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Abstract: The COVID-19 pandemic is the profoundest crisis of the 21rst century. The SARS-
CoV-2 virus arrived in Brazil around March, 2020, and its social and economical backlashes have
since been catastrophic. In this paper, we investigate how Model Predictive Control (MPC) can
be used to plan appropriate social distancing policies that mitigate the pandemic effects in
Bahia and Santa Catarina (Brazil), two states of very different regions, cultures and population
demography. In addition, the parameters of Susceptible-Infected-Recovered-Deceased (SIRD)
models for these two states are identified using an optimization procedure. The control input
to the process is a social isolation guideline passed to the population. Two MPC strategies are
designed: a) a centralized MPC, which coordinates a single control policy for both states; and b)
a distributed strategy, for which a single optimization is solved for each state. Simulation results
are shown to illustrate and compare both control strategies. Discussions are drawn regarding
the effectiveness of MPC to guide social distancing measures in future pandemics.

Resumo: A pandemia COVID-19 apresenta-se como a mais profunda crise do século 21. O
v́ırus SARS-CoV-2 chegou ao Brasil em Março de 2020 e seus efeitos sociais e econômicos têm
sido catastróficos desde então. Neste artigo, investigamos como Controle Preditivo baseado em
modelo (CPM) pode pautar poĺıticas públicas eficientes para o distanciamento social, visando
mitigar os efeitos da pandemia, no que diz respeito aos estados brasileiros da Bahia e de Santa
Catarina. Abordamos o problema através da identificação dos parâmetros do modelo SIRD via
otimização. A variável manipulada é a meta de isolamento social passada à população; duas
estratégias de CPM são desenvolvidas: a) um CPM centralizado, que coordena o isolamento em
ambos os estados através do mesmo sinal de controle; e b) um CPM distribúıdo, no qual dois
problemas de otimização são resolvidos, resultando em uma lei de controle individual para cada
estado. Resultados de simulação ilustram, comparam e discutem ambas estratégias.
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1. INTRODUCTION

The COVID-19 pandemic is the definite crisis of the 21rst

century. The SARS-CoV-2 virus was first registered in
humans in China, by the end of 2019. This virus causes
a severe acute respiratory syndrome, which may lead to
death. The spread of the contagion has been very rapid,
around the globe; by mid-Jun, this disease had caused the
death of over 410000 people. Vaccines are currently being
developed, but are previewed to be ready only by mid-
2021 (Lurie et al., 2020). Therefore, in order to address

? The Authors acknowledge the financial support of National Coun-
cil for Scientific and Technological Development (CNPq, Brazil)
under grants 304032/2019 − 0 and 201143/2019 − 4 (PhD Program
Abroad).

and mitigate the pandemic effects, global scientific efforts
are being provided (Bedford et al., 2019), while countries
have adopted social distancing measures, seeking to avoid
the spread of the virus (Adam, 2020).

Much more than presenting drastic effects on health sys-
tems, this pandemic has also caused social and economical
backlashes, especially in countries with larger social in-
equalities. In Brazil, one of the leading countries in num-
bers of COVID-19 cases and deaths, catastrophic outcomes
are already felt (The Lancet, 2020). The effects of the
virus on populations with poorer access to health systems
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and sanitation facilities 1 are strikingly stronger (San Lau
et al., 2020).

In this paper, the Brazilian context is taken into account
(Werneck and Carvalho, 2020): Brazil is a continent-
sized country with 26 federated states, which have been
choosing different social distancing measures since mid-
March. The federal government is reluctant to implement
nation-wide policies, claiming that the negative economic
effects are too steep and that social distancing is an
erroneous choice (The Lancet, 2020). The government
suggests that the economy cannot stop and that herd
immunity is the only viable solution to this pandemic.
However, the expectations and scenarios previewed on
recent literature are ruinous (Rocha Filho et al., 2020;
Morato et al., 2020b). In order to account for locations
which have been following very different paths regarding
COVID-19, the data 2 from two states is considered: from
(i) Bahia (BA), which lies on the northeast sea-side and
is larger than Spain (in total surface), and from (ii) Santa
Catarina (SC), which is in the south of the country and is
three times larger than Belgium. We highlight that these
states have very distinct social, historical and cultural
background, and have exhibited different behaviours facing
COVID-19.

