is considered
that the system fully recovers after a failure, thus starting
a new survival period. From the analysed period, 12028
failure events were registered (failures of any duration).
The ”Event” information is to represent the abstention of
censored data, that is, all of the lifetimes are complete
observations (information most useful in time to failure of
equipments or in medicine reasearches, where the study
has a time limit. If a patient or the equipment did not fail
or died until this deadline, the lifetime of this sample is
considered censored).

The weather dataset is composed of the maximum daily
values for six weather events in the period from Febru-
ary/2013 to December/2014 (689 days): the number of
atmospheric discharges, wind speed in kilometre/hour,
amount of precipitation in millimetres, the maximum and
minimum temperature in Celsius and relative humidity in
percentage.

From all failure events, the maximum lifetime was 6419
minutes. The maximum number of atmospheric discharges
was 2267, the maximum wind speed was 97.2 km/h, the
maximum amount of precipitation was 80.8 mm, the max-
imum relative humidity was 98% and the maximum and
minimum temperature was 38.3 and 10.2 C, respectively,
for the analysed period. A histogram of the lifetime is
presented in Fig. 2 and a concentration of the number of
occurrences from 0 to 150 minutes is observed. The mean
lifetime value was 87.5 minutes.

From the failure dataset, detailed information about the
type and the cause of the failures could be found. Type
of failure has three different groups: Accidental, Volunteer
and Scheduled failures. Examples of failure for each type
are presented in Tab. 1. From the used data, 21.82% of
failures are scheduled, 23.00% are volunteers and 55.17%
are accidental failures. Therefore, more than 75% of the
failures events analysed in this research are not planned
by the company that manages the distribution system.



Figure 2. Histogram for the most concentration of survival
time of the DS analysed.

Table 1. Table exemplifying the ”Type” of
failures observed in the failure dataset.

Ex.1 Ex.2

Accidental Animals/Insects/Birds Branches touching the network (pruning)
Volunteer Maneuvers Operational opening of another switch
Scheduled Improvements or/and Expansion Load transfer

A more specific separation was made establishing six
groups for the cause description of the failure events:
Equipment Failure, Urban events, Operational, Environ-
mental events, Atmospheric events and a group for failures
that did not have the cause identified. These groups are
exemplified in Tab. 2. The percentages of the number of
failure events are 6.46% from Atmospheric causes, 9.22%
for Environmental, 13.77% for Equipment Failure, 45.90%
for Operational causes, 7.71% for Urban events and 16.94%
have non-identified causes.

For Cause Description, Improvements/Expansion of the
network represent 12.98% of the failure events, accidents
with animals with 5.45% and atmospheric discharges with
4.55% can be highlighted. About 16.9% of the causes of
the fails are not identified.

Table 2. Table exemplifying the Groups of
failures observed in the failure dataset.

Ex.1 Ex.2

Not Identified - -
Equipment Failure Capacitor Bank Oil Switch

Urban Vandalism/Theft Bump
Operational Third party request Energy Rationing

Environmental Burnt/Fire Branches touching the network (pruning)
Atmospheric Erosion Atmospheric Discharge

2.1 Statistics

Reliability Analysis was used with non-parametric and
parametric techniques for each one of the proposed groups,
and for considering all failures, to analyse the lifetime of
a distribution system. Besides that, climatic events are
associated with Atmospheric and Environmental failure
groups, to observe the influence of different values for these
variables in the survival of the analysed DS.

Reliability Analysis have two main outputs (Davidson-
Pilon et al., 2019)(Cox and Oakes, 2018): Reliability (Sur-
vival) Function, R(t), and Cumulative Hazard Function,

H(t). Reliability Function is the probability that a sys-
tem survives longer that time t, and Cumulative Hazard
Function is the accumulation of the hazard (hazard is the
event rate at time t conditional on survival until time t
or later (R(t) = P (T ≥ t)) over time. First, for Reliabil-
ity Function, the non-parametric technique (Chowdhury
et al., 2015) is called Kaplan-Meier (Kaplan and Meier,
1958), and for Cumulative Hazard, Nelson-Aaalen (Aalen,
1978) . In Eq. 1 and 2, the general form of Kaplan-Meier
and Nelson-Aalen estimators, respectively, are presented.
The variable nj is the number of samples at risk in the
time tj , and dj is the number of ocurred events at time tj .

