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Abstract: The air transportation industry contributes with 2% of the total greenhouse gas
emissions, and there is a demand from global aviation regulators for reducing this percentage.
Hybrid-electric propulsion systems (HEPS) for aircraft is an area of increasing interest for
achieving these goals. It is a multidisciplinary research that involves internal combustion engines
(ICE), electric motors (EM), power electronic converters, energy storage devices, propeller
design, monitoring and control systems, management, etc. The Electromechanical Energy
Conversion Group (GCEME) in Brazil developed a complete HEPS test bench and Laboratory.
The facility will be able to test three different topologies: Series, full-electric and turbo-electric.
The present work employs a detailed model for the test bench, and given a mission profile
and the energy consumption as optimization function, it applies Differential Evolution (DE)
techniques in the energy management code. The results highlight the nonlinear nature of the
HEPS model, and the worth of this methodology in looking for an optimal solution to reduce
the computing processing time.

Keywords: Evolutionary algorithms for optimal control, Optimal control of hybrid systems,
Real time optimization and control.

1. INTRODUCTION

The term hybrid-electric on aircraft propulsion defines
a technology where more than one type of energy
source is employed, traditionally fuel/chemical and bat-
tery/electrochemical (Sahoo et al., 2020; Assanis et al.,
1999). Most HEPS employ internal combustion engines
(ICE), which are usually over-sized to meet requirements
in certain stages of the flight, which renders high fuel con-
sumption in the whole mission (Assanis et al., 1999). Some
studies work on developing management strategies that
consider among others to map the advantages of combining
HEPS energy sources, to study the overall performance,
aiming on saving fuel, reducing emissions and mechanical
noise.

Energy management strategies (EMS) can be classified
in optimization and rule-based (Zhang et al., 2018).
Optimization-based strategies include dynamic program-
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ming (DP) (Leite and Voskuijl, 2020), model predictive
control (MPC) (Doff-Sotta et al., 2020), and genetic al-
gorithms (GA) (Xie et al., 2020). These strategies suc-
ceeded in optimizing fuel consumption, but fail for online
management due to the high computational cost. Most of
the online strategies published for UAVs are rule-based
strategies, mainly fuzzy logic control (FCL) (Dawei et al.,
2017), and state machine (SM) (Yang et al., 2018). The re-
sults of the aforementioned studies show that it is possible
to obtain great improvements in the optimization of the
powertrain design, the structure of the aircraft, parameters
of the trajectory, etc.

In order to study this technology it is being mounted in
Brazil a HEPS test bench made up of several subsystems:
gas turbine turbo-generator (GT), EMs, power electronic
converters, a battery bank, a propeller, and control and
management systems (subsystems will be detailed bellow).
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2. FACILITY DESCRIPTION

The bench is composed by a 32 kW GT, a set of three
power electronic converters, a 30 kW battery bank, a 42
kW EM, and a 1.4 m diameter wooden propeller. An
electric generator and a resistive load will replace the
mechanical load in some tests for safety reasons. The
control architecture is observed in Fig. 1.

Figure 1. Facility architecture (Rendon et al., 2020).

The fuel employed for the present work was aviation
kerosene QAV-1 (PETROBRAS, 2014). Every subsystem
was modeled from their physical principles equations, to
be later employed by the management code.

3. MODELING DESCRIPTION

Some considerations were adopted in order to simplify
the analysis of the concentrated parameter model: (i) no
energy dissipation occurs in the fuel tank and batteries; (ii)
batteries have constant specific energy; (iii) steady state
is considered for every subsystem; (iv) gravity does not
change with increasing altitude; and (v) the aircraft lift-to-
drag ratio is considered constant. SI units were employed
in the model equations.

3.1 Turbo-Generator

The GT dynamic model is based on the balance equations
of specific enthalpy and entropy. Ideal gas modelling was
employed for obtaining the properties of air and combus-
tion gases for temperatures from 200 K to 3300 K (Bücker
et al., 2003). No dissociation effects were considered. Pres-
sures and temperatures in the gas path were calculated
from enthalpy and entropy relations (Kyprianidis et al.,
2012). Three fluids were considered, the initial dry air, the
fuel and the combustion gas. The fuel for this analysis was
aviation kerosene, and the chemical composition of these
three fluids were the same.

