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Abstract— This paper presents an intelligent controller for uncertain underactuated nonlinear systems. The
adopted approach is based on sliding mode control and enhanced by a fuzzy scheme to cope with modeling
inaccuracies and external disturbances that can arise. The sliding surfaces are defined as a linear combination of
both actuated and unactuated variables. A fuzzy inference system is added to compensate the performance drop
when, in order to avoid the chattering phenomenon, the sign function is substituted by a saturation function in
the conventional sliding mode controller. An application of the proposed scheme is introduced for the cart pole
problem, in order to illustrate the controller design method. Numerical results are presented to demonstrate the
improved performance of the resulting intelligent controller.

Keywords— Cart-pole system, Fuzzy logic, Intelligent control, Sliding modes, Underactuated mechanical
systems.

Resumo— Este artigo apresenta um controlador inteligente para sistemas não-lineares subatuados e incertos.
A abordagem adotada baseia-se no controle por modos deslizantes, mas é aprimorada por um esquema fuzzy
para lidar com imprecisões de modelagem e eventuais perturbações externas. As superf́ıcies de deslizamento
são definidas como uma combinação de ambas variáveis atuadas e não-atuadas. Um sistema de inferência fuzzy
é adicionado para compensar a perda de performance quando, no intuito de evitar o chaveamento de alta-
frequência, a função sinal é substitúıda pela função saturação no controlador convencional por modos deslizantes.
Uma aplicação do esquema proposto é apresentada para o problema do pêndulo invertido montado em um
carro. Resultados numéricos são apresentados para demonstrar o aumento de performance proporcionado pelo
controlador inteligente.

Palavras-chave— Controle inteligente, Lógica Fuzzy, Modos deslizantes, Pêndulo invertido, Sistemas mecâ-
nicos subatuados.

1 Introduction

A mechanical system could be defined as un-
deractuated if it has more degrees of freedom
to be controlled than independent control in-
puts/actuators. Underactuated mechanical sys-
tems (UMS) play an essential role in several
branches of industrial activity and their applica-
tion scope ranges from robotic manipulators (Lai
et al., 2009; Xin and Liu, 2013) and overhead
cranes (Rapp et al., 2012; Sun et al., 2013) to
aerospace vehicles (Consolini et al., 2010; Tsio-
tras and Luo, 2000) and watercrafts (Do and
Pan, 2009; Serrano et al., 2014).

Basically, underactuation could arise due to
the following main reasons (Seifried, 2013):

• Design issues, as for instance in the case of
ships, overhead cranes, and helicopters;

• Non-rigid body dynamics, for example if one
or more flexible links are considered within a
robotic manipulator;

• Actuator failure, as is the case with aerial and
underwater vehicles.

Despite this broad spectrum of applications,
the problem of designing accurate controllers
for underactuated systems is unfortunately much
more tricky than for fully actuated ones. More-
over, the dynamic behavior of an UMS is fre-
quently uncertain and highly nonlinear, which in
fact makes the design of control schemes for such
systems a challenge for conventional and well es-
tablished methodologies.

Therefore, much effort has been made in or-
der to improve both set-point regulation and tra-
jectory tracking of underactuated mechanical sys-
tems. The most common strategies are par-
tial feedback linearization (Seifried, 2013; Spong,
1994), feedforward control by model inversion
(Seifried, 2012b; Seifried, 2012a), adaptive ap-
proaches (Pucci et al., 2015; Nguyen and Dankow-
icz, 2015), sliding mode control (Ashrafiuon and
Erwin, 2008; Xu and Özgüner, 2008; Sankara-
narayanan and Mahindrakar, 2009; Qian et al.,
2009; Muske et al., 2010), backstepping (Chen
and Huang, 2012; Xu and Hu, 2013; Rudra et al.,
2014), controlled Lagrangians (Bloch et al., 2000;
Bloch et al., 2001), and passivity-based meth-
ods (Ortega et al., 2002; Gómez-Estern and der



Schaft, 2004; Ryalat and Laila, 2016). However, it
should be highlighted that the control of uncertain
UMS remains hard to be accomplished, specially
if a high level of uncertainty is involved (Liu and
Yu, 2013).

Intelligent control, on the other hand, has
proven to be a very attractive approach to cope
with uncertain nonlinear systems (Bessa and Bar-
rêto, 2010; Bessa et al., 2012; Tanaka et al., 2013).
By combining nonlinear control techniques, such
as feedback linearization or sliding modes, with
adaptive intelligent algorithms, for example fuzzy
logic or artificial neural networks, the resulting
intelligent control strategies can deal with the
nonlinear characteristics as well as with modeling
imprecisions and external disturbances that can
arise.