Ŝ(t) =
∏
j:tj<t

(
nj − dj
nj

)
(1)

Λ̃(t) =
∑
j:tj<t

(
dj
nj

)
(2)

Weibull model, in the form of the univariate model and
the Accelerated Failure Time (AFT), was used as the
parametric technique. The univariate model does not in-
clude covariates, and was used in conjunction with non-
parametric techniques to analyze all failure groups. Eq.
3 and 4 present the reliability and cumulative hazard
functions, respectively. The shape parameter and the scale
parameter are respectively ρ and λ, and t is the variable
for lifetime.

R(t) = exp

(
−
(
t

λ

)ρ)
, λ > 0, ρ > 0 (3)

H(t) =

(
t

λ

)ρ
(4)

The AFT model were applied for three groups, all failures,
Atmospheric and Environmental due the used covariates
were weather events. Eq. 5, 6 and 7 present the equa-
tions for the Weibull AFT model output functions. The
coefficients of the regression model are represented by βi
variables, and the real values for the weather events are the
xi variables.The y variable in equations 6 and 7 represent
that values for ρ are ”independent”, in the meaning that
it can include covariates or not (in this research, not
included).

λ(x) = exp(β0 + β1x1 + ...+ βnxn) (5)

R(t;x, y) = exp

(
−
(

t

λ (x)

)ρ(y))
(6)

H(t;x, y) =

(
t

λ(x)

)ρ(y)
(7)

AFT models do the addition of covariates to regression
models. The analyse of the values and some statistical
criteria can make the relevance for the model of these
covariates. The classical approach when evaluating co-
variates coefficients significance from regression models is



the p − value (Wang et al., 2019). P − values equal or
lower than 0.05 are considered statistically significant, but
this value has been discussed (Amrhein et al., 2019), so
there is no need to discard covariates which have a higher
value. Another statistical criteria generally presented are
the standard error, that is the standard deviation of its
sampling distribution, and the confidence interval, which
is a range of values that can contain the real value of an
unknown parameter. In this research, the 95% confidence
interval is presented.

3. RESULTS

Considering all failures, Fig. 3 presents the R(t) and
H(t) functions for both the Weibull univariate (blue
color) model and Kaplan-Meier and Nelson-Aalen non-
parametric techniques (red color). As the proximity be-
tween the curves can be observed, we can conclude that
the Weibull model presents a good fit for the data used.
The non-parametric techniques represent the real data, as
some ”downhill” can be observed, and the Weibull Model
has a ”smoothed” curve, being useful for any desired value,
and being a more reliable model for forecasting.

(a)

(b)

Figure 3. (a) Reliability Function for the Weibull Fitter, considering

all causes of failures. (b) Cumulative Hazard Function for the

Weibull Fitter, considering all causes of failures.

The same approach was used for the five groups of failure
events, and Fig. 4 and Fig. 5 present the R(t) and H(t)
functions for each of them. Considering the period of 0 to
500 minutes (which represents most of the survival periods
of the system used), in the order of most dangerous to

the lifetime of the DS to the less dangerous, Operational
failures was the most impactful, followed by Atmospheric,
Equipment Failures, Environmental and Urban. The order
of the threat groups differs from the order by the number
of failure events occurring, which was Operational, Equip-
ment Failure, Environmental, Urban and Atmospheric.

(a) R(t) for Kaplan-Meier Fitter.

(b) R(t) for Weibull Fitter.

Figure 4. (a) Reliability Function graphic using non-parametric

technique of Kaplan-Meier Fitter and (b) using parametric

technique of Weibull Fitter, for the groups of failure causes.