The main concept behind social distance is to prevent
health systems from becoming saturated due to large
amounts of COVID-19 patients being treated at the same
time. With social distancing policies, hospital bed short-
ages do not occur, since the large original peak of infec-
tions becomes distributed over time. Even though a strong
public health system is available in Brazil, many states
were already exhibiting a near-collapse situation by May,
with over 95 % of Intense Care Unit (ICU) hospital beds
occupied with COVID-19 patients. Since BA and SC have
very different demographic conditions; by the end of June,
BA had roughly 70 % of ICU occupancy, whereas SC had a
lower rate, estimated at 22 %, although both states applied
strict social isolation rules at an initial stage (around
March). A fundamental issue regarding social distancing is
to perform these interventions at the correct moments and
for the correct duration. Well-designed distancing policies
should help to mitigate the contagion spread, avoiding
the saturation of the heath systems, altogether minimizing
social and economic side-effects.

Motivated by the previous discussion, the problem of defin-
ing optimal social distancing policies is investigated in this
work, regarding the application for BA and SC. For such,
the Model Predictive Control (MPC) (Camacho and Bor-
dons, 2013) framework is used, since it can conveniently
consider the effect of lockdown/quarantine measures as
the constraints of a minimization problem (regarding the
number of infected individuals). Furthermore, we compare
and discuss the differences regarding the use of a central-

1 A very illustrative example of these differences can be seen in
the city of São Paulo: the city hall released a technical note by the
end of April stating that the observed mortality rate is 10 times
larger in neighborhoods of the city with worse social conditions
and precarious housing. See https://www.prefeitura.sp.gov.br/

cidade/secretarias/upload/saude/PMSP_SMS_COVID19_Boletim\

%20Quinzenal_20200430.pdf.
2 We note that this paper was written in June, 2020, with the
available data until then.

ized MPC scheme, which generates a single control law for
both states, and of a distributed MPC, which solves two
separate procedures, with individual laws for each state.

Based on a Susceptible-Infected-Recovered-Deceased (SIRD)
model, adjusted for the COVID-19 pandemic (Bastos and
Cajueiro, 2020), which embeds the effects of social dis-
tancing measures (Section 2), the main contributions of
this paper are the following:

• An optimization procedure is developed in order
to minimize a Least-Squares criterion and estimate
the parameters of the virus infection/spread model,
considering both states (BA, SC). Uncertainty in the
available datasets is considered (Section 3).

• Based on the obtained models, two different MPC
strategies are designed in order to determine when to
apply (or not) social distancing measures (Section 4).

• Simulation results illustrate the results obtained with
both strategies; discussions are drawn in order to
evaluate how optimal control can be used to guide
social distancing in pandemic situations (Sections 5
and 6). The discussion is formally based on compar-
isons regarding the COVID-19 spread in both states
of BA and SC and how the different control strategies
can address the goal of mitigating the viral spread.

2. SARS-COV-2 PANDEMIC SPREAD MODEL

Recent literature (Peng et al., 2020; Kucharski et al., 2020)
demonstrates that the infection rate and evolution dynam-
ics of the SARS-CoV-2 virus can be adequately described
by Susceptible-Infected-Recovered-Deceased (SIRD) mod-
els. In this Section, the SIRD model from (Keeling et al.,
2008) is detailed. An additional dynamic variable models
the population’s response to isolation policies, as proposed
in (Bastos and Cajueiro, 2020; Morato et al., 2020b).

The SIRD models, as in Eq. (1), describes a contagion
spread in a population which is split into four non-
intersecting classes:

• Susceptible people 3 S(t), who are prone to contract
the virus;

• Infected individuals I(t), which are currently sick;
• Recovered people R(t), who have already recovered

from the SARS-CoV-2;
• and Deceased individuals D(t), who have died due to

the contagion.

[SIRD]



dS(t)

dt
= −(1− ψ(t))

βI(t)S(t)

N(t)
,

dI(t)

dt
= (1− ψ(t))

βI(t)S(t)

N(t)
− γI(t)

1− ρ
,

dR(t)

dt
= γI(t),

dD(t)

dt
=

ρ

1− ρ
γI(t),

(1)

3 In this paper, we do not consider the effects of demographic
variations. Despite recent discussion regarding the possibilities of
reinfection (Del Rio and Malani, 2020), we assume that the recovered
individuals will not be reinfected (at least for simplicity purposes),
i.e. an individual does not contract the disease twice.



