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Abstract: This work proposes a stabilizing gradient-based economic MPC with enlargement of
the domain of attraction, based on the novel combination of three ingredients: terminal equality
constraints solely on open-loop non-stable states, an admissible artificial steady-state, and a
terminal cost. A further enlargement of the domain of attraction is achieved by including slack
variables to soften the bound constraints of states, without affecting the stabilizing properties
or capacity to drive the closed-loop system toward the economic target. Finally, a case study
based on an unstable reactor is used to demonstrate the properties of the proposed strategy.
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1. INTRODUCTION

The performance of hierarchical control schemes can be
improved if the control layer can directly access the eco-
nomic performance of the system (Hinojosa et al., 2017).
Such strategies can be classified as one-layer hierarchical
control schemes with economic objectives, whose resulting
strategies with stabilizing properties can be formulated as
(Santana et al., 2020): (i) nonlinear optimization problems
that directly solve an economic objective function, the
so-called EMPC (Economic Model Predictive controller);
and (ii) MPC+RTO controllers, which include into the
cost function an additional term related to the economic
performance.

One of the great challenges for synthesizing stabilizing
MPC control laws, including ones with economic objec-
tives, is to enlarge their associated domain of attraction
with the less possible computational burden. The most
heavily used ingredient to design stabilizing MPC con-
trollers is to include end-point (terminal) constraints into
the resulting optimization problems (Grüne and Pannek,
2011). Although it is a tricky task already for small-scale
systems, mainly for output tracking cases, it is common to
seek the design of an invariant positive set like a terminal
constraint (Mayne, 2014). An alternative way that has
been looked into the literature is to collapse this terminal
invariant set in terminal equality constraints, so that the
system terminal states must reach a steady-state at the
end of the control horizon. However, if additional elements
are not used in the terminal equality constraint-based
control schemes, such as artificial steady-state (Ferramosca

et al., 2009; Krupa et al., 2019) and slack variables (Mar-
tins and Odloak, 2016), their control laws result in a
drastically reduced domain of attraction.

Recent works indicated that methods based on a suitable
set of slacked terminal constraints to cancel the effects
related to non-stable modes are already an acceptable
stage for practical implementation purposes, including
guarantees of feasibility, e.g. Martin et al. (2019); Silva
et al. (2020). However, their stability proofs are rigorously
achieved through two optimization formulations. On the
other hand, the approach based on artificial equilibrium
points focuses on an only control optimization formulation,
but it has a drawback concerning to enforce unnecessarily
open-loop stable modes of the system towards the terminal
equilibrium point, which contributes to a reduction of the
domain of attraction of the associated control laws. In
this sense, one contribution of this work is to combine the
above-mentioned approaches aiming to derive a one-layer
terminal equality constraints-based stabilizing MPC with
an enlarged domain of attraction.

Focusing on MPC+RTO strategies, Alvarez and Odloak
(2014) proposed an infinite horizon MPC with zone control
that drives open-loop stable systems towards its economic
optimal condition, in which stabilizing properties are based
on slacked terminal equality constraints, and the economic
term is an approximation of the gradient of a convex
gradient function. Santana et al. (2020) extended this
work for unstable systems, also applying slacked terminal
equality constraints to ensure both stability and feasibility.
An advantage of these strategies is the lack of need to
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know the economic optimal steady-state in advance, due
to the usage of set-point targets as decision variables in the
zone control formulation. On the other hand, the Hessian
matrix of the economic function can not be zero, and the
state-space model applied by Santana et al. (2020), based
on an analytical step response of the system, include more
states than the canonical Jordan decomposition. Thus,
in order to constrain unstable states it is needed more
terminal equality constraints than a formulation based on
the Jordan decomposition.