Compressor and turbine maps were obtained from (Gimelli
and Sannino, 2017). Sampled data was employed to vali-
date the model (Rendón, 2010).

A feedback control loop regulates the power generated by
the GT through a Proportional-Integral (PI) control law
with variable reference shaft speed.

3.2 Power Electronic Converters

The electronic converters were modelled from physical
principles (Nascimento et al., 2019; Torres et al., 2019).

Rectifier

The implemented rectifier receives the power from the
high frequency permanent magnet synchronous generator
(PMSG) of the GT. Using p-q transformation to control
the active and reactive power, maintains a DC reference
voltage of 670 VDC at the rectifier output. It employs a
PI control law in the external loop, and a proportional
compensator plus resonant for the internal current control
loop, in order to make a real resonant control, eliminate
the infinite gain margin and avoid stability problems.
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RECTIFIER EFFICIENCY vs. POWER

Figure 2. Rectifier efficiency vs. input power

Active power losses influence the global management, the
variation of efficiency with operation condition is presented
in Figure 2. Losses in the IGBTs switching due to the
internal resistance affect the performance and efficiency
of the rectifier, that will vary with the power that it is
supplying.

As observed in Figure 2, it is now worth to work in power
under 2500 W . It just starts to have acceptable value
around 80%, and from 6000 W it reaches above 90%. From
this value onwards the efficiency begins to increase a little,
with a maximum around 91.5%. This variable efficiency
characterizes a non-linear system. Figure 3 presents the
rectifier circuit in Matlab.

Interleaved Bidirectional DC-DC Converter

For commanding the battery supplying power, an inter-
leaved DC-DC converter was used (Figure 6). It was
designed to work in buck (charge) or boost (discharge)
modes. Three branches were employed to divide the cur-
rent, and the analysis was done for a single branch.

The converter operates in three different conditions. In
the first one, a control loop adjusts the battery discharge
current, supplying energy to the DC bar. In the second,
the same control loop adjusts the battery charge current,
obtaining the energy from the DC bar. In these two
conditions a PI control law was employed. The reference
current was calculated by the management system, with
signal for charging the opposite than for discharging. In
the third condition the DC voltage is adjusted in 670
VDC through a control loop using a PI control law. In



Figure 3. Three-phase rectifier diagram.

this situation the controller calculates the reference current
necessary to keep the required voltage.
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Figure 4. DC-DC Converter efficiency vs. input power

The DC-DC converter also have losses with similar be-
havior to the rectifier. Figure 4 shows that from 7500
W the efficiency will have a high value and from this
power onwards, it will gradually increase until reaching
an efficiency limit of approximately 96%. That is, the
efficiency for low power is even less than the rectifier, but
at high power the efficiency is greater.

Inverter and Electrical Motor

The power electronics inverter uses an (integral-
proportional) IP control law to adjust the EM shaft speed,
using the output electrical frequency as the manipulated
variable. The EM is a 42 kW , 380 V , three-phase perma-
nent magnet synchronous motor (PMSM), which drives
the propeller. The characteristics of the motor are detailed
in the Table 1. id and iq axes currents, and they are
monitored with an IP approach, that unlike traditional PI
controllers, does not add a pole in zero in the closed-loop
transfer function, and therefore there will be no oscilla-
tions in steady state. The inverter is the most efficient of
the three converters, as seen in Figure 5. From 2000 W
the efficiency is higher than 90% and thereafter it keeps
increasing for higher powers, reaching a maximum of 97%.

Figure 5. Inverter efficiency vs. input power

Table 1. Parameters of Electrical Motor

Symbol Name Value

Rs Phase resistance 18 mΩ

Ld Direct axis inductance 175 µH

Lq Quadrature axis inductance 180 µH

Zp Number of pairs of poles 10

Jm EM inertia 0.0421 Kg.m2

Bv Viscous damping 0.005 N.m.s

φpm Axial magnetic flux 0.0542 V.s

3.3 Battery Bank

The batteries used are lithium polymer with a nominal
capacity of 40 A-h, an operating voltage between 2.8 V
and 4.0 V , and a weight of 1.6 kg each. For modeling in
the Matlab-Simulink application it was used the “Battery”
block, and the parameters were adjusted to obtain the
voltage vs. discharge capacity curve near the one supplied
by the manufacturer. 78 of these batteries are connected
in series, and a curve was calculated to represent these
parameters in the model (Figure 7). The battery bank
owns a nominal voltage of 250 VDC , and a power of 30
kW .