Due to its ability to undertake assignments in
an environment of imprecision and imperfect in-
formation, fuzzy logic has been widely employed
to both control and identification of dynamical
systems. In spite of the simplicity of fuzzy’s
heuristic approach, in some situations a more rig-
orous mathematical treatment of the problem is
required. Recently, much effort has been made
to combine fuzzy logic with nonlinear control
methodologies.

As a matter of fact, sliding mode control is
an appealing technique because of its robustness
against both structured and unstructured uncer-
tainties as well as external disturbances. Nev-
ertheless, the discontinuities in the control law
must be smoothed out to avoid the undesirable
chattering effects. The adoption of properly de-
signed boundary layers have proven effective in
completely eliminating chattering, however, lead-
ing to an inferior tracking performance, as demon-
strated by Bessa (2009).

In this context, considering that fuzzy logic
can perform universal approximation (Kosko,
1994), Bessa and Barrêto (2010) showed that
adaptive fuzzy inference systems can be success-
fully applied for uncertainty and disturbance com-
pensation within the boundary layer of smooth
sliding mode controllers.

In this work, a sliding mode controller with a
fuzzy compensation scheme is proposed for uncer-
tain underactuated mechanical systems. On this
basis, a smooth sliding mode controller is con-
sidered to confer robustness against modeling im-
precisions and an adaptive fuzzy inference system
is embedded in the boundary layer to cope with
unmodeled dynamical effects. The convergence
properties of the proposed controller are proved
by means of the Lyapunov stability theory. Nu-
merical simulations are carried out in order to il-
lustrate the overall control system performance.

2 Intelligent sliding mode control of
underactuated systems

The equations of motion of a mechanical system
with n degrees of freedom (DOF) and m actua-
tor inputs are usually expressed in the following
vector form (Seifried, 2013):

M(q)q̈+ k(q, q̇) = g(q, q̇) +B(q)u , (1)

where q ∈ Rn is the vector of generalized co-
ordinates, u ∈ Rm the actuator input vector,
M(q) ∈ Rn×n the positive definite and symmet-
ric inertia matrix, k(q, q̇) ∈ Rn takes the Corio-
lis and centrifugal effects into account, g(q, q̇) ∈
Rn represents the generalized applied forces, and
B(q) ∈ Rn×m is the input matrix.

Definition 1 The mechanical system described
in equation (1) is called fully-actuated if m =
rank(B) = n, or underactuated if m < n.

Considering an UMS, the vector of generalized
coordinates can be partitioned as q = [q>a q

>
u ]>,

where qa ∈ Rm and qu ∈ Rn−m denote, respec-
tively, actuated and unactuated coordinates. In
these cases, the input matrix is also conveniently
assumed to be B(q) = [Ba Bu]> = [I 0]>, where
I ∈ Rn×n is the identity matrix.

Therefore, for control purposes, equation (1)
may be rewritten as (Ashrafiuon and Erwin, 2008;
Seifried and Blajer, 2013):

[
Maa Mau

M>
au Muu

] [
q̈a
q̈u

]
=

[
fa + u
fu

]
, (2)

where fa = ga − ka and fu = gu − ku.
As described in (Ashrafiuon and Erwin, 2008),

equation (2) can be solved for the accelerations:

q̈a = M
′−1
aa (f

′

a + u) , (3)

q̈u = M
′−1
uu (f

′

u −M>
auM

−1
aa u) , (4)

where M
′

aa = Maa − MauM
−1
uuM

>
au, M

′

uu =
Muu −M>

auM
−1
aaMau, f

′

a = fa −MauM
−1
uu fu,

and f
′

u = fu −M>
auM

−1
aa fa.

The proposed control problem has to ensure
that, even in the presence of external disturbances
and modeling imprecisions, the vector of general-
ized coordinates q will follow a desired trajectory
qd in the state space. Hence, defining q̃ = q−qd as
the tracking error vector, both trajectory tracking
and set-point regulation could be stated as q̃ → 0
as t→∞.

Consider, as for instance, the sliding mode ap-
proach, and let m sliding surfaces be defined in the
state space by s(q̃) = 0, with s ∈ Rm satisfying

s(q̃) = αa ˙̃qa + λaq̃a + αu ˙̃qu + λuq̃u

= αaq̇a + αuq̇u + sr ,
(5)



where sr = −αaq̇da + αuq̇
d
u + λaq̃a + λuq̃u.

Thus, the sliding mode controller must sat-
isfy the following Lyapunov candidate function
(Ashrafiuon and Erwin, 2008):

V1(q, q̇) =
1

2
s>s (6)

and the so called sliding condition V̇1(q, q̇) ≤ 0.
On this basis, the control law is defined as

(Ashrafiuon and Erwin, 2008):

u = −M̂−1
s

[
f̂−1s + ṡr + κ sgn(s)

]
, (7)

where M̂s and f̂s are, respectively, estimates of
Ms = αaM

′−1
aa − αuM

′−1
uu M

>
auM

−1
aa and fs =

αaM
′−1
aa f

′

a − αuM
′−1
uu f

′>
u . The control gain κ

should be designed in order to take unmodeled
dynamics, parametric uncertainties and external
disturbances into account.

