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Abstract: Faster feature selection algorithms become a necessity as Big Data dictates the zeitgeist. An
important class of feature selectors are Markov Blanket (MB) learning algorithms. They are Causal
Discovery algorithms that learn the local causal structure of a target variable. A common assumption
in their theoretical basis, yet often violated in practice, is causal sufficiency: the requirement that all
common causes of the measured variables in the dataset are also in the dataset. Recently, Yu et al. (2018)
proposed the M3B algorithm, the first to directly learn the MB without demanding causal sufficiency.
The main drawback of M3B is that it is time inefficient, being intractable for high-dimensional inputs.
In this paper, we derive the Fast Markov Blanket Discovery Algorithm (FMMB). Empirical results that
compare FMMB to M3B on the structural learning task show that FMMB outperforms M3B in terms
of time efficiency while preserving structural accuracy. Five real-world datasets where used to contrast
both algorithms as feature selectors. Applying NB and SVM classifiers, FMMB achieved a competitive
outcome. This method mitigates the curse of dimensionality and inspires the development of local-to-
global algorithms.
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1. INTRODUCTION

In the Big Data era, as datasets grow in size and complexity,
feature selection plays a key role in dimensionality reduction
(Bolón-Canedo et al., 2015). Markov Blanket (MB) learning
algorithms, originally developed as a method for Feature Se-
lection, are an important class of local structural learning algo-
rithms, with applications in local-to-global structural learning
and Causal Discovery (Aliferis et al. (2010a); Aliferis et al.
(2010b)). The concept of a MB was introduced by Pearl (1988)
as part of his work on reasoning under uncertainty, in which
the theory of Bayesian Networks (BNs) is founded. BNs are
probabilistic graphical models that factor the joint probability
distribution of the variables in a system into a directed acyclic
graph (DAG) (Koller and Friedman, 2009). The MB of a target
variable T is a set of variables that shield T from the influence
of all other variables the system. Fig. 1(a) displays an example
of a MB. The target T has adjacent variables A, B and D. A
and B are parents of T . D is a child of T . Variables L and
M are spouses of T . In the context of DAG MBs, the set of
adjacent variables is called the PC set of T . DAG MB learning
algorithms are theoretically dependent on Causal Sufficiency
(Def. 1). However, this assumption is often violated in prac-
tice (Spirtes et al., 2000). Efforts have been made to model
latent variables in DAGs (Spirtes et al., 2000), yet these models
present computational and theoretical difficulties that can be
avoided by adopting Maximal Ancestral Graphs (MAGs), de-
veloped as an extension of DAG causal models to accommodate
the lack of causal sufficiency (Richardson et al., 2002). Instead
of directly representing latent variables, unaccounted common
causes induce a bidirected edge between variables. For exam-
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ple, Fig. 1(b) shows the induced MAG Markov Blanket (MMB)
of T when hiding L. Because L is a common cause of D and N, a
bidirected edge appears between D and N when L can no longer
be observed.

(a) (b)

Figure 1. (a) DAG Markov Blanket of T shaded in blue and
(b) induced MAG Markov Blanket of T when hiding L,
composed of blue and green shaded nodes. Because L can
no longer be observed, N and O influence T through D.

The MB was established as the optimal subset of features
in the seminal paper of Koller and Sahami (1996), gathering
interest in the Feature Selection community. Estimating the
DAG MB of a target became feasible after Margaritis and
Thrun (2000) proposed the first tractable solution, the Grow-
Shrink (GS) algorithm, using conditional independence tests
(CITs) as a method for variable selection. First, it grows a
candidate set of features by testing association with the tar-
get. Then, it shrinks the candidates removing false positives.
Since GS, IAMB (Tsamardinos and Aliferis, 2003) and vari-
ants (Tsamardinos et al. (2003b); Yaramakala and Margaritis
(2005); Yang et al. (2019) among others) improved on these
ideas, forming the family of simultaneous algorithms. Pena
et al. (2007) showed that simultaneous algorithms are not data
efficient. The amount of data required to maintain the power
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of the CITs can sometimes surpass the size of the dataset, as
the conditioning set grows proportional to the candidate set. To
overcome this, divide-and-conquer algorithms were proposed,
the pioneer being the MMMB algorithm (Tsamardinos et al.,
2003a). They first learn the adjacent variables to the target (i.e.
PC set), then learn spouses by identifying the adjacent variables
to each member of PC. This strategy reduces the sample size
requirements at the expense of a greater time complexity. A
theoretical framework and broad experimental evaluation for
this family of algorithms was given on Aliferis et al. (2010a)
and Aliferis et al. (2010b). The latest development in this line
of research is the EEMB algorithm (Wang et al., 2020). It com-
bines the strategies of simultaneous and divide-and-conquer al-
gorithms to derive a method capable of simultaneously learning
the MB while distinguishing PC from spouses. Yu et al. (2019)
is an extensive review on DAG MB learning algorithms.