Disregarding Operational failures, that are the most domi-
nant cause, the other four groups have a similar percentage
in the question of the number of failures. Analysis by the
reliability and cumulative risk curves provide a different
view. The external factors represented for Atmospheric,
Environmental and Urban groups can be evaluated, and
the study of weather events that are directly linked with
Atmospheric and Environmental failure groups is justified.

The Weibull AFT Model Equations considering all failures
are presented in Eq. 8 and 9. ”AD” is the number of
atmospheric discharges, ”W” is the wind speed, ”Tx” is the
Maximum temperature, ”Tn” the minimum temperature,
”P” the amount of precipitation and ”HR” is the relative
humidity. In Fig. 6, the R(t) function is plotted, consid-
ering different values (chosen from random days of the
used dataset) for the three main covariates: Wind Speed,
number of atmospheric discharges and relative humidity.
For these curves, all other covariates were considered at
their mean values. The baseline curve is considering all
covariates at their mean values.



(a) H(t) for Nelson-Aalen Fitter for each failure group.

(b) H (t) for Weibull Fitter for each failure group.

Figure 5. (a) Cumulative Hazard Function graphic using non-

parametric technique of Nelson-Aalen Fitter and (b) using

parametric technique of Weibull Fitter, for the groups of failure

causes.

λ = exp(5.18783− 0.00049AD − 0.02995W

+ 0.00831Tx− 0.00302Tn

− 0.00174P − 0.00308HR)

(8)

R(t) = exp

(
−
(
t

λ

)−0.42509
)

(9)

In Eq. 8 a positive value, as in the intrinsic and maximum
temperature coefficients, represent a positive contribution
to the lifetime of the system. Therefore, a negative value,
as for atmospheric discharges, wind speed, minimum tem-
perature, amount of precipitation and relative humidity,
decrease the survival time (they are a threat for the sys-
tem).

From the Weibull AFT Model, it is possible to predict
in terms of the median (percentile) of survival and the
expectation (E[T |x]). First, percentiles are measurements
that divide the sample in ascending order of data into
100 parts, each with an approximately equal percentage
of data, and the median is the 50 percentile. Second, the
expectation of a random variable is the sum of the product
of each probability of leaving the analysis by its respective
value, representing the ”expected” average value of an
experiment if repeated many times. In Tab. 3 is presented
these predictions for real values of the weather data.

Figure 6. Reliability Function plot for Weibull AFT Re-
gression model, varying the wind speed, the number
of atmospheric discharges and the value for relative
humidity, and keeping the mean value for the other
variables. The baseline survival is considering all co-
variates as theirs mean value.

Table 3. Prediction of the Percentile and the
Expectation of the lifetime of the analysed dis-
tribution system for real values of the weather

events, considering all failure events.

Percentile Expectation AD W Tx Tn P HR

46.2876 110.0950 0.0 24.0 28.8 21.5 6.4 77.0
29.7015 70.6451 195.0 37.0 32.6 21.2 0.7 77.0
7.9735 18.9651 108.0 78.0 23.2 19.0 59.2 95.0
44.3196 105.4141 0.0 25.0 29.2 16.0 41.2 68.0
33.57057 79.8474 0.0 37.0 29.8 17.4 0.0 65.0

The behaviour of climate covariates was made fitting the
Weibull AFT Regression model for the atmospheric and
environmental failure groups, separately. The coefficients
for the covariates are presented in Tab. 5 and 7. The values
of the coefficients of the covariates can be interpreted
multiplying them by the maximum and average values that
the variables (weather events) can assume. In Tab. 4 this
operation was made using 2000 and 90 for Atmospheric
discharges (AD), 100 and 40 for wind speed (W), 40 and
25 for maximum temperature (Tx), 25 and 15 for minimum
temperature (Tn), 80 and 10 for precipitation (P) and
100 and 60 for relative humidity (HR). These values are
near the maximum and the mean values for the weather
events considering all analysed days. This operation was
done for the coefficients of the three presented models (all,
atmospheric and environmental failures groups), and the
resulting values are presented in ”module”.