Therefore, regarding the development of the
control law, the following assumptions should be
made:

Assumption 1 The vector fs is unknown but
bounded, i.e. |f̂s − fs| = |ds| ≤ Fs.

Assumption 2 The vector of generalized coordi-
nates q is available.

Assumption 3 The desired trajectory qd is once
differentiable with respect to time. Furthermore,
every component of qd is available and with known
bounds.

However, the presence of a discontinuous
term, κ sgn(s), in the control law leads to the well
known chattering effect. To avoid these undesir-
able high-frequency oscillations of the controlled
variable, a thin boundary layer in the neighbor-
hood of the switching surface could be defined
by replacing the sign function with a smooth ap-
proximation. This substitution can minimize or,
when desired, even completely eliminate chatter-
ing, but turns perfect tracking into a tracking
with guaranteed precision problem, which actually
means that a steady-state error will always remain
(Bessa, 2009). In order to improve the tracking
performance, some adaptive intelligent algorithm
could be used within the boundary layer of smooth
sliding mode controllers.

At this point, since fuzzy logic can be consid-
ered as an universal approximator (Kosko, 1994),
we propose the adoption of a fuzzy based compen-
sation term, d̂, within the smoothed version of the
control law presented in equation (7):

u = −M̂−1
s

[
f̂s + d̂+ ṡr + κ sat(φ−1s)

]
, (8)

where φ ∈ Rm×m is a diagonal matrix with m pos-
itive entries φi, and sat(·) is the saturation func-
tion:

sat(si/φi) =

{
sgn(si) if |si/φi| ≥ 1,
si/φi if |si/φi| < 1 .

(9)

Thus, we propose the adoption of an intelli-
gent compensator d̂ to cope with the uncertainties
and external disturbances related to ds. For each
component d̂i, a zero order TSK (Takagi–Sugeno–
Kang) inference system is established. The as-
sociated fuzzy rules can be stated in a linguistic
manner as follows (Jang et al., 1997):

If si is Sij, then d̂ij = D̂ij ; j = 1, 2, . . . , N ,

where Sij are fuzzy sets, whose membership func-
tions could be properly chosen.

Considering that the rules define numerical
values as output D̂ij , the final output of each d̂
can be computed by a weighted average:

d̂i(si) = D̂>i Ψi(si) , (10)

where D̂i = [D̂i1 . . . D̂iN ]> are vectors contain-

ing the attributed values D̂ij to the fuzzy rules,
Ψi(si) = [ψi1(si) . . . ψiN (si)]

>, with ψij(si) =

wij/
∑N
j=1 wij , and wij is the firing strength of

each rule.
In order to ensure the best possible estimate,

let the vector of adjustable parameters be auto-
matically updated by the following adaptation law

˙̂
Di = ϕi si Ψi(si) , (11)

where ϕi are strictly positive constants related to
the adaptation rate.

Remark 1 Considering that fuzzy logic can per-
form universal approximation (Kosko, 1994), the
output of the TSK inference systems can approx-
imate ds to an arbitrary degree of accuracy δ =
d̂∗ − ds, where d̂∗ is the output related to set of
optimal parameter vectors D̂∗i .

Therefore, by defining the components of κ ∈
Rm according to κi ≥ η + δi + |d̂i|, where η is
a strictly positive constant related to the reaching
time, Theorem 1 shows that the smooth intelligent
controller, equation (8), ensures the convergence
of the tracking error to the invariant set defined
by the boundary layers.

Theorem 1 Consider the uncertain underactu-
ated mechanical system (2) subject to Assumptions
1–3. Then, the controller defined by (8), (10), and
(11) ensures the convergence of the tracking er-
rors to the manifold Φ = {q̃ ∈ Rn

∣∣ |si| ≤ φi, i =
1, . . . ,m}.

Proof: Let a positive-definite Lyapunov function
candidate V2 be defined as

V2(t) =
1

2
s>φ sφ , (12)

where each component of sφ(q̃) is a measure of
the distance between si and its related boundary
layer, and is computed as follows:

sφ(q̃) = s− φ sat(φ−1s) . (13)



Noting that ṡφ = sφ = 0 inside Φ, and ṡφ = ṡ
outside of it, then the time derivative of V2 be-
comes:

V̇2(t) = s>φ ṡ = s>φ
(
αaq̈a +αuq̈u + ṡr

)
= s>φ

[
αaM

′−1
aa (f

′

a + u+ d
′

a)

+αuM
′−1
uu (f

′

u −M>
auM

−1
aa u+ d

′

u) + ṡr
]

= s>φ
[
fs + ṡr +Msu

]
.