In Eq. (1), β stands for the probability of disease trans-
mission per individual; γ stands for the recovery rate,
impacting on the amount of individuals that “leave” from
the infected class; ρ denotes the observed mortality rate
of the virus. Social distancing measures are expressed
through ψ(t), which denotes the average amount of people
circulating freely, i.e. ψ = 1 stands for a complete isolation
condition (100 % quarantine, when contacts are reduced to
zero), whereas ψ = 0 means no social distancing.

The size of the total population exposed is denoted N(t);
it holds that N(t) = N0 − D(t), being N0 is the initial
population size (prior to the contagion). In this work, for
simplicity, we assume a constant N(t), considering that
the natural deaths balances the amount newborns. We
note that the term βI(t)/N(t) gives the average number of
contacts sufficient for viral transmission to one susceptible
individual, per unit of time, while (βI(t)/N(t))S(t) gives
the number of new cases w.r.t. the amount of susceptible
individuals (those that are “available for infection”), per
unit of time.

An essential concept in epidemiology theory is the effec-
tive reproduction number, usually denoted by Rt(t). This
index is able to measure the average effective potential
of transmission of a given disease at a given moment t.
In practical analysis, it represents how many cases are
expected to be generated by a single primary case, in a
population which all invidious are susceptible. From the
systems theory viewpoint, Rt represents the epidemic ve-
locity. If Rt > 1 the infection is spreading and the number
of infected people increases, which typically happens at the
beginning of the epidemic; otherwise, if Rt < 1, it means
that more individuals“leave”from the infected class, either
recovering or dying and, thereby, the epidemic is ceas-
ing. This effective reproduction number Rt is affected by
different factors, including biological characteristics from
the virus itself, and governments policies to control the
number of susceptible people, which can be reduced by
social distancing.

In order to calculate Rt(t), we assumed that, at the begin-
ning of the pandemic, S ≈ N . Considering the parameters
β, γ and ρ from Eq. 1, Rt(t) is, then, approximately given
as follows, being ψ the observed social distancing factor:

Rt(t) ≈
(1− ψ(t))β(1− ρ)

γ
. (2)

The following inequality can be directly checked to ver-
ify if the disease is spreading in a given moment t:
(1−ψ(t))β(1−ρ)

γ < 1. The social distancing ratio ψ(t) di-

rectly affects the contagion spread, which is a fundamental
aspect of the control strategy proposed herein.

In order to take into account the effect of public health
policies, enacted by local governments to mitigate the
effects of the COVID-19 pandemic, a model is included
for the dynamics of ψ(t), which concatenates to the SIRD
dynamics. This time-varying parameter ψ models not only
social isolation, but also incentives to use of masks and
other measures which contain the contagion spread. The
dynamics for ψ are obtained according to the first-order
heuristics proposed and validated in (Bastos and Cajueiro,
2020; Morato et al., 2020b):

dψ(t)

dt
=

1

%
(u(t)ψ∞ − ψ(t)) , (3)

for which u(t) is the control variable defined within [0 , 1]
that sets the social distancing goal. Note that ψ(t) con-
verges to ψ∞ with a settling period of 3%, with u = 1. It
follows that ψ∞ is a factor that represents the maximal
observed effect of social distancing in a given place. For
larger values of ψ∞ (closer to 1), when hard quarantine
measures are enacted (u closer to 1), the SIRD model
dynamics (with ψ(t) → ψ∞) are slowed down, exhibiting
a smaller peak of infections and number of deaths. Fur-
thermore, larger ψ values directly influence the transmis-
sion spread factor Rt. The main control goal is to ensure
(1−ψ(t))β(1−ρ)

γ < 1, in such way that the contagion ceases.

3. IDENTIFICATION PROCEDURE

For the sake of practical purposes, model parameters are
estimated using real data employed in a similar technique
to the estimation scheme presented by (Bastos and Ca-
jueiro, 2020).

An Ordinary Least Square (OLS) method is applied to
estimate parameters β, γ and ρ from Eq. 1. For the
considered application, the OLS procedure is performed
over the official data provided by Brazilian Ministry of
Health, considering the first confirmed case in each state
(06/03/20 for BA and 13/03/2020 for SC) until the last
data point of 16/06/2020. The complete data-set can be
found in the open-source repository Brasil.IO 4 . We note
that the official data (disclosed daily) corresponds the total
(cumulative) number of infections, recoveries and deaths;
in order to compute the number of daily (active) infections,
we use I(t) = Ic(t)−R(t)−D(t), being Ic(t) the cumulative
number of infections. This is the same procedure as done
in (Morato et al., 2020b; Bastos and Cajueiro, 2020).

