Controle Preditivo Não-Linear Robusto com Propagação de Incertezas via Zonotopos $\,^\star$

Victor M. Cunha^{*} Tito L. M. Santos^{*}

* Departamento de Engenharia Elétrica e Computação, Universidade Federal da Bahia, BA (e-mail: moreiracunha.victor@gmail.com, tlsantos@ufba.br).

Abstract: This paper presents a new zonotopic-based method for computing the reachable sets that bound the disturbance propagation of nonlinear systems. These sets are used to design a robust nonlinear model predictive controller. The main objective is to reduce the conservativeness of the tighter constraints, which are employed to ensure recursive feasibility and input-to-state stability based on nominal prediction. The proposed disturbance propagation technique is applied to a simulation DC-DC converter benchmark case study to illustrate the benefits of the proposed approach.

Resumo: Este trabalho apresenta um novo método baseado em zonotopos para o cálculo de conjuntos alcançáveis que limitam a propagação de incertezas em sistemas não-lineares. Estes conjuntos são utilizados na definição de controladores preditivos robustos de sistemas não-lineares. O principal objetivo consiste na redução do conservadorismo das restrições recuadas, as quais são utilizadas para garantir factibilidade recursiva e estabilidade entrada-estado baseada em predições nominais. A técnica de propagação de incertezas proposta é aplicada a um conversor DC-DC com vistas a ilustrar os benefícios da tecnica proposta.

Keywords: Robust Model Predictive Control; Non-Linear Control; Zonotopes; Set-Based State Estimation; Constraint-Tightening.

Palavras-chaves: Controle Preditivo Robusto; Controle Não-Linear; Zonotopos; Estimação de Estados Baseada em Conjuntos; Contração de Restrições.

1. INTRODUÇÃO

O controle preditivo (MPC) é amplamente utilizado para o controle ótimo de sistemas dinâmicos restritos lineares e não-lineares (Mayne, 2014). O controle preditivo nominal, embora possa apresentar algum grau de robustez inerente, não oferece qualquer garantia de factibilidade recursiva ou estabilidade na presença de pertubações. Para possibilitar tais garantias, o controle preditivo robusto vem sendo desenvolvido. O controle preditivo robusto considera a presença de incertezas desconhecidas, porém limitadas, no sistema e garante satisfação das restrições e estabilidade entrada-estado para qualquer sequência de pertubações dentro de um conjunto conhecido (Mayne et al., 2000).

Neste trabalho, estuda-se o problema do controle preditivo robusto para sistemas não-lineares baseado em predições nominais, no qual, a partir do cálculo da propagação de incertezas, restrições contraídas são aplicadas às predições nominais, forçando a satisfação das restrições pela trajetória real do sistema (Santos et al., 2019; Marruedo et al., 2002; Köhler et al., 2018). Em sistemas lineares, o cálculo exato de conjuntos delimitando a propagação das incertezas e, consequentemente, restringindo a diferença entre as trajetórias predita e real, é possível (Ferramosca et al., 2012). No caso não-linear, no entanto, os métodos existentes para a propagação de incertezas, como os utilizando constantes de Lipschitz e funções- \mathcal{K} , tendem a ser conservadores, limitando a performance do controlador e reduzindo seu domínio de atração (Marruedo et al., 2002).

Zonotopos são poliedros convexos e compactos que podem ser representados pela soma de Minkowsky de segmentos de reta. Devido à flexibilidade e simplicidade da representação zonotópica, aliada ao baixo custo computacional de transformações lineares e somas de Minkowsky de zonotopos, tais conjuntos são extensamente utilizados na estimação de estados e detecção de falhas (Le et al., 2013; Alamo et al., 2005; Scott et al., 2016).

Neste trabalho, é proposto um novo método para a propagação de incertezas em sistemas não-lineares, baseado na extensão de valor médio de zonotopos proposta em Alamo et al. (2005), que apresenta resultados menos conservadores que a estimação via constantes de Lipschitz. É também estudada a influência da lei de realimentação de estado na propagação de pertubações. A abordagem proposta também pode ser aplicada a problemas não-lineares com perturbação estocástica (Santos et al., 2019).

O trabalho está organizado da seguinte maneira: na Seção 2 são apresentadas as discussões preliminares, na Seção 3 apresenta-se a técnica baseada em zonotopos, o estudo de caso é analisado na Seção 4 e os comentário finais são discutidos na Seção 5.

^{*} O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001

Notações. Dados os conjuntos $\mathcal{A}, \mathcal{B} \subset \mathbb{R}^m, \mathcal{C} \subset \mathbb{R}^n$ e a matriz $R \in \mathbb{R}^{n \times m}$, a soma de Minkowsky é definida por $\mathcal{A} \oplus \mathcal{B} = \{x \in \mathbb{R}^m : x = a + b, a \in \mathcal{A}, b \in \mathcal{B}\},\$ a diferença de Pontryagin por $\mathcal{A} \ominus \mathcal{B} = \{x \in \mathbb{R}^m : x +$ $b \in \mathcal{A}, \forall b \in \mathcal{B}$, o mapeamento linear por $R\mathcal{A} = \{y \in \mathcal{A}\}$ \mathbb{R}^n : $y = Ra, a \in \mathcal{A}$ e o produto cartesiano por $\mathcal{A} \times$ $\mathcal{C} = \{ z \in \mathbb{R}^{m+n} \colon z = (a^{\mathsf{T}} c^{\mathsf{T}})^{\mathsf{T}}, a \in \mathcal{A}, c \in \mathcal{C} \}. x_k$ representa o valor de um sinal no instante k, enquanto $x_{k+j|k}$ representa o valor predito em k para x_{k+j} (note que $x_{k|k} = x_k$). Dados dois inteiros $a \in b$ (a < b), $\mathbb{Z}_{[a,b]} = \{ j \in \mathbb{Z} \colon a \leq j \leq b \} \text{ e } \mathbf{v}_{[a,b]} = \{ v_a, v_{a+1}, \dots, v_b \}.$ Uma função $\alpha \colon \mathbb{R}_+ \to \mathbb{R}_+$ é uma função- \mathcal{K} se ela é contínua, estritamente crescente e $\alpha(0) = 0$. Uma função $f: \mathcal{A} \subseteq \mathbb{R}^m \to \mathbb{R}^n$ é dita de classe \mathcal{C}^1 se ela é diferenciável e apresenta derivadas contínuas. Neste caso, sua matriz jacobiana é representada por $\nabla^{\intercal} f \colon \mathbb{R}^m \to \mathbb{R}^{n \times m}$. Dadas as matrizes $A, B \in \mathbb{R}^{n \times m}, A \leq (\geq) B$ representa as mninequações $a_{ij} \leq (\geq)b_{ij}$. Uma norma de um vetor $v \in \mathbb{R}^n$ é dada por ||v||, enquanto sua norma-infinito, por $||v||_{\infty}$. Para uma matriz $A \in \mathbb{R}^{n \times m}$, $||A|| (||A||_{\infty})$ é a norma(infinito) induzida da transformação linear $A \colon \mathbb{R}^m \to \mathbb{R}^n$. O módulo |A| de uma matriz deve ser tomado termoa-termo. A caixa unitária *m*-dimensional é descrita por $\mathcal{B}_{\infty}^{m} = \{\xi \in \mathbb{R}^{m} : \|\xi\|_{\infty} \leq 1\} \text{ e o conjunto dos intervalos}$ $reais compactos é dado por <math>\mathbb{I} = \{[a,b], a, b \in \mathbb{R}, a \leq b\}.$ Dado um conjunto $\mathcal{A} \subseteq \mathbb{R}^{m}, \mathbb{I}(\mathcal{A}) \in \mathbb{I}^{m}$ representa a casca intervalar de A. Matrizes intervalares são representadas por $\mathbf{J} \in \mathbb{I}^{n \times m},$ com $mid(\mathbf{J})$
e $rad(\mathbf{J})$ representando seu ponto médio e raio, respectivamente.