Table 4. Product between the coefficient values
for the three presented AFT Models and the
maximum and mean values of the weather

events.

All Atmospheric Environmental

Max Mean Max Mean Max Mean
AD 0.9800 0.0441 2.2800 0.1026 0.0800 0.0036
W 2.9950 1.1980 3.3560 1.3424 1.4820 0.5928
Tx 0.3324 0.20775 1.5528 0.9705 0.3504 0.2190
Tn 0.0755 0.04530 0.06170 0.0371 1.6323 0.9794
P 0.1392 0.0174 1.2496 0.1562 0.7256 0.0907

HR 0.3080 0.1848 0.4140 0.2484 0.4040 0.2424

The percentile and the expectation for these two groups
are shown in Tab. 10 and 9, with real values for the weather
events (the weather values differ from each other because



they are from events associated with the failure group. So,
the values of weather events presented for each table are
from days that occurred a failure of the analysed group,
either an atmospheric failure or an environmental failure).
To maintain the same prediction logic, the weather events
that presented a higher p− value in the atmospheric and
failure groups regression models were kept.

In Tab. 6 and 8, some statistical criteria for the covariates
coefficients are presented. For the atmospheric group,
atmospheric discharges, wind speed and precipitation were
the covariates with a p − value lower than 0.05. For
the environmental failure events, minimum temperature,
precipitation and relative humidity are the statistically
significant covariates according to their p − values. It is
possible to observe that with the confidence interval cross
zero, the p − value ends up returning a value above 0.05,
that is not desirable. However, if the largest portion of
the confidence interval focuses on a positive or negative
value, it turns out to be odd to disregard the covariate
just because of the value of p− value.

Table 5. Coefficient values for an Weibull AFT
Regression for Atmospheric failure events in

the analysed distribution system.

Intercept AD W Tx Tn P HR

λ 7.18672 -0.00114 -0.03356 0.03882 -0.00247 -0.01562 -0.00414
ρ -0.79611

Table 6. P -values, standard errors (se) and
confidence interval of the covariates of the
Weibull AFT Regression for the Atmospheric

failure events.

p se lower 0.95 upper 0.95

AD < 5e−6 0.00025 -0.00163 -0.00065
W < 5e−6 0.00552 -0.04439 -0.02274
Tx 0.13892 0.02623 -0.01259 0.09023
Tn 0.93892 0.03228 -0.06574 0.06079
P 0.01499 0.00642 -0.02821 -0.00303

HR 0.15167 0.00289 -0.00981 0.00152

Table 7. Coefficient values for an Weibull AFT
Regression for Environmental failure events in

the analysed distribution system.

Intercept AD W Tx Tn P HR

λ 8.36078 -0.00004 -0.01482 0.00876 -0.06529 -0.00907 -0.00404
ρ -0.27167

Table 8. P -values, standard errors (se) and
confidence interval of the covariates of the
Weibull AFT Regression for the Environmen-

tal failure events.

p se lower 0.95 upper 0.95

AD 0.86452 0.00025 -0.00054 0.00045
W 0.00001 0.00341 -0.02150 -0.00814
Tx 0.51777 0.01355 -0.01779 0.03531
Tn 0.00005 0.01604 -0.09674 -0.03385
P 0.01541 0.00374 -0.01641 -0.00173

HR 0.01646 0.00168 -0.00733 -0.00074

The modelling of ”ρ” for all covariates is not done due
to the characteristics of the weather data, that are in-
dependent events (one climactic event value is not di-
rectly related with the value of another weather event).

Table 9. Prediction of the Percentile and the
Expectation of the lifetime of the analysed dis-
tribution system for real values of the climatic
events, considering Atmospheric failure events.