Firstly, we stress that the SIRD model is identified con-
sidering the estimated social distancing indexes observed
in the different states of Brazil, as presented in (Jorge
et al., 2020). The initial condition for ψ is taken as 0.2,
which is a baseline/natural social distancing factor that
corresponds to minimal measures by the population, such
as the use of masks, recurrent hand sanitation and so
on. A thorough discussion on this matter is presented
in (Morato et al., 2020a). Furthermore, for the sake of
simplicity of the optimization algorithm formulation, the
differential equations dI(t)/dt and dD(t)/dt are modified
to yield linear dependence w.r.t. the identified parameters,
as follows:

dI(t)

dt
=

(1− ψ(t))βI(t)S(t)

N(t)
− γI(t)− αI(t), (4)

dD(t)

dt
= αI(t), (5)

being α = ργ/(1− ρ).

Then, an optimization problem is formulated taking into
account the minimum square error between real data (as
disclosed by the Brazilian Ministry of Health) and the
estimated SIRD dynamic model, w.r.t. parameters β, γ

4 Refer to https://brasil.io/dataset/covid19/.



and α. For each variable I(t), R(t) and D(t), the following
estimation error is established:

EI = (I(t)− Î(t, β, γ, α))2, (6)

ER = (R(t)− R̂(t, β, γ, α))2, (7)

ED = (D(t)− D̂(t, β, γ, α))2, (8)

being Î, R̂ and D̂ the variables estimated with the SIRD
model. With these variables, the complete OLS optimiza-
tion problem is formulated as follows:

min
β,γ,α

i=ti+topt∑
i=ti

(k1EI(i) + k2ER(i) + k3ED(i)) , (9)

s.t.: 0 ≤ β ≤ 0.65, (10)

0 ≤ γ ≤ 0.7, (11)

0 ≤ α ≤ 0.2. (12)

This optimization begins with initial conditions β = 0.5,
γ = 0.5 and α = 0.1. The tuning parameters k1, k2 and k3
are taken as positive weighting values, used to normalize
the total optimization cost w.r.t. EI , ER and ED.

Then, in order to solve this problem, we consider a sliding
optimization horizon of fixed size (topt − ti), since the
available data may not represent the real trend of the epi-
demic dynamics. This is due to the fact that uncertainties
are present in the data available regarding the reported
cases and, hence, this data corruption may deteriorate
the overall parameters estimation and the obtained model
prediction. Moreover, the initial data points usually embed
substantial variations in the number of cases reported due
to the absence of testing when the viral spread starts. Also,
as a natural consequence of pandemic, infections, recovered
and mortality rates start with strong variations at the
beginning of the spread, until convergence to a steadier
behavior is observed.

The horizon window (topt − ti) is smaller than the total
available amount of data and rolls along the complete
number of daily samples. We have found that the best
model-data fitting results are achieved with a windows
between 5 and 10 days 5 , which is coherent with the
viral dynamics, since the average incubation period of the
SARS-CoV-2 virus is of 5 days (and, at most, 14 days).
Hence, we identify piece-wise constant parameters values
β, γ and α, for each window (topt − ti). The procedure
starts with ti = 1 as the first day of available and follows
with t+i = ti+topt+1; the optimal parameters identified on
the previous window (βopt, γopt and αopt) are set as initial
conditions for following loop, as in any moving-horizon
optimization strategy.

4. AN OPTIMAL SOCIAL DISTANCING METHOD

Based on the SIRD model detailed in Sec. 2 and the param-
eter estimates found through the optimization procedure
from Sec. 3, two different optimal control procedures are
proposed, aiming to guide social distancing policies in
SC and BA. These procedures are set within an MPC

5 In practice, we use a fixed horizon size of 6 days, as discussed in
Sec. 5.

framework, in centralized and distributed paradigms, as
detailed in the sequel.

We recall that MPC operates in a discrete-time paradigm.
Therefore, since new measurements of infections and
deaths are available every day, and the contagion dynamics
are slow (in the order of days), the SIRD model and
the social distancing dynamics from Eqs. (1) and (3). are
Euler-discretized with Ts = 1 day. The discrete sampling
instants are denoted as k = t/Ts.