2. NMPC ROBUSTO BASEADO EM PREDIÇÕES NOMINAIS

2.1 Descrição do Sistema

Considere o seguinte sistema não-linear:

$$x_{k+1} = f(x_k, u_k) + w_k, \tag{1}$$

sendo $x_k \in \mathbb{R}^n$ o vetor de estado, $u_k \in \mathbb{R}^{n_u}$ a entrada de controle, $w_k \in \mathbb{R}^n$ a pertubação aditiva e f descreve as equações do modelo. Assume-se, sem perda de generalidade, que a origem é um ponto de equilíbrio do sistema (1), de modo que f(0,0) = 0.

Embora a pertubação aditiva seja desconhecida, considerase que ela seja limitada por um conjunto compacto $\mathcal{W} \subseteq \mathbb{R}^n$ com a origem em seu interior, de modo que $w_k \in \mathcal{W}, \forall k \in \mathbb{N}$. O sistema (1) está sujeito a restrições poliédricas nos estados e entradas, ou seja, existem conjuntos compactos $\mathcal{X} = \{x \in \mathbb{R}^n : H_x x \leq g_x\}$ e $\mathcal{U} = \{u \in \mathbb{R}^{n_u} : H_u u \leq g_u\}$, sendo H_x e H_u matrizes e g_x e g_u vetores de dimensões apropriadas que definem os semiespaços das restrições poliedrais do estado e entrada, de modo que:

$$(x_k^{\mathsf{T}} \ u_k^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{Z} = \mathcal{X} \times \mathcal{U}.$$
⁽²⁾

Assume-se também que a função $f \colon \mathbb{R}^{n+n_u} \to \mathbb{R}^n$ seja de classe \mathcal{C}^1 em \mathcal{Z} .

Considere a lei de controle linear

$$u_k = \pi(x_k, v_k) = v_k + K_v x_k,$$
(3)

sendo $v_k \in \mathbb{R}^{n_u}$ a entrada virtual, que cumpre o papel de satisfação de restrições e otimização, e $K_v \in \mathbb{R}^{n_u \times n}$ a matriz de realimentação de estado, a qual permite atenuar a propagação de perturbações. Deste modo, o sistema em malha fechada é descrito por

$$x_{k+1} = f(x_k, v_k + K_v x_k) + w_k$$

= $f_{\pi}(x_k, v_k) + w_k$, (4)

e as restrições $[x_k^\intercal \, u_k^\intercal]^\intercal \in \mathcal{Z}$ podem ser reescritas em termos do estado e da entrada virtual como

$$\begin{pmatrix} x_k \\ v_k \end{pmatrix} \in \mathcal{Z}_{\pi} = \left\{ z \in \mathbb{R}^{n+n_u} : \begin{pmatrix} H_x & 0 \\ H_u K_v & H_u \end{pmatrix} z \le \begin{pmatrix} g_x \\ g_u \end{pmatrix} \right\}.$$
(5)

A lei de controle (3), definida a partir da escolha da matrix K_v , pode ser definida conforme proposto no Apêndice A. O sistema (4) será usado para o projeto do controle preditivo, com as entradas virtuais $v_{k+j|k}$, $j = 0, 1 \dots N - 1$ como variáveis de otimização, sendo $\hat{\mathbf{v}}_{[k,k+N-1]} = \{v_{k|k} \ v_{k+1|k} \ \dots \ v_{k+N-1|k}\}$ uma sequência de controles futuros.

2.2 Propagação das Pertubações

A trajetória do sistema (4) partindo do estado inicial $x_k \in \mathcal{X}$ é dada por

$$x_{k+j} = \phi_{\pi}(j, x_k, \mathbf{v}_{[k,k+j-1]}, \mathbf{w}_{[k,k+j-1]}), \quad j \ge 0.$$
(6)

As predições nominais são dadas por

$$x_{k+j|k} = \phi_{\pi}(j, x_k, \hat{\mathbf{v}}_{[k,k+j-1]}, \mathbf{0}), \quad j \ge 0.$$
(7)

Para garantir factibilidade recursiva do MPC na presença de pertubações, conjuntos $S(j) \subseteq \mathbb{R}^n$, $j = 0 \dots N$ satisfazendo a Condição 1 são definidos iterativamente de modo a limitar a propagação das pertubações (Santos et al., 2019; Marruedo et al., 2002).

Condição 1. Os conjuntos S(j), $j = 0 \dots N$ devem satisfazer as seguintes condições:

- i $\mathcal{S}(0)$ é um conjunto compacto que contém \mathcal{W} .
- ii $\mathcal{S}(j), j = 1 \dots N$ é um conjunto compacto tal que, para todos $x_a, x_b \in v \operatorname{com} (x_a^{\mathsf{T}} v^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{Z}_{\pi} \ominus (\mathcal{S}(j-1) \times \{0\}) \in$ $x_b - x_a \in \mathcal{S}(j-1),$ tem-se $f_{\pi}(x_b, v) - f_{\pi}(x_a, v) \in \mathcal{S}(j).$

Fazendo $x_b = x_{k+1}$ e $x_a = x_{k+1|k} = f_{\pi}(x_k, v_k)$, tem-se $x_b - x_a \in \mathcal{W} \subseteq \mathcal{S}(0)$. Consequentemente, pela Condição 1, tem-se $x_{k+j|k+1} \in x_{k+j|k} \oplus \mathcal{S}(j-1)$, $j = 1 \dots N+1$ para toda sequência de controles $\hat{\mathbf{v}}_{[k,k+N]}$ admissível. Logo, os conjuntos $\mathcal{S}(j)$ permitem limitar a diferença entre as predições realizadas em k e as realizadas em k+1.