Another stabilizing MPC approach, which is based on an
one-layer strategy is presented in Alamo et al. (2014).
The related objective function evaluates the gradient of
an economic cost, guaranteeing convergence to a steady-
state that represents the desired economic objective. One
advantage of this formulation is that the Hessian matrix
of the economic function is not needed. The authors ap-
plied non-slacked terminal equality constraints to derive
stabilizing properties, setting the unstable states to be
zeroed at the end of the control horizon. They enlarge
the domain of attraction because the controller can drive
the system to any feasible steady-state with a given con-
trol horizon, but if the terminal constraints were slacked
there would be an additional increase of the domain of
attraction. This investigation is another aim of this pro-
posed work. One disadvantage of Alamo et al. (2014) is
that the formulation is based on a parameterized Jordan
decomposition in the incremental form, which enforces the
number of integrating states to be equal to the number of
inputs. As a consequence, if pure integrating states are
present, it is necessary to apply a state-space based on the
analytical step response of the system following González
et al. (2011), increasing the number of terminal equality
constraints imposed.

Finally, the aim of this work is to propose a novel stabiliz-
ing gradient-based economic MPC, which combines termi-
nal equality constraints on non-stable states, an admissible
economic optimum artificial steady-state, and a terminal
cost to obtain both stabilizing properties and enlargement
of the domain of attraction. The Jordan decomposition
is used without further parametrization, which reduces
the number of terminal constraints imposed. Furthermore,
another contribution is to investigate the effect of slack
variables to tackle unfeasible conditions imposed by the
constraints of the problem, which is a further element to
increase the domain of attraction. In this approach, there
is no need to know in advance the target steady-state or
the Hessian matrix of the economic function.

This work is organized as follows. Section 2 presents the
proposed infinity horizon MPC formulation, presenting its
stabilizing properties, convergence to the economic target
and enlargement of the domain of attraction. Section 3
presents a case study that explore the characteristics of
the controller. Finally, Section 4 offers some concluding
remarks.

2. THE PROPOSED ONE-LAYER
GRADIENT-BASED ECONOMIC MPC

In order to reduce the hierarchical control structure into
one-layer and allow it to evaluate the economic perfor-
mance, take fe as a function that describes this perfor-

mance, such as: profit, energy demand or efficient. Aiming
to derive a model predictive controller for linear systems,
this function can be approximated by the Taylor series
expansion around a reference equilibrium point:

fe ≈ fe|ss +
dfe

dx̂

∣∣∣∣
ss

· x̂s +
dfe

du

∣∣∣∣
ss

· us, (1)

where (x̂s,us) is any equilibrium point pair, taking as
deviation variables from the reference equilibrium point,
which are related by the linear discrete state-space model:

x̂(j + 1) = Â · x̂(j) + B̂ · u(j), (2)

where x̂(j) is the state vector at time step j, u(j) is

the input vector, Â and B̂ are matrices of appropriate
dimensions. (2) can be straightforwardly converted to
the velocity form (González et al., 2008) by considering[
x̂(j)

u(j − 1)

]
as an augmented state vector:

x(j + 1) =A · x(j) +B ·∆u(j), (3)

y(j) =C · x(j), (4)

where x(j) is the augmented state vector at time step
j, ∆u(j) is the vector of input increments, y(j) is the
output vector, A, B and C are matrices of appropriate
dimensions. Therefore, (5) can be rewritten as:

fe,k ≈ fe|ss +
dfe

dx

∣∣∣∣
ss

· xs, (5)

taking dfe
dx =

[
dfe

dx̂

dfe

du

]
. The nomenclature fe,k indicates

that the economic performance function fe is evaluated
with xs at time step k.

In order to derive a stabilizing model predictive controller
with terminal equality constraints, the Jordan decomposi-
tion of (3) provides:

z(j + 1) =

[
J s 0
0 Jns

]
· z(j) +W ·B ·∆u(j), (6)[

J s 0
0 Jns

]
=W ·A · V , (7)

where J s is the Jordan block associated with stable states,
Jns is the Jordan block associated with non-stable states,
and W is the generalized eigenvector for which z = W ·x.
The non-stable states are related to integrating or unstable
modes (with or without multiplicities). Finally, from W
the eigenvectors related to stable states, W s, and non-
stable states, W ns, can be obtained.