The MPC procedures are designed through a minimiza-
tion problem, where performance goals are delimited as
quadratic maps. Regarding the COVID-19 situation, the
control objective is evident: minimize the number of active
infections (I(k)) while altogether reducing the social dis-
tancing efforts (u(k)). We stress that long-term rigid social
distancing provokes devastating economic and psychologi-
cal effects and, thus, such measures should be kept for the
smallest duration possible, e.g. (Eichenbaum et al., 2020).

One cannot expect to increase of decrease social isolation
instantaneously. As observed in practice, the population
takes some time to respond to new social isolation mea-
sures, adapting to the enacted paradigm. Therefore, in
consonance with the dynamic Eq. (3) and with real iso-
lation policies put in practice in Brazil, we consider that
the control action u can vary ±0.05 per day, which means
that actual isolation factor will increase/decrease with a
rate of, at most, 5 %/day.

We note that this is a preliminary assumption, since the
actual implemented social isolation policy should be a
“translation” of the control signal u into a feasible set of
actions. These actions could represent different guidelines,
such as: total isolation, with no one leaving their homes
(for u = 1), a partial isolation, with people allowed to
leave only for short periods, with masks (for u = 0.9),
and so forth, until a total “relaxed” condition (for u = 0).

Bearing in mind the problem and constraints detailed
above, the first control procedure proposed is set as a
single, centralized MPC (CMPC) algorithm which takes
into account the evolution of the contagion in both states,
BA and SC, and, thereby, determines a single control
action u which guides the social isolation policies. Such
optimization, with cost function JCMPC , is expressed as
follows:

min
U(k)

∑
j

Np∑
i=1

(
Ij(k + i)T qIIj(k + i)

)
n2j

+

Np∑
i=1

(
u(k + i− 1)T quu(k + i− 1)

)
, (13)

s.t.: Discrete SIRD Models ∀ i ∈ N[1 , Np] , (14)

0 ≤ u(k + i− 1) ≤ 1 , (15)

−0.05 ≤ u(k + i)− u(k + i− 1) ≤ 0.05 , (16)

02×1 ≤
[
Ij(k + i)
Dj(k + i)

]
≤
[
nICUj

nj

]
∀ j , (17)

where Np is a prediction horizon; the sub-script j indicates
the state (i.e. IBA stands for the infections in Bahia), nj
stands for the total population size of the j-th state, nICUj
represents the total ICU beds available in the state and



U(k) represents the sequence of control actions inside the
prediction horizon, i.e. U(k) = col{u(k)u(k+1) . . . u(k+
Np − 1)}. The weights qI and qu determine the trade-off
between conflicting objectives of minimizing the spread
and reducing social isolation efforts.

A distributed MPC (DMPC) formulation is much like the
one in Eq. (13), but considers the SIRD model for just a
single state, and, thereby, finds an individual control law
for the referenced state. This optimization procedure, with
cost function JDMPC , is:

min
U(k)

Np∑
i=1

(
Ij(k + i)T qIIj(k + i)

)
n2j

+

Np∑
i=1

(
u(k + i− 1)T quu(k + i− 1)

)
, (18)

s.t.: Discrete SIRD Model (j) ∀ i ∈ N[1 , Np] , (19)

0 ≤ u(k + i− 1) ≤ 1 , (20)

−0.05 ≤ u(k + i)− u(k + i− 1) ≤ 0.05 , (21)

02×1 ≤
[
Ij(k + i)
Dj(k + i)

]
≤
[
nICUj

nj

]
. (22)

The CMPC approach, regarding Brazil, would stand for a
single social isolation guide to all 26 states, where a DMPC
design would represent social isolation defined through
individual state guidelines. For simplicity, although the
whole approach presented here can be extrapolated for
other scenarios, this work considers only the states of
Bahia and Santa Catarina in the following results.

Remark 1. In recent papers (Morato et al., 2020b; Köhler
et al., 2020), the issue of MPC regarding COVID-19 has
also been discussed. Notice that the differences between
the CMPC/DMPC formulations presented in this paper
to those in the references are the following: (i) the control
signal presented by (Köhler et al., 2020) is a factor that
multiplies the contagion transmission factors β and γ,
while in this paper and in work of (Morato et al., 2020b),
it goes through a dynamic model regarding ψ; (ii) both
previous papers consider uncertainty and approach the
problem using a robust design procedure, which is out of
the scope of this paper, since we do not have sufficient data
for consistent robust parameters estimates; and (iii) the
DMPC/DMPC approaches consider slew rate constraints
on the control signal u, which had not yet been tested
(the previous references considered that the social isolation
reference could vary arbitrarily at each future sample k+i).