No caso linear, os menores conjuntos $S^*(j)$ que satisfazem a Condição 1 podem ser diretamente computados como $S^*(j) = (A + BK_v)^j \mathcal{W}$ (Ferramosca et al., 2012). Para sistemas não-lineares, no entanto, não há algoritimos eficientes para o cálculo exato dos $S^*(j)$ (Köhler et al., 2018). Limitantes mais conservadores, levando em conta o pior-caso de propagação da pertubação, devem então ser utilizados.

Um método simples de obtenção de conjuntos S(j) é utilizando constantes de Lipschitz (Marruedo et al., 2002). Dados $L_x \in \mathbb{R}$, com $||f_{\pi}(x_a, v) - f_{\pi}(x_b, v)|| \leq L_x ||x_b - x_a||$ para quaisquer $(x_a^{\mathsf{T}} v^{\mathsf{T}})^{\mathsf{T}}$, $(x_b^{\mathsf{T}} v^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{Z}_{\pi}$, e $S(0) = \{x \in \mathbb{R}^n : ||x|| \leq w_m\} \supseteq \mathcal{W}$, conjuntos $S_l(j)$ que satisfazem a Condição 1 são dados por

$$\mathcal{S}_l(j) = \{ x \in \mathbb{R}^n : \|x\| \le L_x^j w_m \}, \quad j = 0 \dots N.$$
 (8)

Os conjuntos assim obtidos, no entanto, tendem a ser conservadores, uma vez que tal abordagem propaga o pior caso com relação ao ganho de forma idêntica em todas as direções. A principal contribuição deste trabalho é o desenvolvimento de um novo algoritimo para o cálculo dos S(j) baseado em zonotopos, o qual não apresenta este tipo de conservadorismo.

2.3 Projeto do Controlador

Esta seção apresenta como conjuntos S(j) satisfazendo a Condição 1 podem ser utilizados para o projeto de um controlador preditivo não-linear robusto (NMPC) baseado em predições nominais para o sitema (1) sujeito a pertubações $w_k \in \mathcal{W}$.

Dados o horizonte de predição $N \in \mathbb{N}$ e o conjunto de restrições inicial $\mathcal{Z}_{\pi}(0) = \mathcal{Z}_{\pi}$, conjuntos de restrições contraídos $\mathcal{Z}_{\pi}(j), j = 1...N$, são construídos iterativamente por

$$\mathcal{Z}_{\pi}(j+1) = \mathcal{Z}_{\pi}(j) \ominus (\mathcal{S}(j) \times \{0\}).$$
(9)

Deste modo, a cada instante de amostragem k, mede-se o estado x_k e soluciona-se o problema de otimização $P_N(x_k)$ definido por

$$\min_{\mathbf{\hat{v}}_{[k,k+N-1]}} \sum_{j=0}^{N-1} L_{\pi}(x_{k+j|k}, v_{k+j|k}) + V_{f}(x_{k+N|k})$$

$$s.a: \begin{cases}
x_{k|k} = x_{k} \\
x_{k+j+1|k} = f_{\pi}(x_{k+j|k}, v_{k+j|k}), & j \in \mathbb{Z}_{[0,N-1]} \\
(x_{k+j|k}^{\mathsf{T}} v_{k+j|k}^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{Z}_{\pi}(j), & j \in \mathbb{Z}_{[0,N-1]} \\
x_{k+N|k} \in \mathcal{X}_{f}
\end{cases}$$
(10)

tal que $\hat{\mathbf{v}}_{[k,k+N-1]}$ são as entradas virtuais futuras, variáveis do problema de otimização, $L_{\pi}(x_{k+j|k}, v_{k+j|k})$ é o custo de etapa, $V_f(x_{k+N|k})$ é o custo terminal e \mathcal{X}_f é o conjunto terminal.

O conjunto de pontos iniciais $x_0 \in \mathcal{X}$ tais que o problema (10) é factível é chamado domínio de atração e representado por \mathcal{X}_N . A solução de $P_N(x_k)$ e seu custo associado são dados respectivamente por $\hat{\mathbf{v}}_{[k,k+N-1]}^*(x_k)$ e $V_N^*(x_k)$.

As funções-custo $L_{\pi} : \mathcal{Z}_{\pi} \to \mathbb{R} \in V_f : \mathcal{X}_f \to \mathbb{R}$ devem ser uniformemente contínuas e satisfazer às condições

$$L_{\pi}(x,v) \ge \alpha_L(\|x\|) \tag{11a}$$

$$\alpha_V(\|x\|) \le V_f(x) \le \beta_V(\|x\|), \tag{11b}$$

tal que α_L , $\alpha_V \in \beta_V$ são funções- \mathcal{K} . Em particular, podese fazer $L_{\pi}(x, v) = x^{\mathsf{T}}Qx + u^{\mathsf{T}}Ru$ $(u = v + K_v x)$ e $V_f(x) = x^{\mathsf{T}}Px$, com Q, $R \in P$ matrizes definidas positivas.

O conjunto terminal \mathcal{X}_f deve ser um conjunto robusto positivamente invariante¹, havendo uma lei de controle estabilizante $v_t \colon \mathcal{X}_f \to \mathbb{R}^{n_u}, v_t(0) = 0$, tal que:

- i O conjunto $\mathcal{Z}_{\pi,t} = \{x \in \mathbb{R}^n : (x^{\mathsf{T}} \ v_t^{\mathsf{T}}(x))^{\mathsf{T}} \in \mathcal{Z}_{\pi}(N)\}$ é compacto e contém a origem, tendo-se $\mathcal{X}_f \subseteq \mathcal{Z}_{\pi,t}$.
- ii Tem-se $f_{\pi}(x, v_t(x)) \oplus \mathcal{S}(N) \subseteq \mathcal{X}_f$ para todo $x \in \mathcal{X}_f$

Finalmente, $V_f(x)$ deve ser uma função de Lyapunov para o controlador terminal, tendo-se $V_f(f_{\pi}(x, v_t(x))) - V_f(x) \leq -L_{\pi}(x, v_t(x))$ para todo $x \in \mathcal{X}_f$.