Thus, a proposed stabilizing economic model predictive
controller with optimizing targets, which applies artificial
equilibrium states, xs, to provide degrees of freedom for
the optimization, can be taken as:

Problem P0

min
∆uk,xs

Φk =

N−1∑
j=0

{
‖x(j)− xs‖2Q + ‖∆u(j)‖2R

}
+

+ ‖x(N)− xs‖2Q̃ + ‖fe,k − esp‖2P , (8)

subject to (3), (4), (5) and:



x(j = 0) =x(k), (9)

x(j) ∈ Zs, j = 0, . . . , N + k2, (10)

∆u(j) ∈ ∆U , j = 0, . . . , N − 1, (11)

xs ∈ Xss, (12)

W ns · (x(N)− xs) = 0, (13)

where ∆U and Zs are compact-convex sets related to
bound constraints on input increments and states:

∆U = {∆u ∈ Rnu |∆umin ≤ ∆u ≤ ∆umax} , (14)

Zs =

{
x ∈ Rnx

∣∣∣∣[x̂min

umin

]
≤
[
x̂
u

]
≤
[
x̂max

umax

]}
, (15)

and Xss is a set to enforce that xs is an equilibrium point
of the system:

Xss = {xs ∈ Zs | (I −A) · xs = 0} . (16)

The terminal cost weight, Q̃, is given by:

Q̃ =W>
s ·Q ·W s, (17)

where Q is the solution of the Lyapunov equation:

Q =V >s ·Q · V s + J>s ·Q · Js. (18)

Constraint (9) states that x(0) is the initial condition of
Problem P0, taken as the observed states at time step k.

Remark 1. In (10), k2 is specified in order to the feasibility
of the bound constraints on states in Zs up to time N + k2

ensures feasibility of these constraints on the infinite
horizon. Its value can be obtained from the steps described
by Rawlings and Muske (1993).

Remark 2. The domain of attraction of Problem P0 is
taken as the set of initial conditions x(0) for which the
constraints (3), (4), and (9) to (13) are satisfied. This can
be summarized in a polyhedron that fulfills the following
expressions:

Gineq ·

[
x(0)
xs

∆uk

]
≤ hineq, (19)

Geq ·

[
x(0)
xs

∆uk

]
= heq, (20)

in the space of
[
x>(0) x>s ∆u>k

]>
. Gineq, Geq, hineq and

Geq must be obtained from the aforementioned constraints
of Problem P0.

Remark 3. If the terminal constraint (13) is assumed to
be (Ferramosca et al., 2009; Krupa et al., 2019):

x(N)− xs = 0, (21)

the domain of attraction will be less or equal to the domain
of the control law proposed for Problem P0. This is a
direct consequence of (21) forcing all the states of the
system to be at the steady-state, instead of only non-stable
components. Let nominate the optimization problem using
(21) replacing (13) as Problem P1.

Remark 4. Aiming practical implementations, the domain
of attraction of Problem P0 can be enlarged by including
slack variables, δ, to soften bound constraints as:

Problem P2

min
∆uk,xs,δ

Φk =

N−1∑
j=0

{
‖x(j)− xs‖2Q + ‖∆u(j)‖2R

}
+

+ ‖x(N)− xs‖2Q̃ + ‖fe,k − esp‖2P + ‖δ‖2S
(22)

subject to (3), (4), (5), (9), (10), (11), (12), (13), in
addition to Zs being softened by including such slack
variables solely on the bound constraints of the original
states of the system:

Zs =

{
x ∈ Rnx

∣∣∣∣[x̂min

umin

]
≤
[
x̂+ δ
u

]
≤
[
x̂max

umax

]}
. (23)

Furthermore, as δ is penalized in the cost function with
a high weight matrix S, it is used only if an unmeasured
disturbance could turn Problem P2 unfeasible. Therefore,
Problem P2 provides a larger or equal domain of attraction
to the domain obtained for Problem P0. It is important
to highlight that the slack can be bounded to limit this
enlargement.