Recently, Yu et al. (2018) presented the M3B algorithm to sub-
due the causal sufficiency assumption. In contrast to previous
MAG learning algorithms such as FCI (Spirtes et al., 2000)
and RFCI (Colombo et al., 2012) that required learning the
complete MAG before extracting the MB, it directly learns
the MMB of a target. M3B uses a strategy similar to divide-
and-conquer DAG MB algorithms. It discovers members of the
MMB by learning the adjacent set of T , then recursively finds
other members of the MMB using adjacency. This entails the
same time efficiency limitations encountered in the family of
DAG divide-and-conquer algorithms. Here, motivated by the
need of faster algorithms imposed by the growing number of
high-dimensional datasets, we propose the Fast MAG Markov
Blanket (FMMB) algorithm. The key difference from M3B is
a new strategy for finding non-adjacent members of the MMB
that reduces the search space by rapidly eliminating descen-
dants of members of the MMB, thus reducing the amount of
CITs needed to learn the MMB and consequently improving
time efficiency.

The rest of this paper is organised as follows. Sec. 2 contains the
relevant theory. The proposed algorithm is introduced in sec.
3. Experiments comparing the algorithm with the state-of-the-
art are reported in sec. 4. Finally, sec. 5 concludes the paper
pointing to feature research possibilities.

2. NOTATION AND THEORY

First, the theory of BNs and DAG MBs is introduced via a
series of definitions. Then, these notions are extended to MAGs
and MMBs. Finally, concepts relevant to the development of
FMMB conclude this section.
Definition 1. (Causal Sufficiency). A set of variables V is
causally sufficient iff every common cause of two or more
variables in V is in V. (Spirtes et al., 2000)
Definition 2. (Conditional Independence). Two variables X and
Y are conditionally independent given Z, denoted X ⊥⊥Y | Z, iff
P(X = x,Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z) for
all instantiations x,y,z of X ,Y,Z.
Definition 3. (Bayesian Network). Let V be a set of variables,
J a joint probability distribution over V and G a DAG that
encodes the conditional independence relations between all the
variables in V. We call 〈V,G,J〉 a Bayesian Network (BN) if
for every node X ∈ V, X is independent of all non-descendants
conditioned on its parents (PaG(X)). (Koller and Friedman,
2009)

Definition 4. (Path). A path is a sequence of variables µ =
[X1, ...,Xi−1,Xi,Xi+1, ...,Xn] such that ∀i ∈ {1,2, ...,n− 1}, Xi
is adjacent to Xi+1.
Definition 5. (Collider (DAG)). A node Xi is a collider on a
path µ if Xi−1→Xi←Xi+1, that is, Xi has two incoming arrows.
A variable X that is not a collider in µ is a noncollider in µ .
(Spirtes et al., 2000)
Definition 6. (Active and Blocked Paths (DAG)). A path µ be-
tween X ∈V and Y ∈V is active given Z if two conditions hold:

(1) every collider in µ is in Z or has a descendant in Z and
(2) every noncollider node in µ is not in Z.