Pelo princípio do horizonte deslizante, a lei de controle MPC é dada por

$$u_k = \kappa(x_k) = v_k^* + K_v x_k \tag{12}$$

e, como mostrado em Marruedo et al. (2002) e Santos et al. (2019), tem-se factibilidade recursiva e estabilidade entrada-estado do sistema (1) sujeito à lei de controle (12).

Note que ao reduzir o conservadorismo no cálculo dos conjuntos S(j), reduz-se a contração das restrições. Deste modo, os conjuntos $\mathcal{Z}_{\pi}(j)$ e, consquentemente, o conjunto terminal \mathcal{X}_{f} aumentam, relaxando as restrições do problema de otimização e permitindo um maior domínio de atração \mathcal{X}_{N} e menores custos $V_{N}^{*}(\cdot)$.

3. PROPAGAÇÃO DE INCERTEZAS VIA ZONOTOPOS

Zonotopos são uma classe particular de poliedros convexos, compactos e simétricos (Le et al., 2013). Eles podem ser descritos pela soma de Minkowsky de segmentos de reta ou, alternativamente, pela imagem afim de uma caixa unitária $\mathcal{B}_{\infty}^{n_g}$

$$Z = \{G, c\} = c \oplus G\mathcal{B}^{n_g}_{\infty},\tag{13}$$

tal que $c \in \mathbb{R}^n$ é o centro e as colunas de $G \in \mathbb{R}^{n \times n_g}$ os geradores do zonotopo. O número de geradores $n_g \ge n$ determina a complexidade do zonotopo, com $n_g = n$ em paralelotopos. Um zonotopo é dito centrado quando seu centro é a origem (c = 0).

A utilização de zonotopos para estimação de estados está ligada à simplicidade e eficiência da transformação linear e da soma de Minkowsky de zonotopos (Alamo et al., 2005; Scott et al., 2016). De fato, dados $Z_1 = \{G_1, c_1\}, Z_2 = \{G_2, c_2\} \subseteq \mathbb{R}^n, R \in \mathbb{R}^{m \times n}$

$$RZ_1 = \{RG_1, Rc_1\},\tag{14a}$$

$$Z_1 \oplus Z_2 = \{ (G_1 \ G_2), c_1 + c_2 \}.$$
(14b)

¹ Um conjunto $\mathcal{X}_f \subseteq \mathbb{R}^n$ é dito Robusto Positivamente Invariante (RPI) em relação ao sistema (4) sujeito à lei de controle $v_k = v_t(x_k)$ e à perturbação $w_k \in \mathcal{W}_f$ caso para todos $x \in \mathcal{X}_f$ e $w \in \mathcal{W}_f$, tenha-se $f_{\pi}(x, v_t(x)) + w \in \mathcal{X}_f$.

Logo, tais operações podem ser efetuadas algebricamente, com baixo custo computacional.

3.1 Cálculo dos Conjuntos $\mathcal{S}(j)$

Com o intuito de calcular conjuntos $S_z(j)$ que satisfaçam a Condição 1 utilizando zonotopos, se faz necessário um algoritmo para a obtenção da imagem de um zonotopo $X = \{G, c\} \subseteq \mathbb{R}^m$ por uma função não-linear $\varphi : \mathbb{R}^m \to \mathbb{R}^n$. Em particular, deve-se encontrar um zonotopo $Y \subseteq \mathbb{R}^n$ que satisfaça $\varphi(X) \subseteq Y$.

O Lema 2, proposto em Alamo et al. (2005) e Rego et al. (2020), permite a obtenção de uma extensão zonotópica do produto de uma matriz intervalar por uma caixa unitária. Lema 2. Dado um zonotopo centrado $X = M\mathcal{B}_{\infty}^{n_g} \subseteq \mathbb{R}^m$ e uma matriz intervalar $\mathbf{J} \in \mathbb{I}^{n \times m}$, considere a família de zonotopos $\mathbf{Z} = \mathbf{J}X$. Uma inclusão zonotópica $\diamond(\mathbf{Z})$ é definida por

$$\diamond(\mathbf{Z}) = mid(\mathbf{J})X \oplus P\mathcal{B}_{\infty}^{n},\tag{15}$$

sendo P uma matriz diagonal satisfazendo

$$P_{ii} = \sum_{j=1}^{n_g} \sum_{k=1}^m rad(\mathbf{J})_{ik} |M_{kj}|, \quad i = 1...n.$$
(16)

A partir destas definições, tem-se $\mathbf{Z} \subseteq \diamond(\mathbf{Z})$.

Partindo do Lema 2 e do teorema do valor médio, o Teorema 3, apresentado em Alamo et al. (2005) e Rego et al. (2020), caracteriza a extensão de valor médio para zonotopos.

Teorema 3. Sejam $\varphi \colon \mathbb{R}^m \to \mathbb{R}^n$ uma função de classe \mathcal{C}^1 , $X = h \oplus M\mathcal{B}_{\infty}^{n_g} \subseteq \mathbb{R}^m$ um zonotopo e $\mathbf{J} \in \mathbb{I}^{n \times m}$ uma matriz intervalar satisfazendo $\nabla^{\intercal}\varphi(X) \subseteq \mathbf{J}$. Deste modo, tem-se

$$\varphi(X) \subseteq \varphi(h) \oplus \diamond(\mathbf{J}(X-h)) = \varphi(h) \oplus (mid(\mathbf{J})M \ P) \mathcal{B}_{\infty}^{n_g+n},$$
(17)

sendo P definida como em (16).

Uma matriz intervalar $\mathbf{J} \in \mathbb{I}^{n \times m}$ satisfazendo $\nabla^{\intercal} \varphi(X) \subseteq \mathbf{J}$ pode ser encontrada a partir de $\mathbb{I}(X)$ por meio de aritmética intervalar (Moore et al., 2009).

Partindo da extensão de valor médio do Teorema 3, um algoritmo pode ser desenvolvido para o cálculo iterativo de zonotopos $S_z(j) \subseteq \mathbb{R}^n$ satisfazendo a Condição 1.

Teorema 4. Considere o sistema não-linear com pertubações aditivas (1), e seja $\mathbf{J}_{\pi} \in \mathbb{I}^{n \times n}$ uma matrix intervalar satisfazendo $\nabla_x^{\mathsf{I}} f_{\pi}(\mathcal{Z}_{\pi}) \subseteq \mathbf{J}_{\pi}$. Sejam os zonotopos $\mathcal{S}_z(j), \ j = 0 \dots N$ definidos por

i $S_z(0)$ é um zonotopo centrado que contém \mathcal{W} . ii $S_z(j) = \diamond(\mathbf{J}_{\pi}S_z(j-1)), \quad j = 1 \dots N.$

Tais conjuntos satisfazem a Condição 1.