2.1 Stability

Problem P0 is nominally stable, provided that at time
step k, the initial condition x(0) belongs to the domain
of attraction of the optimization problem. Theorem 1
addresses the stabilizing properties.

Theorem 1. Consider an undisturbed process with stable
and non-stable poles. If the solution to Problem P0 is
feasible at time step k and satisfies Remark 1, then it will
remain feasible at successive time steps. Thus, the succes-
sive solutions drive the closed-loop system asymptotically
to a steady-state where the cost function Φk reaches its
lowest achievable value.

Proof. The proof of this theorem builds on the con-
cepts proposed by Rawlings and Muske (1993), i.e it is
demonstrated that this formulation is recursively feasible
and the cost function is a Lyapunov-like function for
the closed-loop system. In this sense, consider that x(0)
belongs to the domain of attraction of Problem P0 and[
∆u∗,>k x∗,>s

]>
is a feasible solution for the problem at

time step k. The optimal cost function at this time step is:

Φ∗k =

N−1∑
j=0

{
‖x(j)− x∗s‖

2
Q + ‖∆u∗(j)‖2R

}
+

+ ‖x(N)− x∗s‖
2

Q̃
+

∥∥∥∥ dfe

dx

∣∣∣∣
ss

· x∗s + fe|ss − esp

∥∥∥∥2

P

.

(24)

Moving at time step k+1, it is shown that the solution in-

herited from k,
[
∆ũ>k+1,x

∗,>
s

]>
, where ∆ũ>k+1=

[
∆u>(1),

. . . ,∆u>(N − 1),0>
]>

remains feasible. It is straightfor-
ward to demonstrate that constraints (10) to (12) are
satisfied. Then, taking (13) at time step k:

W ns · (x(N)− x∗s ) = 0,

W ns ·
(
AN · x(0) + ΘN ·∆u∗k − x∗s

)
= 0,

zns(N) = W ns · x∗s , (25)

where ΘN is
[
AN−1 ·B, · · · ,B

]
. Moving at the next time

step, k + 1, (13) gives:



W ns ·
(
AN · x(1) + ΘN ·∆ũk+1 − x∗s

)
= 0,

W ns ·
(
A ·

(
AN · x(0) + ΘN ·∆u∗k

)
− x∗s

)
= 0,

Jns · zns(N) = W ns · x∗s , (26)

as zns(N) is at an equilibrium point, see (25), then
zns(N) = Jns · zns(N), resulting in (26) to be equivalent
to (25). Therefore, the inherited solution satisfies (13), and
Problem P0 is recursively feasible.

Taking the difference of Φ∗k and the cost function applying

the inherited solution, Φ̃k+1:

Φ∗k − Φ̃k+1 =‖x(0)− x∗s‖
2
Q + ‖∆u(0)‖2R+

+ ‖fe,k − esp‖2P − ‖fe,k+1 − esp‖2P , (27)

since fe,k+1 is equal to fe,k, due to (5), it gives:

Φ∗k − Φ̃k+1 =‖x(0)− x∗s‖
2
Q + ‖∆u(0)‖2R. (28)

The matrix Q is assumed positive semi-definite, while
R is assumed positive-definite, consequently, Φ∗k must

be greater or equal to Φ̃k+1. Additionally, the inherited
solution is only a feasible solution at time step k + 1,
as a result the optimal cost function must comply with

Φ∗k+1 ≤ Φ̃k+1 ≤ Φ∗k. This demonstrates that the cost
function is non-increasing along its time evolution, i.e a
Lyapunov-like function, resulting in a recursively feasible
control law. 2

Remark 5. The stability proof of Problem P1 can be
straightforwardly derived from Theorem 1, and regard-
ing Problem P2, this proof can be obtained by using[
∆ũ>k+1,x

∗,>
s , δ∗,>

]>
as the inherited solution at time step

k + 1.

Remark 6. If x(0) belongs to the domain of attraction,
Theorem 1 states that Φk is a Lyapunov-like function,
consequently the polyhedron of the domain of attraction,
defined in Remark 2, is an invariant set for the closed-
loop system. The bigger this set, the more flexible is the
controller to accommodate system trajectories.