If a path is not active given Z its said to be blocked by Z. (Pearl,
1988)
Definition 7. (D-Separation). Let X, Y and Z be disjoint sub-
sets of nodes in a DAG. If every path between any X ∈ X and
any Y ∈ Y is blocked by Z then Z d-separates X and Y. (Pearl,
1988)
Definition 8. (Sepset (DAG)). A set that d-separates X from T
is called a sepset of X with respect to T , denoted SepT [X ].
Spirtes et al. (2000)

For example, in Fig. 1(a), the node D is a collider in the path
[T,D,L,N]. The path is active when D is observed (i.e. D ∈ Z)
and L is unobserved, but can be blocked by observing L, d-
separating N from T . In other words, the set Z = {D,L} is a
sepset of N with respect to T .
Definition 9. (Faithfulness). A distribution J is faithful to a
DAG G if, whenever X ⊥⊥ Y | Z holds in J, then Z d-separates
X and Y in G. (Koller and Friedman, 2009)

Faithfulness is a key assumption for structural learning because
it assures that CITs and d-separation work as intended. In
an unfaithful BN, there might be associations that change
depending on the state of variables, violating the uniqueness
of the MB of a target. (Statnikov et al., 2013)
Definition 10. (Markov Blanket (DAG)). The Markov Blanket
of a target variable T is the minimum set of variables MB(T )
such that S⊥⊥ T |MB(T ) for all S⊆ V\MB(T )\{T}. (Pearl,
1988)
Theorem 11. In a faithful BN 〈V,G,J〉, ∀T ∈ V the Markov
Blanket of T is unique and formed by the parents of T (pa(T )),
children of T (ch(T)) and other parents of children of T , called
spouses of T (sp(T )). (Pearl, 1988)

Thm. 12 is the tool used by EEMB to search for spouses.
Theorem 12. Let 〈V,G,J〉, ∀T ∈V be a faithful BN, S,C,T ∈V
form a collider S→C← T with S not adjacent to T . If S 6⊥⊥ T |
SepT [S]∪{C}, then S is a spouse of T . (Spirtes et al., 2000)

As exemplified in Fig. 1, when causal sufficiency is violated,
there may be variables that can no longer be d-separated from
the target. A DAG MB algorithm applied to the network in Fig.
2 may detect E as part of PC and F , G, N and M as spouses.
However, J, H and O are invisible. To be able to represent and
detect the sophisticated relationships between T and J, H and
O, MAGs and a MMBs are needed. The following definitions
construct these concepts.
Definition 13. (Mixed Graphs). Mixed Graphs are graphs that
may contain three types of edges: undirected (–), directed (→
and←) and bidirected (↔). (Richardson et al., 2002)



Figure 2. Example of MAG with MMB of a target T shaded
in blue. Variables J, H and O are invisible to DAG MB
algorithms, but can be detected by MMB algorithms.

Definition 14. (Ancestor and Directed Path). A node Y is said
to be an ancestor of X if there is a directed path from Y to X
or Y = X . The set of ancestors of X is denoted an(X). A path
µ is directed if there are only directed edges in µ . (Richardson
et al., 2002)
Definition 15. (Anterior and Anterior Path). A node Y is said
to be an anterior of X if Y = X or there is a path µ between Y
and X such that all arrows point towards X . That is, if nodes W
and Z are adjacent in µ and W precedes Z, W – Z and W→ Z are
allowed, whereas W ← Z and W ↔ Z are not. A path satisfying
these conditions is called a anterior path. The set of all nodes
anterior to X is denoted ant(X). (Richardson et al., 2002)
Definition 16. (Directed cycle). A directed cycle occurs when
there is a directed path from X to Y and an edge Y → X .
(Richardson et al., 2002)
Definition 17. (Partially directed cycle). A partially directed
cycle occurs when there is an anterior path from X to Y and
Y → X . (Richardson et al., 2002)
Definition 18. (Ancestral Graph). An Ancestral Graph is a
mixed graph without directed of partially directed cycles.
(Richardson et al., 2002)
Definition 19. (Collider (MAG)). A nonendpoint node Xi on a
path µ is a collider on µ if Xi−1∗ → Xi ← ∗Xi+1, where ∗
denotes the presence or absence of a arrowhead. (Richardson
et al., 2002)

For example, the path [H,G,E,T,D,M] in Fig. 2 has three
colliders: G, E and D.
Definition 20. (M-Separation). A path µ m-connects X and Y
given Z if:

(1) every noncollider on µ is not in Z and
(2) every collider on µ is in ant(X)