Prova. A condição $S_z(0)$ compacto com $\mathcal{W} \subseteq S_z(0)$ é trivial. Para cada j = 1...N e dados x_a e v quaisquer,

 $\begin{array}{l} \operatorname{com} \left(x_a^{\intercal} \; v^{\intercal} \right)^{\intercal} \oplus \left(\mathcal{S}_z(j-1) \times \{0\} \right) \subseteq \mathcal{Z}_{\pi}, \, \text{considere a função} \\ \varphi \colon \mathbb{R}^n \to \mathbb{R}^n \, \text{dada por } \varphi(x) = f_{\pi}(x,v). \end{array}$

De $X_a = x_a \oplus S_z(j-1)$, como $X_a \times \{v\} \subseteq \mathbb{Z}_{\pi}$, tem-se $\nabla^{\intercal} \varphi(X_a) \subseteq \mathbf{J}_{\pi}$. Logo, pelo Teorema 3,

$$f_{\pi}(X_a, v) = \varphi(X_a) \subseteq \varphi(x_a) \oplus \diamond (\mathbf{J}_{\pi} \mathcal{S}_z(j-1))$$

$$f_{\pi}(X_a, v) \subseteq f_{\pi}(x_a, v) \oplus \mathcal{S}_z(j).$$

Portanto, $\forall x_b \in X_a, f_{\pi}(x_b, v) \in f_{\pi}(x_a, v) \oplus \mathcal{S}_z(j).$

Os conjuntos $S_z(j)$ dados pelo Teorema 4 podem portanto ser utilizados para a contração das restrições descrita em (9). Vale ressaltar que há métodos algébricos simples para o cálculo da diferença de Pontryagin de um poliedro por um zonotopo (Alvarado, 2007).

Pelo algoritmo descrito no Teorema 4, o conjunto $S_z(j)$ apresenta nj geradores a mais que $S_z(0)$. Portanto, a complexidade dos zonotopos cresce com o número de estados e horizonte de predição. Métodos de redução de complexidade de zonotopos (Le et al., 2013; Scott et al., 2016) podem ser utilizados para manter o número de geradores abaixo de um valor predeterminado.

Uma matriz intervalar \mathbf{J}_{π} satisfazendo $\nabla_{x}^{\mathsf{T}} f_{\pi}(\mathcal{Z}_{\pi}) \subseteq \mathbf{J}_{\pi}$ pode ser calculada diretamente a partir de $\mathbb{I}(\mathcal{Z}_{\pi})$ e f_{π} . Alternativamente, se $\mathbf{J}_{x} \in \mathbb{I}^{n \times n}$ e $\mathbf{J}_{u} \in \mathbb{I}^{n \times m}$ são tais que $\nabla_{x}^{\mathsf{T}} f(\mathcal{X}, \mathcal{U}) \subseteq \mathbf{J}_{x}$ e $\nabla_{u}^{\mathsf{T}} f(\mathcal{X}, \mathcal{U}) \subseteq \mathbf{J}_{u}$, tem-se

$$\mathbf{J}_{\pi} = \mathbf{J}_x + \mathbf{J}_u K_v, \tag{18}$$

tal que os produtos e as somas em (18) devem ser efetuados conforme a aritmética intervalar (Moore et al., 2009). A Equação (18) enfatiza o efeito da matriz de realimentação em \mathbf{J}_{π} e, consequentemente, nos conjuntos $\mathcal{S}_{z}(j)$, e pode ser utilizada para a escolha de uma matriz K_{v} que reduza a propagação das incertezas (Apêndice A).

Note que, no caso de sistemas lineares, com f(x, u) = Ax + Bu, tem-se $\mathbf{J}_x = A$, $\mathbf{J}_u = B$ e $\mathbf{J}_\pi = A + BK_v$ representa o sistema em malha-fechada. Logo, os conjuntos $\mathcal{S}_z(j)$ calculados pelo Teorema 4 se resumem a $\mathcal{S}_z(j) = (A + BK_v)^j \mathcal{W} = \mathcal{S}^*(j)$.

3.2 Comparação com o Critério de Lipschitz

Visando a obtenção de uma constante de Lipschitz para a função $f_{\pi} \colon \mathcal{Z}_{\pi} \to \mathbb{R}^n$, o seguinte teorema cássico do cálculo multivariável (Lima, 2014) será utilizado.

Teorema 5. Dados uma função $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ de classe \mathcal{C}^1 , um conjunto convexo $X \subseteq \mathbb{R}^n$ e uma norma $\|\cdot\| \colon \mathbb{R}^n \to \mathbb{R}$, um número real L > 0 é uma constante de Lipschitz para φ no conjunto X, ou seja

$$\|\varphi(x_b) - \varphi(x_a)\| \le L \|x_b - x_a\|, \quad \forall x_a, x_b \in X, \quad (19)$$

se e somente se a jacobiana $\nabla^\intercal\varphi\colon\mathbb{R}^n\to\mathbb{R}^{n\times n}$ satisfaz

$$\|\nabla^{\mathsf{T}}\varphi(x)\| \le L, \quad \forall x \in X, \tag{20}$$

tal que $\|\cdot\|$ em (20) representa a norma induzida da transformação linear.

Deste modo, sendo $\mathbf{J}_{\pi} \in \mathbb{I}^{n \times n}$ uma matriz intervalar, com $\nabla_x^{\mathsf{T}} f_{\pi}(\mathcal{Z}_{\pi}) \subseteq \mathbf{J}_{\pi}$, uma constante de Lipschitz L_x satisfazendo

$$\|f_{\pi}(x_b, v) - f_{\pi}(x_a, v)\|_{\infty} \le L_x \|x_b - x_a\|_{\infty}$$
(21)

para quaisquer $(x_a^{\mathsf{T}} v^{\mathsf{T}})^{\mathsf{T}}, (x_b^{\mathsf{T}} v^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{Z}_{\pi}$ é descrita por

$$L_x = \max_{J \in \mathbf{J}_{\pi}} \|J\|_{\infty}, \qquad (22)$$

sendo a norma-infinito utilizada para simplificar comparações entre os conjuntos $S_l(j)$ obtidos por (8) e os $S_z(j)$ obtidos pelo método proposto no Teorema 4.

Sendo assim, o Teorema 6, cuja prova é dada no Apêndice B, demonstra que o método de obtenção de conjuntos S(j) proposto neste trabalho é menos conservador que o utilizando o critério de Lipschitz norma-infinito.

Este resultado é esperado, conforme discutido anteriormente, na medida em que o pior caso de ganho é propagado pelo critério de Lipschitz de maneira idêntica em todas as direções do espaço. A aborgadem baseada em zonotopos permite evitar este tipo de conservadorismo indesejado na definição dos conjuntos alcançáveis.