Remark 7. Taking into account that the cost function
of Problem P2 is a Lyapunov-like function, it is non-
increasing for any positive scalar P and at steady-states
its minimum value is given by:

Φ∞ =

∥∥∥∥ dfe

dx

∣∣∣∣
ss

· xs + fe|ss − esp

∥∥∥∥2

P

, (29)

if esp is unreachable, i.e. Problem P2 finds an equilibrium
point xs for which the economic performance is as close as
possible of esp, in order to minimize Φ∞.

On the one hand, if the economic target, esp, corresponds
to a reachable steady-state, Problem P2 is able to zero
Φ∞, assuming that there are enough degrees of freedom in
the input variables, i.e.:

fe|ss +
dfe

dx

∣∣∣∣
ss

· xs = esp. (30)

3. CASE STUDY

The case study focuses on a Continuous Stirred Tank
Reactor (CSTR) processing A→B, which can show un-
stable behavior. The dimensionless model of the system is
borrowed from Nagrath et al. (2002):

dy1

dτ
= u1 · (1− y1)− 0.072 · y1 · κ, (31)

dy2

dτ
= u1 · (−y2)− 0.3 · (y2 − y3) + 0.0576 · y1 · κ, (32)

dy3

dτ
=
u2 · (−1− y3)

0.1
+
δ · (y2 − y3)

0.05
, (33)

κ = exp

(
y2

1 + y2/20

)
, (34)

where τ is the dimensionless time, y1 is the reactant A
concentration, y2 is the reactor temperature, y3 is the
cooling jacket temperature, u1 is the feed flow rate of
reactor and u2 is the feed flow rate of the cooling fluid in
the jacket. This system is linearized to obtain a continuous
state-space in the following unstable steady-state: 0.6364
(y1ss), 1.9146 (y2ss), -0.4823 (y3ss), 0.7232 (u1ss) and 2.7779
(u2ss). Furthermore, such a system is discretized with
sampling time 0.05. Thus, the discrete state space model
obtained is:

x̂(j + 1) =

9.44 · 10−1 −1.08 · 10−2 −4.99 · 10−5

1.64 · 10−1 1.04 · 100 7.41 · 10−3

1.51 · 10−2 1.48 · 10−1 1.85 · 10−1

 · x̂(j)+

+

 1.82 · 10−2 4.85 · 10−6

−9.60 · 10−2 −1.20 · 10−3

−8.81 · 10−3 −1.25 · 10−1

 · u(j) (35)

y(j) =

[
1 0 0
0 1 0
0 0 1

]
· x̂(j). (36)

Table 1 represents the desired operational zones of the
system states, the constraints imposed on the manipulated
variables, as well as constraints of slacks.

Table 1. Desired operational zones and con-
straints imposed on the inputs.

x̂max

[
0.2 2.0 1.0

]>
x̂min

[
−0.2 −1.0 −1.0

]>
umax

[
4.0 6.0

]>
umin

[
−0.5 −1.

]>
∆umax

[
1.00 2.00

]>
δmax 40% · x̂max

δmin 40% · x̂min

In this case study, the aim of the control strategy is to
regulate the reaction rate:

fe = y1 · exp

(
y2

1 + y2/20

)
, (37)

and the following scenarios are explored for the economic
target: (i) an unreachable high reaction rate, (ii) an un-
reachable low reaction rate, and (iii) an achievable reaction
rate.

The controller parameters are:Q = diag([1. 1. 0.5 0.1 0.1]),

R = diag ([5 5]), S = diag
([

102 102 102
])

and P = 5.
It must be emphasized that the slack weights are orders
of magnitude higher than the other tuning weights, com-
plying with Remark 4. Additionally, in this case study, it
turns to be sufficient to define k2 as zero, complying with
Remark 1.