3.4 Propeller

Propeller efficiency and thrust equations are borrowed
from previous analysis that employed blade element mo-
mentum theory and computational fluid dynamics (Rocha,



Figure 6. Interleaved Bidirectional DC-DC Converter diagram.
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Figure 7. Battery bank Voltage vs. Discharge capacity

2019; Oliveira et al., 2019). The propeller is modelled by
equations (1)–(4).

ηPRP = −4.48 · 10−10 · Ẇ 2
PRP + 3.03 · 10−5 · ẆPRP + 0.2688 (1)

ẆPRPout
= ηPRP · ẆPRP (2)

τPRP =
ẆPRP

nPRP
(3)

T = 2.84 · 10−6 · Ẇ 2
PRPout

− 0.091 · ẆPRPout
+ 1124 (4)

The equations (1)–(4) were fitted through results obtained
from an application developed in ANSYS CFX software.
The propeller dimensions were obtained to construct the
application, meshes around 500k elements and faces that
are inferior than 512k were considered. Simulations from
200 to 3000 rpm were performed, with a step of 400
rpm. The results are plotted on Figure 8. The velocity
streamline is displayed on Figure 9.

• Open conditions with zero gauge pressure were used
on the front, back and side faces;

• No slip wall conditions were used on the floor face nor
on any of the faces that form the structural base. No
slip wall conditions were used on propeller and axis
faces;

• Frozen rotor domains were used to generate the
rotation of axis and propeller;

• k-ω SST turbulence model and air proprieties at 25
oC were used.

Figure 8. Thrust, Power and Mass Rate vs. Shaft Speed in
rpm

Figure 9. Velocities streamline from ANSYS application

3.5 Aircraft

Some aircraft characteristics were tested in the simulation
and are related in Table 2.

Some key values are computed in equations (5)–(9). ESAR
relates the distance traveled by the aircraft with the total
power employed (Friedrich and Robertson, 2015). The
hybridization ratio Γ (Buecherl et al., 2009) shows the
relationship between the amount of electric power used,
compared with the total power. The energy use ratio β
(Schmitz and Hornung, 2013) is used to measure the ratio
of the electrical energy supplied by the battery to the total
energy of the system. In this work the power sources where
fuel and batteries.



Table 2. Aircraft Parameters

Description Symbol Value Units

Fuel heating value FHV 42.8 MJ
kg

Lift-to-drag ratio LD 12 –

Aircraft mass mACF 240 kg

Battery bank mass mBAT 125 kg

Electric motor mass mEM 12.3 kg

Fuel mass in the reservoir mFUE 40 kg

Propeller mass mPRP 3 kg

GT mass mICE 40 kg

Aircraft velocity in climb stage V 28 m
s

Aircraft velocity in cruise and descent V 35.44 m
s

ηACF =
ẆPRPout

ẆFUE + ẆBAT

(5)

Pp =
ẆFUE + ẆBAT

T
(6)

ESAR =
V · LD

Pp ·mACF
(7)

β =
EBAT

EFUE + EBAT
(8)

Γ =
ẆBAT

ẆFUE + ẆBAT

(9)

4. MANAGEMENT OF THE HEPS

The management system aims to optimize the HEPS en-
ergy consumption. Energy flows from the fuel and batter-
ies, through the GT and power electronics, to the EM and
propeller. The management determines which is the opti-
mal hybridization strategy. Variables such as climb angle,
descent angle, and a factor of recharge of the batteries
are analyzed. References control values for control loops
in GT power/speed, and electronic converters are defined
from the management code.

The management code uses equations with variable effi-
ciencies for each subsystem. In order to reduce the compu-
tational time, detailed models described before are substi-
tuted by polynomial equations in steady state conditions.

Differential Evolution (DE) is a population-based tech-
nique from the Evolutionary Algorithm family. It has
become popular due to its strength and easiness in solving
optimization problems (Leon, 2019). Given the character-
istics of the problem addressed in this study this technique
was chosen because it promises to render the global opti-
mum results in the shorter computing time, and also due
to its simplicity. Several mutation strategies on DE were
tested, and the results are presented in the end.