Teorema 6. Considere o sistema (4) e $\mathbf{J}_{\pi} \in \mathbb{I}^{n \times n}$ uma matrix intervalar satisfazendo $\nabla_x^{\mathsf{I}} f_{\pi}(\mathcal{Z}_{\pi}) \subseteq \mathbf{J}_{\pi}$. Sejam $\mathcal{S}_z(j)$ zonotopos obtidos pelo método proposto no Teorema 4 e $\mathcal{S}_l(j)$ dados por:

$$\mathcal{S}_l(j) = \{ x \in \mathbb{R}^n : \|x\|_{\infty} \le L_x^j w_m \}, \quad j = 0 \dots N, \quad (23)$$

com $\mathcal{W} \subseteq \mathcal{S}_z(0) \subseteq \mathcal{S}_l(0)$ e $L_x = \max_{J \in \mathbf{J}_\pi} \|J\|_{\infty}$. Tem-se $\mathcal{S}_z(j) \subseteq \mathcal{S}_l(j)$ para todo $j = 0 \dots N$.

A restrição $S_z(0) \subseteq S_l(0)$ pode ser trivialmente satisfeita fazendo $S_z(0) = S_l(0)$, uma vez que toda caixa é um zonotopo. A liberdade de considerar qualquer zonotopo como $S_z(0)$ pode ainda proporcionar uma outra fonte de redução de conservadorismo.

4. ESTUDO DE CASO

Considere o conversor DC-DC Buck-Boost, extensamente utilizado como sistema de referência na literatura de controle preditivo (Lazar et al., 2008; Santos et al., 2019). O sistema não-linear em tempo descreto do conversor, com o equilíbrio transladado para a origem, é representado por (1), com

$$f(x,u) = \begin{pmatrix} x_1 + \alpha x_2 + \left(\beta - \frac{T}{L}x_2\right)u\\ \delta x_1 + \left(1 - \frac{T}{RC}\right)x_2 + \left(\frac{T}{C}x_1 + \gamma\right)u \end{pmatrix},$$
(24)

tal que $x_1, x_2 \in u$ representam, respectivamente, a corrente no indutor, a tensão de saída e o *duty-cycle*, transladados em relação ao ponto de equilíbrio. Os parâmetros T = 0,65ms, C = 2,2mF e L = 4,2mH são, respectivamente, o período de amostragem, a capacitância e a indutância do conversor, e $R = 85\Omega$ é a resistência de carga. O ponto

de operação considerado é $V_{in}=15V$
e $V_{out}=-16V,$ a partir do qual as os parâmetros
 $\alpha,~\beta,~\gamma$ e δ são obtidos (Lazar et al., 2008). As seguintes restrições nos estados e entrada são consideradas

$$\mathcal{X} = \{ x \in \mathbb{R}^2 \colon \|x\|_{\infty} \le 3 \}$$
$$\mathcal{U} = \{ u \in \mathbb{R} \colon \|u\|_{\infty} \le 0, 3 \},$$
(25)

e o sistema é sujeito a pertubações aditivas, limitadas pela caixa $\mathcal{W} = \{w \in \mathbb{R}^2 : \|w\|_{\infty} \leq 0,04\}$. Pelo método proposto no Apêndice A, tem-se $K_v = (0 \ 0)$, com constante de Lipschitz norma-infinito $L_x = 1,228$. Para o projeto do controlador NMPC, foi escolhido um horizonte de predição N = 4 e uma função custo $L(x,v) = x^{\mathsf{T}}Qx + u^{\mathsf{T}}Ru$, com Q = I e R = 1. A lei estabilizante e a função-custo terminais foram obtidas pelo método proposto em Kothare et al. (1996), resultando em $K_t = (-0,2534\ 0,3150)$ e $V_t(x) = x^{\mathsf{T}}Px, P = \begin{pmatrix} 3,398 & -5,079 \\ 5 & 070 & 27 & 67 \end{pmatrix}$.

$$V_f(x) = x^{\dagger} P x, P = \begin{pmatrix} -5,079 & 27,67 \end{pmatrix}$$

Incialmente, com vistas a avaliar o efeito da abordagem proposta na redução do conservadorismo dos conjuntos alcançáveis, serão avaliados os conjuntos de propagação de pertubação S(j), para j = 0...N. Estes conjuntos foram calculados pelo método zonotópico proposto (Teorema 4) e por Lipschitz norma-infinito (8). Para comparação e verificação de que a Condição 1 é satisfeita, foram simuladas as trajetórias nominais do sistema (24), com $u = K_v x$, para uma malha de pontos do conjunto $x_0 \oplus W$, com x_0 um ponto de \mathcal{X} tal que as trajetórias assim obtidas satisfaçam as restrições de estado e entrada. O resultado é mostrado na Figura 1.

Conforme esperado, tanto os zonotopos $x_{j|0} \oplus S_z(j)$ como as caixas $x_{j|0} \oplus S_l(j)$ contém as trajetórias nominais de todos os pontos em $x_0 \oplus W$ (Condição 1). Os $S_z(j)$, no entanto, estão contidos (Teorema 6) e são consideravelmente menores que os $S_l(j)$, principalmente para maiores valores de j (horizontes maiores de predição). Deste modo, eles proporcionam limites menos conservadores para tais trajetórias, estimando melhor a propagação das incertezas.

Figura 2. Comparação dos conjuntos terminais, domínios de atração e trajetórias dos controladores preditivos. Novamente, resultados referentes aos métodos zonotópico e de Lipschitz são representados por linhas cheias e tracejadas, respectivamente.

Foram então projetados controladores preditivos pelo método descrito na Seção 2.3, um partindo dos zonotopos $S_z(j)$ e outro das caixas $S_l(j)$. A Figura 2 compara os conjuntos terminais \mathcal{X}_f , obtidos pelo método proposto no Apêndice C, e os domínios de atração referentes a cada controlador. Foram também simuladas as respostas dos controladores ao estado inicial $x_0 = (-1, 5 - 3)^{\mathsf{T}}$, com um tempo de simulação $N_{sim} = 40$ e a mesma sequência aleatória de pertubações $\mathbf{w}_{[0,N_{sim}-1]} \in \mathcal{W}^{N_{sim}}$ com distribuição uniforme e gerada pelo Mersenne Twister com semente unitária.

Neste trabalho, optou-se pela formulação robusta baseada num modelo de perturbação determinístico, mas desconhecido. Não obstante, o método proposto pode ser aplicado diretamente à abordagem com restrições probabilísticas na presença de um modelo de perturbação estocástico (Santos et al., 2019).