5. MAIN RESULTS

We proceed by depicting the results concerning the identi-
fication procedure and the obtained control results. The
following results were obtained with the aid of Matlab
software, Yalmip toolbox and fmincon solver.

The SIRD identification procedure is performed through
the optimization given in Eq. (9), with the weights pre-
sented in Table 1. The identification is performed consid-
ering a moving-horizon window of 6 days for both states.

Remark 2. At the beginning of the pandemic in SC, there
was a considerable lack of reported recovered cases (until

05/05/20), inconsistent with regard to the active infections
and Rt. However, this does not affect the overall forecasts
due to the moving-horizon optimization strategy and,
thereby, does not affect the obtained control results.

Table 1. Optimization Weights.

Parameter k1 k2 k3
Value 1 10 2

The obtained model parameters for the last data-set win-
dow, from 10/06 until 16/06/20, are presented in Table 2.
Furthermore, Figs. 1, 2 and 3 depict the model-data fitting
results for the whole data-sets, regarding I, D and Rt.
Evidently, the identification procedure yields quite good
parameter estimates, since the simulated SIRD model with
parameter estimated with 6 day windows represents the
official data with small mismatches. We stress that the co-
efficient of determination Rcd of the obtained identification
results is very close to 1.

It is worth mentioning that different pandemic stages are
seen in each state. From Figs. 1 and 3, it can be seen
that SC has reduced the number of active infections, which
is also reflected in Rt < 1, representing that, at least at
that moment, the disease reached its peak of active cases.
Anyhow, the state of BA shows an increasing viral spread
trend with Rt > 1, which means that the number of cases
are still expected to grow.

Table 2. Model Parameters.

States β γ α

BA From June 10th
to June 16th

0.181 0.053 0.017
SC 0.087 0.737 0.010

We note that the SIRD model parameters used for control
are those for the last available window, as given in Table
2. Since a window of 6 days is shown to be sufficient to
estimate the SIRD model parameters with model-fitting
efficiency (Rcd coefficient close to 1), the most adequate
control procedure is to adjust the model of the MPC
controller in an iterative fashion, as time progresses. This
kind of procedure allows one to incorporate the variability
of the SIRD parameters, which is inherent to the SARS-
CoV-2 viral spread dynamics. We cannot proceed with
such paradigm since we consider the control action being
deployed through the future (for which we have no data).
Thus, we simply keep the last available SIRD parameters
as those used for control purposes.
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Figure 1. Identification Procedure: Active Infections.

Considering the given parameters for the SIRD model,
the control results are presented. The values for the so-
cial isolation response dynamics of Eq. (3) are borrowed
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from (Morato et al., 2020b). The maximal social isolation
factors, as presented in Table 3, were retrieved from recent
technical notes from these states.

Table 3. Social Isolation Response.

State % ψ∞
BA 1.66 days 0.563

SC 1.66 days 0.514

The MPC strategies are synthesized with a prediction
horizon of Np = 30 days. This is coherent since the
incubation period of the SARS-CoV-2 virus is of, at most,
14 days. The weights qI and qu are chosen, respectively, as
0.5 each, so that the MPC tries to find a“balance”between
minimizing infections and relaxing quarantine measures.

The achieved results are obtained considering an initial
condition w.r.t. the available data at 11/06/2020. We note,
as of this date, BA has many infections (the ICU beds at
BA are almost full), while SC has already passed through
the infection peak. The control strategy is assumed to
act from 12/06 to mitigate the backlashes. The results
indicate what could still be done to avoid the expected
catastrophic results if no stronger health policy is em-
ployed. Through the sequel, NC denotes the results with
“no control”, i.e. with u = 0 and, thus, with no social
isolation, i.e. ψ → 0.