4.1 Differential Evolution

DE was proposed in 1995 to be used for optimization
problems (Storn et al., 1995). It was developed to improve
an algorithm based on Goldberg Genetic Algorithms and
Simulated Annealing, aiming to achieve greater speed,
robustness and simple structure (Echevarŕıa et al., 2014).

When seeking to optimize non-linear or non-differentiable
problems direct search methods are preferred, because
they are based on variations of the initial vectors. Once
this variation is made, they go through a selection stage
to accept or not to accept these variations, since they may
or may not improve the objective function. This decision
process usually converges fairly quickly, but there is a
risk of converging to local optimal points (Storn et al.,
1995). The method employed allows obtaining a rapid
convergence in an effective global minimum, with few
parameters to control.

Figure 10. Differential Evolution Algorithm

DE consists of an initial population with m individuals,
in which each individual in that population contains a
number n of variables, which represent the inputs of the
system to optimize (angle of rise, angle of descent and
recharge factor of the batteries). Each individual will
go through three stages called: mutation, crossing and
selection (Figure 10). The equations can be found in
(Leon, 2019). This three-step cycle is carried out until the
algorithm’s completion criterion is met: (i) it reaches a
maximum number of iterations and (ii) until there are no
significant improvements in the function to be optimized
or a minimum is reached expected.

Mutation: At this stage, after creating the initial popu-
lation randomly, each individual goes through any of the 6
mutation forms (Leon, 2019). Where F represents the mu-
tation factor, a value between 0 and 2 and V corresponds
to the new (mutated) vector.

Crossover: In this stage, three variables are used: (i)
The crossover rate RC, which refers to how permissive
the change of the initial individuals is. (ii) A random
number R1 between 0 and 1. (iii) A random integer num-
ber randIndex, between 1 and n and allows the vector
resulting from the crossing (U) since the change of at least
one position of the initial vector X.

Selection: In this stage, a comparison is made between the
evaluation in the objective function of the initial randomly
generated vector and the vector resulting from the cross-
ing; the individual with the lowest evaluation is selected.



5. RESULTS

A profile mission was simulated to test the DE code with
energy consumption as the function cost. A fixed-wing
Unmanned Aerial Vehicle (UAV) is commanded to travel
along a trajectory, where the initial and final destinations
are 600 km apart from each other. Figure 11 depicts
the flight profile. It encompasses the three stages of the
mission: Climb, Cruise, and Descent. Climb and descend
angles vary from θ = 15◦ to θ = 45◦. The velocities in
Fig. 11 are kept constant in each phase independent of the
angles.

Figure 11. Mission Profile

Five simulations were performed to analyze the contri-
bution of variables such as the climb/descent angle, and
the fraction of battery recharge p. Due to the low energy
density of batteries related with fuel, in cruise stage the
batteries must be charged/discharged several times along
the stage. The last variable is a number between 0 and
1 that represents the fraction of battery energy that is
allowed to discharge until the correspondent recharging.
In the last simulation it was observed the benefit of using
DE in terms of computing time.

The first one simulates an aircraft with only the GT to
power the propulsion. The angles of climb and descent
were varied to find the optimal condition that minimizes
the energy consumption. Electronic converters and battery
pack were not considered, as well as their related weights
and power losses. Additional weight was considered due
to the mechanical speed reducer, and the additional fuel
needed to complete the mission. The results are shown in
the Table 3.

Table 3. Optimal condition for an aircraft
powered with GT

Simulation Time N/A

Climb angle 15o

Descent angle 45o

p N/A

f(X) 2.0614 x 109 (J)

The following three simulations are linear search ap-
proaches.

The second simulation (Figure 12.) consists of a linear
search for the best fraction of battery recharge and the

best climb/descent angle (equal climb and descent angles
were considered). The results are observed in Figure 12.
The optimal condition is shown in Table 4 as well as
the energy consumption and computing time. The energy
consumption is clearly lower than using only the GT for
propulsion.