If ∀X ∈ X and ∀Y ∈ Y all paths between X and Y are not m-
connected given Z, then Z m-separates X and Y. (Richardson
et al., 2002)
Definition 21. (Sepset (MAG)). If Z m-separates X and T then
Z is called a sepset of X with respect to T , denoted SepT [X ] =
Z. (Richardson et al., 2002)
Definition 22. (Maximal Ancestral Graph). An ancestral graph
G is said to be maximal if for any nonadjacent pair of variables
X and Y in G there is a set Z that m-separates them. (Richardson
et al., 2002)
Definition 23. (District Set). A node A belongs to the district
set of X , denoted dis(X), if the path from A to X only contains
bidirectional edges. (Yu et al., 2018)
Definition 24. (Collider Path). Two nodes X and Y are collider
connected if there is a path µ from X to Y such that every node
in µ except the endpoints is a collider. Such µ is said to be a
collider path. (Richardson et al., 2002)

Proposition 25. Let variables X and Y in a MAG be collider
connected by path µ . If Z contains all colliders in µ , then
X 6⊥⊥ Y | Z. (Yu et al., 2018)

Prop. 25 provides a mean to identify the variables invisible to
DAG MB algorithms. In Fig. 2, H collider connects to T by
[T,E,G,H]. If an algorithm wants to detect the influence that H
has on T , it must follow this path somehow. The key difference
between M3B and FMMB is in their strategy for building
collider paths. While M3B walks node by node, identifying
adjacent variables and checking if they belong to the path,
FMMB tests directly if there is a connection by conditioning
on all colliders in the path, e.g. FMMB tests if H 6⊥⊥ T | {E,G}
holds.
Definition 26. (MAG Markov Blanket). The Mag Markov Blan-
ket (MMB) of a variable T in a MAG is the minimum set
of variables MMB(T ) such that ∀S ⊆ V \MMB(T ) \ {T},
S⊥⊥ T |MMB(T ). (Yu et al., 2018)
Theorem 27. The MMB(T ) includes:

(1) pa(T ): parents of T
(2) ch(T ): children of T
(3) sp(T ): spouses of T
(4) dis(T ): district set of T
(5) pa(dis(T )): parents of variables in dis(T )
(6) pa(dis(ch(T ))): parents of variables in dis(ch(T ))

(Yu et al., 2018)
Theorem 28. Under causal sufficiency, MMB(T ) equals
MB(T ). (Yu et al., 2018)

The subsequent definition and theorem are central to the under-
standing of the FMMB algorithm and to prove it’s correctness.
Def. 29 states that variables that are collider connected to the
target form the portion of the MMB that is not adjacent to the
target. Thm. 30 guarantees that those variables cannot be m-
separated from the target. As an example, in Fig. 2 we have
AdjT = {A,B,D,E} and AST = {F,G,H,J,M,N,O} as of Def.
29. Thm. 30 assures that H cannot be m-separated from T
conditioned on {E,G} ∪ Z, where Z may contain any other
member of MMB(T ).
Definition 29. (Attached Set). Let AdjT represent the set of all
variables adjacent to T , specifically the union of PCT with
members of dis(T ) adjacent to T . The set AST = MMB(T ) \
AdjT is defined as the attached set of T and AST [µ] ⊆ AST is
defined as the set of all X ∈ AST \µ that are m-connected to T
given µ , where [T ]+µ +[X ] is a collider path and the path µ is
a nonempty subset of MMB(T ).
Theorem 30. If X ∈ AST [µ], then ∀Z⊆ AdjT ∪AST [µ]\{X},
X 6⊥⊥ T | µ ∪Z.

Proof. X ∈ AST [µ] implies X m-connects to T through the
collider path [T ] + µ + [X ], thus, because µ contains all the
colliders, Prop. 25 guaranties X 6⊥⊥ Y | µ ∪ Z,∀Z ⊆ AdjT ∪
AST [µ]\{X}. �

3. PROPOSED ALGORITHM

This section starts with an overview of the FMMB algorithm,
followed by a derivation of its correctness and time complexity.
The algorithm consists of the main routine (FMMB — Alg. 1),
that returns the MMB(T ) for some target T , and a recursive
subroutine (GetAS — Alg. 2), that returns all the members of
AST [µ] for some path µ . In the implementation, SepT and AST



are lookup tables. The entry SepT [X ] represents the sepset of X
with respect to T and X ∈ SepT means that X is the key to the
entry. Similar logic applies to AST . The function del deletes
entries from a lookup table.