In Fig. 4, the derived control laws are presented and com-
pared to the social isolation factors ψ. The CMPC strat-
egy is presented on the upper subplot, while the DMPC
is shown below. Both strategies have similar behaviours
w.r.t. BA, trying to suppress the spread of the virus
by increasing the quarantine “strength” as the infections
increase, and relaxing it afterwards; the forecast to the
end of social isolation policies in BA is for June, 2021.
Since SC shows an already decaying infection curve, the
DMPC takes into account this specificity and indicates a

relaxation much before, around August 2020. We note that
the CMPC, since it considers both states, must determine
a stronger policy to SC due to the elevated infection rate
at BA, while the DMPC approach is able to individually
plan the isolation, as expected.

It must be stressed that we analyze the SIRD models as
if there is no coupling effects between them. Anyhow, in
practice, the 26 states in Brazil cannot pursue individual
social isolation laws (as the DMPC approach) since their
borders are not closed. The DMPC results only indicate
that local conditions should be taken into account, but a
centralized coordination (like the CMPC) is forcefully nec-
essary to reduce the infections all over Brazil. It seems to
us much more prudent if the federal government dispatch
a coordinated social distancing health policy (following a
CMPC method), while each state figuring out their possi-
ble relaxations according to a DMPC approach and taken
into account the infection level in the frontiers states. It
does not seem reasonable to relax social isolation in SC by
August 2020 and expect that there is no migration/transit
between people from neighbouring states (as Paraná or Rio
Grande do Sul), which show much greater infection levels
(and are previewed to relax quarantine much later).

W.r.t. the depicted control laws, Figures 5 and 6 show,
respectively, the evolution of the active infections and the
total number of deaths due to COVID-19 in both states,
over time. The results indicate that over 100000 lives
could still be saved in BA and 70 lives in SC, w.r.t.
a NC condition. The amount of deaths in a NC scenario
for BA are astounding. Of course, each life matters and
this catastrophe is a lot to bear. Psychological and social
traumas will mark the country. A hard isolation and a
coordinated social distancing action could still be able to
save many lives.

As a final (yet strikingly important) comment, we must
discuss that this work only sketches preliminary results
on how optimal control can be formalized for pandemic
scenarios. An actual application of the proposed method
(either CMPC or DMCP) depends on how the control
signal can be translated into actual public health policies
to be put into practice. This can be understood as some
kind of actuator filtering of the control signal, since abrupt
daily variations on u make no sense regarding health
policies. As an example, one cannot expect to determine
relaxations (allow public transport) in one day to revert
it in the following. The paradigm to consider only two
states (total lockdown or total release) has been previously
studied (Morato et al., 2020b) and also offers an elegant
solution, but it seems that the preferable way to follow
is to determine discretized values for u, which can be
converted directly into practicable health policies. This
kind of control signal is to be considered in future works,
yet an easy route is to adequately filter the control signal
generated with the proposed methods in this paper.

6. DISCUSSIONS AND CONCLUSIONS

In this brief article, we investigated how predictive control
and optimization-based procedures could be used to for-
mulate social isolation guidelines for the COVID-19 pan-
demic in Brazil, taking into account the spread of the virus
in the states of Bahia and Santa Catarina. Centralized and
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Figure 5. Control Results: Active Infections.

distributed MPC approaches based on SIRD models with
parameters identified via Least-Square optimization were
proposed in this work. The results indicate that strong
quarantine/lockdown measures still have to be enacted for
some months before any relaxations can be though of.

Below, we summarize some key points:

• The results corroborate the hypothesis formulated
in (Hellewell et al., 2020) and previously discussed
in (Morato et al., 2020b), which indicate that herd
immunity cannot be considered as plausible solution
for Brazil, offering great risk and leading to elevated

fatality due to multiple social-economical issues of the
country.

• The control results show that a centralized, coordi-
nated federal government action is necessary to set
guidelines to the states, which can performed indi-
vidual optimization procedures to determine when to
relax quarantine measures. A forecast is presented
which indicates that a coordinated social isolation
public policy could save over 100000 lives in just in
these two states.

• The SARS-CoV-2 contagion is an inherently com-
plex phenomenon and is influenced by many factors
and exact prediction of the future dynamics is not



Figure 6. Control Results: Deceased Individuals.

possible and, therefore, the quantitative results pre-
sented herein cannot be account for without taking
into account the uncertainty margins. Anyhow, the
qualitative results are strong. The most correct con-
trol procedure should be based on a recurrent model
tuning and re-calculation of the control law. Since
the country as been experiencing an unwillingness to
formally start harder social isolation measures (The
Lancet, 2020), the social and economic costs of the
pandemic might be brutal.
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