5. CONCLUSÃO

Neste artigo apresentou-se um novo método de propagação de incertezas baseado em zonotopos, mostrando comparativamente a redução de conservadorismo por ele proporcionada. É também considerado o projeto da matriz de realimentação K_v de modo a reduzir os conjuntos $\mathcal{S}(j)$ de propagação de incertezas. Finalmente, este método é aplicado ao projeto de um controlador preditivo robusto para um sistema de referência, o conversor Buck-Boost. Trabalhos futuros podem investigar outras fontes de conservadorismo do MPC robusto de sistemas não-lineares, em particular no cálculo de conjuntos invariantes robustos, necessário para a obtenção do conjunto terminal.

REFERÊNCIAS

Alamo, T., Bravo, J., and Camacho, E. (2005). Guaranteed state estimation by zonotopes. *Automatica*, 41(6), 1035 – 1043. doi:https://doi.org/10.1016/j.automatica.2004. 12.008.

- Alvarado, I. (2007). Model Predictive control for tracking constrained linear systems. Ph.D. thesis, Universidad de Sevilla, Sevilla.
- Ferramosca, A., Limon, D., González, A.H., and Camacho, E.F. (2012). Robust mpc for tracking zone regions based on nominal predictions. *Journal of Process Control*, 22(10), 1966 – 1974. doi:https://doi.org/10.1016/j. jprocont.2012.08.013.
- Kolmanovsky, I. and Gilbert, E.G. (1998). Theory and computation of disturbance invariant sets for discretetime linear systems. *Mathematical Problems in En*gineering, 4, 317 – 367. doi:https://doi.org/10.1155/ S1024123X980008668.
- Kothare, M.V., Balakrishnan, V., and Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. *Automatica*, 32(10), 1361 – 1379. doi:https://doi.org/10.1016/0005-1098(96)00063-5.
- Kouvaritakis, B. and Cannon, M. (2016). *Model Predictive Control.* Springer International Publishing, New York.
- Köhler, J., Müller, M.A., and Allgöwer, F. (2018). A novel constraint tightening approach for nonlinear robust model predictive control. In 2018 Annual American Control Conference (ACC), 728–734.
- Lazar, M., Heemels, W., Roset, B., Nijmeijer, H., and Bosch, P.V.D. (2008). Input-to-state stabilizing suboptimal nmpc with an application to dc-dc converters. *International Journal of Robust and Nonlinear Control*, 18, 890 – 904.
- Le, V.T.H., Stoica, C., Alamo, T., Camacho, E.F., and Dumur, D. (2013). Zonotopes - From Guaranteed Stateestimation to Control. ISTE Ltd, London.
- Lima, E.L. (2014). Curso de Análise vol.2 11^a edição. Projeto Euclides - IMPA, Rio de Janeiro.
- Marruedo, D.L., Alamo, T., and Camacho, E.F. (2002). Input-to-state stable mpc for constrained discrete-time nonlinear systems with bounded additive uncertainties. In *Proceedings of the 41st IEEE Conference on Decision* and Control, 2002., volume 4, 4619 – 4624.
- Mayne, D.Q. (2014). Model predictive control: Recent developments and future promise. *Automatica*, 50(12), 2967 – 2986. doi:https://doi.org/10.1016/j.automatica. 2014.10.128.
- Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. *Automatica*, 36(6), 789 – 814. doi:https://doi. org/10.1016/S0005-1098(99)00214-9.
- Moore, R.E., Kearfott, R.B., and Cloud, M.J. (2009). *Introduction to Interval Analysis.* Society of Industrial and Applied Mathematics, Philadelphia.
- Rego, B.S., Raffo, G.V., Scott, J.K., and Raimondo, D.M. (2020). Guaranteed methods based on constrained zonotopes for set-valued state estimation of nonlinear discrete-time systems. *Automatica*, 111, 108614. doi: https://doi.org/10.1016/j.automatica.2019.108614.
- Santos, T., Bonzanini, A.D., Heirung, T.A.N., and Mesbah, A. (2019). A constraint-tightening approach to nonlinear model predictive control with chance constraints for stochastic systems. 1641 – 1647. doi:10. 23919/ACC.2019.8814623.
- Scott, J.K., Raimondo, D.M., Marseglia, G.R., and Braatz, R.D. (2016). Constrained zonotopes: A new tool for set-based estimation and fault detection. *Automatica*, 69, 126 – 136. doi:https://doi.org/10.1016/j.automatica.

2016.02.036.

Apêndice A. CÁLCULO DA MATRIX DE REALIMENTAÇÃO K_V

È apresentado aqui um procedimento para a escolha da matriz de realimentação K_v à luz da nova formulação proposta neste trabalho, que busca minimizar os conjuntos de propagação de incertezas $S_z(j)$. Dado o Teorema 6, uma forma de reduzir os conjuntos $S_z(j)$ é minimizando a constante de Lipschitz $L_x = \max_{J \in \mathbf{J}_{\pi}} ||J||_{\infty}$.

A partir de (18), sendo $\mathbf{A} = \mathbf{J}_x$ e $\mathbf{B} = \mathbf{J}_u$ obtidos previamente por aritmética intervalar, tem-se

$$mid(\mathbf{J}_{\pi}) = mid(\mathbf{A}) + mid(\mathbf{B})K_v = M_a + M_bK_v$$

$$rad(\mathbf{J}_{\pi}) = rad(\mathbf{A}) + rad(\mathbf{B})|K_v| = R_a + R_b|K_v|, \quad (A.1)$$

e a constante de Lipschitz L_x é dada por:

$$L_{x} = \max_{i} \sum_{j=1}^{n} (|mid(\mathbf{J}_{\pi})_{ij}| + rad(\mathbf{J}_{\pi})_{ij})$$

=
$$\max_{i} \sum_{j=1}^{n} (|(M_{a} + M_{b}K_{v})_{ij}| + (R_{a} + R_{b}|K_{v}|)_{ij}).$$

(A.2)

Logo, a matriz K_v que minimiza L_x pode ser obtida por meio da solução do seguinte problema de otimização

$$s.a: \begin{cases} \min_{K_v, P, \gamma} \gamma \\ P \ge |M_a + M_b K_v| + (R_a + R_b |K_v|) \\ \gamma \ge \sum_{j=1}^n P_{ij}, \quad i = 1 \dots n \end{cases} , \quad (A.3)$$

que pode ser convertido em um programa linear com $n(n+2n_u)+1$ variáveis e $2n(n+n_u)+n$ restrições.

Apêndice B. PROVA DO TEOREMA 6

Segue a prova do Teorema 6, que garante que os conjuntos $S_z(j)$ obtidos pelo método proposto são menos conservadores que os conjuntos $S_l(j)$ calculados utilizando o critério de Lipschitz norma-infinito.