Figure 12. Second Simulation - Surface of Energy Con-
sumption

Table 4. Second Simulation - Optimal condi-
tion

Simulation Time 460.5 (s)

Climb angle 16o

Descent angle 16o

p 0.11

f(X) 1.2628 x 109 (J)

The third simulation fixes the optimal fraction of battery
recharge p calculated in the previous tests, and a linear
search evaluates all the possible climb and descent angles
combinations. Results are observed in Figure 13. The
optimal condition is shown in Table 5. The code converged
to a condition with the lower climb angle and the higher
descent angle.

Table 5. Third Simulation - Optimal condition

Simulation Time 401.2 (s)

Climb angle 15o

Descent angle 45o

p 0.11

f(X) 1.2365 x 109 (J)

There is a reduction in energy consumption related with
previous simulations, but not so relevant as related with
the first simulation. If we consider the combined time of
second and third simulations, we have a total linear search
time of 861.7 s.

The fourth simulation is a linear search that tests all the
possible combinations of the three variables: climb and
descend angles, and fraction of battery recharge p. The
optimal solution is presented in Table 6.



Figure 13. Third Simulation - Surface of Energy Consump-
tion

Table 6. Fourth Simulation - Optimal condi-
tion

Simulation Time 3581.7 (s)

Climb angle 15o

Descent angle 45o

p 0.11

f(X) 1.2365 x 109 (J)

The optimal solution found in the fourth simulation is the
same as in the third, but the computing time is much
bigger as previewed.

The fifth simulation is where the DE code is tested, aiming
to perform a faster calculation of the optimal point. The
number of variables n is 3 (climb and descent angle, and
fraction of battery recharge p), and the population number
m is 50. The first population is randomly generated in the
range of values (angles from 15o to 45o with variations of
1o, and p from 0 to 0.99 with variations of 0.01). After
evaluated the cost function of all the elements of the
first population, it is mutated and sent to the selection
stage, where the individuals with the best characteristics
become part of the next population. This iterative process
is carried out until attained the completion criteria: A
maximum number of iterations have been met, or the cost
function improvement of the optimal individual is under a
predefined value.

For the implementation of DE, six mutation methods were
used (Leon, 2019), and a comparison was made between
8 strategies as possible ways of varying the mutation-
crossing-selection process. This simulation was carried out
10 times and the best individual of each strategy was
selected and shown in Table 7. In the first strategy it
was used the first mutation method, in the second one
the second mutation method and so on, until the sixth
strategy. The seventh strategy varies the mutation method
sequentially in each iteration (from the first to the sixth),
for each individual analyzed. The eighth strategy varies
the mutation method randomly for each individual. This
process was carried out in order to find the strategy that
employs the lower computing time.

Table 7 shows the results of applying this technique. Most
of the DE strategies present a computing time around the
half of the employed in the linear search (second and third
simulations). The best strategy attains a computing time
four times lower than the linear search method, with the
same optimal solution.

6. CONCLUSIONS

Savings in energy consumption using a HEP system in
aircraft propulsion are relevant compared with traditional
GT powered systems. The use of well developed man-
agement and optimization algorithms even increases its
natural advantages.

HEPS is a complex system composed by several subsys-
tems, each one of them with non-linear relations between
their energy variables. Management of this system is a
task that demands a detailed and accurate modeling of
each subsystem. Steady-state relations of the input and
output energy variables were used to replace the complex
models, initially by interpolations and later by polynomial
equations. Results showed that this approach reduced the
computing times.

Even with this the processing time still high as shown, and
evolutionary techniques were tested to improve this pa-
rameter. Six mutation methods in eight DE strategies were
tested. The results showed that strategy number three
gave better results, with rapid convergence to the optimal
solution. The fourth strategy presented a similar behavior.
Strategies three and four use the ”best individual”, that is
the one who has the lowest evaluation in the objective
function of each population This characteristic seems to
shorten the search space in this particular application.

Future studies will consider more input variables, including
hybridization ratio and aircraft velocity, and other tech-
niques will be tested. When the HEP test bench is mounted
and operating, real data will be used to adjust sub-system
models, and the best management techniques will be tested
and validated.
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Echevarŕıa, L.C., Santiago, O.L., and da Silva Neto, A.J.
(2014). Aplicación de los algoritmos evolución diferen-
cial y colisión de part́ıculas al diagnóstico de fallos en
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