Figure 1 depicts the domains of attraction for Problems
P0, P1, and P2 applying a control horizon of 2, as well as
Problem P0 with the control horizon 5. On the one hand,
the domain of attraction of Problem P1 is the smallest
among all the Problems, due to imposing that all states
x(N) must be at the artificial steady-state, as declared
by Remark 3. On the other hand, Problem P2 allows
some flexibility to accommodate unmeasured disturbances
that may drive the system outside the bound constraints,
which would turn Problem P0 unfeasible. Furthermore,
even though increasing the control horizon of Problem
P0 enlarges its domain of attraction, as depicted with
N = 5, it must comply with the bound constraints, while
the slack variables soften these constraints and allow a
larger domain of attraction that can better accommodate
disturbances.

Figure 1. Domains of attraction for Problems P0 (N = 2,
N = 5), P1 (N = 2) and P2 (N = 2).

Figures 2 to 5 depict the behaviour of the closed-loop
system with Problem P2, applying a control horizon 2,
initialized at x(0) = [0.23 −1.3 −1.2 0 0]. It must be
emphasized that this initial condition is only feasible for
Problem P2. In order to demonstrate the impacts of
disturbance, an unmeasured disturbance is simulated at
85 τ .

The strategy is able to track the economic target, esp,
as illustrated by Figure 2. Until 100 τ such a target is
unreachable for the closed-loop system, but the strategy
remains feasible while driving the process to a steady-
state condition close to it. This result exemplifies Remark
7. Furthermore, after 100 τ , esp becomes reachable and
the closed-loop system is driven towards it without offset,
which exemplifies Remark 7.

Figure 3 presents the closed-loop behavior of the outputs,
which performance is directly related to the desired eco-
nomic target: the higher the target, the lower the reactant
concentration y1, and the higher the reactor temperature
y2. Such a performance relationship is also present on
the inputs in Figure 4. Moreover, it is explicit that the
domain of attraction for Problem P0, Figure 1, cannot
accommodate the conditions imposed by the initial states
and the unmeasured disturbance at 85 τ , even for a control
horizon N = 5.

Figure 2. The behaviour of economic function fe.

Figure 3. Outputs of the system with Problem P2 and
N = 2.

One particular aspect of Problem P2 is the bound con-
straints imposed on the original states working as desired
operational zones, similar to the zone control approach,
due to the inclusion of slack variables. In this context,
the economic target aims to drive the process to a desired
operational condition inside these bounds.

Finally, Figure 5 depicts the cost function and its discrete
difference only for the time steps related to the response
to the initial condition and economic target change: 0 τ ,
50 τ , 100 τ . The cost function is non-increasing, behaving
as a Lyapunov-like function, exemplifying the results of
Theorem 1.

4. CONCLUSION

This work presented a one-layer gradient-based economic
MPC, which stabilizing properties are derived from ter-
minal equality constraints that force non-stable states to
be at any admissible artificial steady-state. The Jordan
decomposition is applied to segregate states in stable and
non-stable modes, and such a task can be performed with-
out additional parametrization.



Figure 4. Inputs of the system with Problem P2 and
N = 2.

Figure 5. Cost function of Problem P2.

In this design, bound constraints on the original states
can be softened in order to circumvent unfeasible scenarios
caused by process disturbances. This enlarges the domain
of attraction of the resulting optimization problem and can
be useful to overcome practical implementation issues. It
is also demonstrated that forcing both stable and non-
stable modes to be at a steady-state at the end of the
control horizon can reduce the domain of attraction of the
controller.

Finally, the proposed approach is able to drive the closed-
loop system towards an economic target. If such a target is
unreachable, the controller retains its stabilizing properties
and drives the system towards a region as close as possible
of this target.

Future developments can assess the global feasibility of
the formulation, i.e ensure solution for the optimization
problem in the mismatch case at any time step, and a
robustly stabilizing formulation.

ACKNOWLEDGEMENT

The authors thank the Brazilian research agencies Capes,
CNPq and FAPESB.

REFERENCES

Alamo, T., Ferramosca, A., González, A.H., Limon, D.,
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