Prova. Como $S_z(0) \subseteq S_l(0)$, é suficiente, por indução, mostrar que $S_z(j) \subseteq S_l(j) \Rightarrow S_z(j+1) \subseteq S_l(j+1)$. Sendo $S_z(j) = M\mathcal{B}_{\infty}^{n_g}$, tem-se

$$\begin{aligned} \mathcal{S}_z(j+1) &= \diamond(\mathbf{J}_\pi \mathcal{S}_z(j)) \\ &= (mid(\mathbf{J}_\pi)M \ P) \, \mathcal{B}_\infty^{n_g+n}. \end{aligned}$$

Sendo $\overline{M} = (mid(\mathbf{J}_{\pi})M P)$, tem-se:

$$\|\bar{M}\|_{\infty} \leq \max_{i} \left(P_{ii} + \sum_{j=1}^{n_{g}} \sum_{k=1}^{n} |mid(\mathbf{J}_{\pi})_{ik}| |M_{kj}| \right)$$
$$= \max_{i} \left(\sum_{j=1}^{n_{g}} \sum_{k=1}^{n} J_{ik}^{*} |M_{kj}| \right)$$
$$= \|J^{*}|M|\|_{\infty},$$

sendo $J^* = |mid(\mathbf{J}_{\pi})| + rad(\mathbf{J}_{\pi})$. Note que, da hipótese de indução $\mathcal{S}_z(j) \subseteq \mathcal{S}_l(j)$, $|||M|||_{\infty} = ||M||_{\infty} \leq L_x^j w_m$. Tem-se também $||J^*||_{\infty} = \max_{J \in \mathbf{J}_{\pi}} ||J||_{\infty} = L_x$, logo:

$$\|\bar{M}\|_{\infty} \le \|J^*|M|\|_{\infty} \le \|J^*\|_{\infty} \|M\|_{\infty} \le L_x^{j+1} w_m,$$

o que corresponde a $\mathcal{S}_z(j+1) \subseteq \mathcal{S}_l(j+1)$.

Apêndice C. CÁLCULO DO CONJUNTO TERMINAL

Para o calculo do conjunto terminal $\mathcal{X}_f \subseteq \mathcal{Z}_{\pi,t}$, foi utilizado o método iterativo de cálculo do máximo conjunto robusto positivamente invariante (MRPI) para sistemas lineares descrito em Kolmanovsky and Gilbert (1998), com as não-linearidades tratadas como pertubações adicionais.

Em particular, foi considerado para o cálculo do MRPI o conjunto ampliado de restrições $\mathcal{W}_{amp} = \mathcal{S}(N) \oplus \mathcal{W}_{nl}$, com \mathcal{W}_{nl} representando o máximo desvio entre o sistema real e o linearizado, ou seja

$$\delta(x) = f(x, K_t x) - A_f x \in \mathcal{W}_{nl}, \quad \forall x \in \mathcal{Z}_{\pi, t}, \quad (C.1)$$

tal que a lei de controle terminal é dada por $u_t(x) = v_t(x) + K_v x = K_t x$ e a matriz A_f do sistema linearizado em malha fechada é definida por $A_f = A + BK_t$. No entanto, devido ao conservadorismo decorrente da consideração das não-linearidades como pertubações aditivas, a aplicação do método proposto em Kolmanovsky and Gilbert (1998) ao cálculo de conjuntos terminais de sistemas não-lineares pode resultar em conjuntos vazios.

Para reduzir este conservadorismo, o conjunto $\mathcal{Z}_{\pi,t}$ pode ser reescalonado por um parâmetro $\lambda \in (0,1]$, obtendo conjuntos $\mathcal{Z}_{\pi,t}(\lambda) = \lambda \mathcal{Z}_{\pi,t}$. Com a contração das restrições terminais, os desvios entre o sistema real e linearizado são reduzidos. Em particular, pode ser obtida uma função- \mathcal{K} $\alpha(\lambda)$ tal que

$$\mathcal{W}_{nl}(\lambda) \subseteq \alpha(\lambda)\mathcal{W}_{nl}.$$
 (C.2)

No caso do conversor buck-boost, tem-se $\alpha(\lambda) = \lambda^2$, uma vez que a não linearidade decorre de produtos entre estados e entrada. De modo geral, tem-se $\alpha(\lambda)$ *o*-pequeno de λ , e os conjuntos $\mathcal{W}_{nl}(\lambda)$ se reduzem mais rapidamente que os $\mathcal{Z}_{\pi,t}(\lambda)$.

São então calculados, pelo método descrito na Seção 3.2.2 de Kouvaritakis and Cannon (2016), limites superiores para os mínimos conjuntos robustos positivamente invariantes (mRPI) do sistema linearizado sujeito às pertubações $\mathcal{S}(N) \in \mathcal{W}_{nl}$ ($\mathcal{R}^{\mathcal{S}}_{\infty} \in \mathcal{R}^{nl}_{\infty}$, respectivamente) e a existência de um conjunto RPI do sistema linearizado sujeito à restrição

 $\mathcal{Z}_{\pi,t}(\lambda)$ e à pertubação $\mathcal{W}_{amp}(\lambda)=\mathcal{S}(N)\oplus\mathcal{W}_{nl}(\lambda)$ é equivalente à condição

$$\mathcal{R}^{\mathcal{S}}_{\infty} \oplus \alpha(\lambda) \mathcal{R}^{nl}_{\infty} \subseteq \lambda \mathcal{Z}_{\pi,t}.$$
 (C.3)

Deste modo, é buscado (caso exista) o maior valor de $\lambda \in (0,1]$ tal que (C.3) seja satisfeita, e um conjunto terminal \mathcal{X}_f não-vazio pode então ser obtido a partir de $\mathcal{Z}_{\pi,t}(\lambda^*)$ e $\mathcal{W}_{amp}(\lambda^*)$. Para os controladores propostos na seção 4, obteve-se $\lambda_z^* = 1$ e $\lambda_l^* = 0,875$ para os métodos zonotópico e de Lipschitz, respectivamente.

Deve-se ressaltar que esta abordagem escalonada generaliza o cálculo do invariante robusto poliedral para sistemas não-lineares por meio de aproximação linear usada em Santos et al. (2019). Caso a técnica de escalonamento das restriçoes não fosse empregada ($\lambda_z^* = \lambda_l^* = 1$), o conjunto terminal baseado na constante de Lispchitz seria vazio, confirmando os benefícios da técnica basada em zonotopos. Esta generalização também é uma das contribuições deste trabalho.