Step one of Alg. 1 is calling the EEMB algorithm to discover
AdjT and start populating AST and SepT . The table AST is
populated with entries C ∈ ch(T )∪dis(T ) and AST [C] contains
spouses of T , members of dis(C) adjacent to C and parents of
members of dis(T ) adjacent to T . Complementarily, SepT is
populated with all other variables not in AdjT and currently not
in AST . Then, for all such C and all members of Y ∈ AST [C],
FMMB calls GetAS triggering a recursion on all paths µ that
start with [C,Y ]. After all recursions stop, AST is completely
populated. Finally, we have MMB(T ) = AdjT ∪AST .

The subroutine Alg. 2 operates recursively. It populates AST
by first starting with an empty set of candidates Can. It grows
Can with all variables currently not in MMB(T ), namely all
keys X ∈ SepT that satisfy Prop. 25 for the argument µ . Then,
is shrinks Can filtering false positives by conditioning on all Z
such that µ ∪Z could m-separate X from T . After shrinking
Can, only true members of AST [µ] remain and all entries
X ∈ AST [µ] in SepT are deleted. At last, for all members X of
AST [µ], GetAS recursively calls itself expanding the collider
path µ with X . The recursion stops when AST [µ] is empty for
some µ .

Algorithm 1: FMMB
Input : T : target variable; α: significance level
Output: MMB(T ): MAG Markov Blanket of T

1 AdjT ,AST ,SepT ← EEMB(T,α)
2 for C ∈ AST do
3 for Y ∈ AST [C] do
4 GetAS(T, [C,Y ],α)
5 end
6 end
7 MMB(T )← PCT ∪AST

Algorithm 2: GetAS
Input : T : target variable; µ: collider path; α:

significance level
Output: AST [µ]

1 Can← /0
2 for X ∈ SepT do
3 if X 6⊥⊥ T | µ ∪SepT [X ] then
4 Can← Can∪{X}
5 end
6 end
7 for X ∈ Can do
8 if ∃Z⊆ Can∪AdjT \{X} such that X ⊥⊥ T | µ ∪Z then
9 Can← Can\{X}

10 end
11 end
12 AST [µ]← Can
13 for X ∈ AST [µ] do
14 del(SepT [X ])
15 end
16 for X ∈ AST [µ] do
17 GetAS(T,µ +[X ],α)
18 end

We proceed with a proof for Thm. 31, that formalises the
concept of correctness.
Theorem 31. Under faithfulness and assuming the precision of
all CITs, FMMB correctly finds the MMB of a given target.

Proof. Let T be a target. The EEMB algorithm uses Thm. 12
to find spouses in DAGs. When applied in MAGs, during the
growth phase, it finds all triples 〈T,C,S〉 that satisfy Thm. 12
where C ∈ AdjT , but using the definition of a collider in the
context of MAGs (Def. 19) and m-separation. This is equivalent
to discovering all subsets AST [µ] where µ = [C],C ∈AdjT . All
other paths µ ⊆MMB(T ) are exhaustively explored by GetAS.
During growth, Alg. 2 finds all X that m-connect to T through
µ . During shrinking, all false positives are removed by finding a
violation of Thm. 30. Let µ be a path in AST . FMMB correctly
filters all false positives in the candidate set Can of AST [µ] as
follows: Let Y and Z be the second to last and last nodes in µ

respectively. Since Y and Z are observed, any X that m-connects
to T through µ must either form a collider Y∗ → Z ← ∗X
or have an active path with a node that forms a collider with
Y and Z. This eliminates all descendants of Z because they
cannot form a collider or m-connect with a node that form a
collider. If X m-connects to T through µ but X /∈AST [µ], there
is a Y ∈ AST [µ] such that X m-connects to Y when Y is not
observed. Because SepT [X ] ⊆ AdjT and AST [µ] ⊆ Can, there
exists a Z ⊆ Can∪AdjT \ {X} that contains {Y} ∪ SepT [X ],
m-separating X from T when observed. Therefore, FMMB
correctly finds the MMB(T ). �

The most time-consuming operations in FMMB and EEMB
are the CITs. Therefore, it is natural to express computa-
tional complexity in terms of the number of CITs employed
during execution. The EEMB algorithm has time complexity
O(|V|2|AdjT |) (Wang et al., 2020). FMMB exhaustively consid-
ers every path µ between T and X ∈AST , and for every µ Alg.
2 is executed with time complexity O(|V|2|V|). This amounts
to a overall complexity of O(|V|2|AdjT |)+O(|AST ||V|2|V|) =
O(|AST ||V|2|V|).

4. EXPERIMENTS

This section presents a comparison of the proposed algorithm,
FMMB, vs the state-of-the-art algorithm for MMB discovery,
M3B. Two experiments were performed. The first measures
structural learning accuracy using the benchmark BN Alarm
(Fig. 3). The second measures accuracy of classification ap-
plying both algorithms for feature selection in five real-world
datasets. Algorithms were implemented in Python 3.7 and ex-
periments were conducted on a machine running Linux Kernel
version 4.15 with 16 GB of RAM and Intel(R) Core(TM) i5-
5200U CPU @ 2.20GHz. The G2 test of conditional indepen-
dence (Kullback, 1997) is used.

Structural learning is the primary task of this class of algo-
rithms. Tab. 1 displays the results for the three test cases (TC)
used in Yu et al. (2018). The standard metrics (Aliferis et al.
(2010b); Yu et al. (2018); Yu et al. (2019)) were applied:

• Precision: the number of true positives in the output of
the algorithm divided by the total size of the output of
the algorithm. This measures the false positive rate in the
output;



Table 1. Comparison on MMB learning accuracy of FMMB vs M3B. Three test cases were created based
on the Alarm Bayesian Network. Ten sample datasets were generated for each test case and sample size.

The statistics are in the format mean ± std.

Sample Size Algorithm Precision Recall F1 Time CITs

TC 1 – Estimation of the MMB of ’LVV’ hiding ’HYP’

500
FMMB 0.80 ±0.22 0.68 ±0.11 0.71 ±0.14 0.78 ±0.09 197.90 ±51.57
M3B 1.00 ±0.00 0.50 ±0.00 0.67 ±0.00 1.52 ±0.02 144.10 ±2.47

5000
FMMB 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.88 ±0.03 217.80 ±3.03
M3B 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 3.09 ±0.46 284.70 ±2.93

TC 2 – Estimation of the MMB of ’VTUB’ hiding ’INT’

500
FMMB 0.92 ±0.08 0.79 ±0.10 0.84 ±0.07 0.93 ±0.06 268.00 ±34.74
M3B 1.00 ±0.00 0.39 ±0.07 0.55 ±0.07 2.51 ±0.55 249.00 ±27.36

5000
FMMB 1.00 ±0.00 0.70 ±0.04 0.82 ±0.03 1.51 ±0.12 476.20 ±47.26
M3B 1.00 ±0.00 0.66 ±0.07 0.79 ±0.05 4.52 ±0.73 626.20 ±40.73

TC 3 – Estimation of the MMB of ’VTUB’ hiding ’INT’ and ’KINK’

500
FMMB 0.88 ±0.12 0.75 ±0.11 0.80 ±0.09 0.84 ±0.06 229.80 ±32.22
M3B 1.00 ±0.00 0.45 ±0.08 0.62 ±0.08 2.03 ±0.23 229.60 ±24.54

5000
FMMB 1.00 ±0.00 0.67 ±0.00 0.80 ±0.00 1.18 ±0.03 352.40 ±12.36
M3B 1.00 ±0.00 0.60 ±0.08 0.75 ±0.07 2.98 ±0.30 500.80 ±39.85

Figure 3. Standard Benchmark Bayesian Network "Alarm".
Highlighted nodes are used to construct test cases. The
target nodes are shaded in orange and the hidden nodes
are shaded in blue.