Percentile Expectation AD W Tx Tn P HR

328.0820 1822.7876 195.0 37.0 32.6 21.2 0.7 77.0
20.1203 111.7864 108.0 78.0 23.2 19.0 59.2 95.0
299.9608 1666.5494 0.0 25.0 29.2 16.0 41.2 68.0
234.9093 1305.1307 165.0 40.0 26.9 19.4 0.0 88.0
126.1716 700.9959 138.0 44.0 25.4 19.0 27.8 93.0

Table 10. Prediction of the Percentile and
the Expectation of the lifetime of the anal-
ysed distribution system for real values of
the weather events, considering Environmental

failure events.

Percentile Expectation AD W Tx Tn P HR

162.4786 308.8923 108.0 78.0 23.2 19.0 59.2 95.0
433.7354 824.5855 0.0 25.0 29.2 16.0 41.2 68.0
489.8989 931.3593 0.0 37.0 29.8 17.4 0.0 65.0
407.7476 775.1792 6.0 44.0 23.7 17.8 0.0 65.0
374.5182 712.0061 165.0 40.0 26.9 19.4 0.0 88.0

The intercept value increased for both atmospheric and
environmental groups, as expected. In terms of the covari-
ates, in the atmospheric group, for all threats (coefficients
with a negative value) the value increased considerably,
but for the environmental group, some weather variables
decreased (as wind speed and atmospheric discharges)
and others presented a drastic increase (precipitation and
minimum temperature). The prediction of the lifetimes has
higher values when compared with the failure model for
all groups, with extreme weather events impacting more
in the lifetime considering the atmospheric group than in
the environmental group.

From Tab. 4, considering that for the three models only
Maximum Temperature (Tx) presented a positive coeffi-
cient, that has the meaning of a positive contribution for
the lifetime of the system, it can be observed that Wind
(W) is the most dangerous threat, due a product bigger
than 1 for almost all situations. Wind also presented a
higher contribution for the decrease of the lifetime, con-
sidering the ”maximum” value on the atmospheric failure
group model. Assuming a criterion that considering the
product of the coefficient with the maximum value of the
variable must be greater than 0.1, the minimum temper-
ature for all failures and atmospheric failures group and
atmospheric discharges for the environmental failure group
presented a ”null” impact in these situations.

4. CONCLUSION

Through Reliability Analysis Regression models, an evalu-
ation of the lifetime of a real Brazilian DS due to different
factors was made in this research. First, utilizing non-
parametric (Kaplan-Meier and Nelson-Aalen) and para-
metric (Weibull) techniques, the curves for reliability and
cumulative hazard function were presented, considering all
registered failures from a period of almost two years. As
both curves presented a similar behaviour, especially in
the time period where most of the survival times of the
analyzed DS are concentrated, the parametric model can
be said to represent the data well.



The two techniques were applied for each of the different
failure groups: Atmospheric, Environmental, Equipment
Failure, Operational and Urban. It was observed that the
threat level has a different order than the number of
occurrences order for the failure groups, which ends up
highlighting the group of atmospheric failures. However,
for the context analyzed, Operational failures are the
principal threat both in terms of the number of failures
and the time frame in which they occur.

Using the Weibull AFT Regression Model, an analysis of
the Atmospheric and Environmental failure groups, which
are most linked with weather events were made using six
weather events with their maximum daily values. From
the model of the all failures groups, reliability function
was plotted using different real values of the significant
weather events, demonstrating the impact on survival time
given extreme weather events. A discussion was made
about the different coefficients values of the weather events
covariates, from the All, Atmospheric and Environmental
failure groups. For the atmospheric group, all coefficients
of negative variables (threats) increased. For the Envi-
ronmental failure group, some coefficients decreased, but
other presented an increase, and specifically, Precipitation
presented a great increase.

Predictions for the median (percentile) and the expecta-
tion of the lifetime of the system were made for all failures,
atmospheric and environmental groups, considering some
real values of the weather data. The principal difference
was observed in the atmospheric group predictions, where
the expected values can be much higher than the percentile
values.
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