• Recall: the number of true positives in the output of the
algorithm divided by the size of the true MMB of the
target. This reports the true positive rate in the output;
• F1: f 1 = 2 ∗ precision ∗ recall/(precison+ recall) is the

harmonic mean of precision and recall.
• CITs: total number of CITs conducted;
• Time: elapsed time of execution.

Figure 4. Test Case Number 2: MAG Markov Blanket of
"VTUB" when "INT" is hidden. Despite having "INT" as a
common cause, "MINV" and "VALV" do not belong to the
MMB of "VTUB" because they can be m-separated from
"VTUB" by "VLNG".

For small sample sizes, FMMB is unstable. Due to it’s strategy
for building a collider path between T and members of AST ,
the conditioning sets increase in size, decreasing the accuracy
of the G2 tests. This explains greater recall, but lower preci-
sion, when contrasted with M3B. Although the strategy used
by M3B is data efficient, leading to precise tests, the connec-
tion strengths between T and some members of MMB(T ) are
not strong enough to be consistently detected at 500 samples,
leading to less CITs than FMMB because it stopped search-
ing prematurely. This contributes to M3B’s lower recall. For
example, in TC 2 (displayed in Fig. 4), "SHNT" has a weak
connection to "VLNG", making it harder for the algorithms to
detect "SHNT" and "PMB". When sample size is sufficiently
large (i.e. 5000), FMMB outperforms M3B in all test cases with
better recall and less CITs. This results show that, given a large
enough sample size, FMMB’s strategy leads to faster and better
results regarding structural learning.

Table 2. Summary of Five Real-World Datasets

Dataset Features Samples
mushroom 22 8124

spect 22 267
spectf 44 267
chess 36 3196
splice 60 3190



Table 3. 10-fold Cross-Validation Prediction Accu-
racy Comparison of FMMB against M3B on Five

Real-World Datasets.

Dataset FMMB M3B
NB

mushroom 0.92 ±0.11 0.94 ±0.10
spect 0.79 ±0.02 0.73 ±0.13
spectf 0.61 ±0.10 0.61 ±0.10
chess 0.82 ±0.10 1.00 ±0.00
splice 0.96 ±0.01 0.95 ±0.01

SVM
mushroom 0.82 ±0.16 0.86 ±0.19

spect 0.74 ±0.13 0.73 ±0.17
spectf 0.60 ±0.21 0.60 ±0.21
chess 0.90 ±0.08 1.00 ±0.00
splice 0.85 ±0.02 0.86 ±0.02

As this class of algorithms were originally developed as tools
for feature selection, a classification comparison after applying
FMMB and M3B in Five real-world datasets is presented. This
datasets where selected from the UCI Machine Learning Repos-
itory (Dua and Graff, 2017) and the KEEL dataset repository
(Alcalá-Fdez, 2011). Table 2 summarises their the character-
istics. The classification accuracy for each dataset, obtained
by Naive Bayes (NB) and Support Vector Machine (SVM)
classifiers with 10-fold cross-validation, after feature selection
using FMMB and M3B is shown in table 3. The algorithms tied
using the NB classifier, whereas M3B was better in three out of
five datasets using SVM. Although unfaithful relationships are
present, degrading the performance of both algorithms, FMMB
achieved competitive accuracy when compared to M3B.

5. CONCLUSION

We revisited the problem of MB discovery without assum-
ing causal sufficiency by introducing a MAG Markov Blan-
ket Learning Algorithm with a faster approach that mitigates
the curse of dimensionality. The key idea is the strategy of
non-adjacent member discovery, that improved the state-of-
the-art in terms of time efficiency by reducing the number of
CITs needed to find the MMB of a target. The main draw-
back of FMMB is the requirement of a large enough sample
size, although data efficiency should not be an issue in Big
Data applications. In Feature Selection, FMMB proved to be
a viable alternative to M3B, achieving comparable classifica-
tion accuracy. In Causal Discovery, with enhanced structural
learning accuracy, FMMB inspires the development of local-
to-global MAG learning algorithms. The next steps towards
better MMB discovery are to study the behaviour of algorithms
when connection strength is varied and to increase robustness
to unfaithful relationships.
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