(14)

Applying the control law (8) to (14), and noting

that sat(φ−1s) = sgn(sφ) outside Φ and |d̂i −
d̂∗i | ≤ |d̂i|, one obtains

V̇2(t) = −s>φ
[
d̂− d̂∗ + δ + κ sgn(sφ)

]
≤ −η ‖sφ‖1 ,

which implies that sφ → 0 and q̃ → Φ as t→∞.
2

3 Illustrative example: Stabilizing the
cart-pole underactuated system

The cart-pole system is composed by a small car
with an inverted pendulum on it (see Fig. 1), and
the related equations of motion are presented as[

mc +m ml cos θ
ml cos θ ml2

] [
ẍ

θ̈

]
=

=

[
mlθ̇2 sin θ
mgl sin θ

]
+

[
u
0

]
. (15)

Here, x and θ are, respectively, the position
of the cart and the angular displacement of the
pendulum, mc is the mass of the cart, m and l
represent the concentrated mass and the length
of the pendulum, and g is the acceleration due to
gravity.

u mc x

θ

ll

g

m

Figure 1: Cart-pole system.

It should be highlighted that, since only the
position of the cart x can be directly controlled,
the angular displacement θ is considered an un-
actuated variable. On this basis, Ashrafiuon and
Erwin (2008) defined the switching variable as a

linear combination of both actuated and unactu-
ated state errors, s = αa ˙̃x + λax̃ + αul

˙̃
θ + λulθ̃,

with x̃ = x − xd and θ̃ = θ − θd as well as their
derivatives representing the state errors. But con-
sidering that model uncertainties and external dis-
turbances may occur, we suggest the inclusion of
a compensation term d̂ in the control law, in or-
der to compensate for modeling inaccuracies and
to improve the control performance:

u = −M̂s

[
f̂s + d̂+ ṡr + κ sat(s/φ)

]
, (16)

where κ is the control gain, φ defines the width of
the boundary layer, ṡr = −αaẍd − αulθ̈d + λa ˙̃x+

λul
˙̃
θ, M̂s = [(m̂c+m̂ sin2 θ)l]/[αal−αu cos θ], and

f̂s =
[
(αal − αu cos θ)m̂lθ̇2 sin θ − [αalm̂ cos θ −

αu(m̂c+ m̂)]g sin θ
]
/(m̂c + m̂ sin2 θ)l. Parameters

m̂c and m̂ represent the estimates of the cart and
pendulum masses, respectively.

Thus, considering the cart-pole system, equa-
tion (15), and the intelligent controller presented
in equation (16), numerical simulations were car-
ried out to evaluate the efficacy of the proposed
scheme. The simulation studies were performed
with sampling rates of 1 kHz for control system
and 10 kHz for dynamic model. The differen-
tial equations of the dynamic model were numer-
ically solved with the fourth order Runge-Kutta
method.

Firstly, in order to demonstrate the robust-
ness of the intelligent controller against structured
uncertainties, variations of 15% over the cart and
pendulum masses are taken into account. On this
basis, the following model parameters are consid-
ered: mc = 0.4 kg, m = 0.14 kg, and l = 0.215 m.
Regarding control parameters, the following val-
ues were chosen: m̂c = 0.34 kg, m̂ = 0.119 kg,
αa = 0.02, αu = 1, λa = 0.005, λu = 2.5, φ =
0.05, η = 2, δ = 0.5, and ϕ = 100. Concerning
the fuzzy system, triangular (in the middle) and
trapezoidal (at the edges) membership functions
are adopted, with the central values defined as
C = {−φ/4,−φ/20,−φ/40, 0, φ/40, φ/20, φ/4}.
Figure 2 shows the obtained results.

According to Fig. 2, if only small struc-
tured uncertainties are taken into consideration,
as is the case in (Ashrafiuon and Erwin, 2008),
both conventional and the proposed intelligent
scheme are able to stabilize the cart-pole system.
As observed, the performance of both conven-
tional (SMC) and intelligent (ISMC) controllers
is closely similar.

Let us now investigate what happens when the
plant is subject to unmodeled dynamics. On this
basis, by taking Coulomb friction into account,
a dead-zone is also considered in the cart-pole
model:

ν =

 u+ 0.2 if u ≤ −0.2,
0 if − 0.2 < u < 0.2,

u− 0.2 if u ≥ 0.2 ,
(17)
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Figure 2: Stabilizing the cart-pole with only para-
metric uncertainties.
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Figure 3: Stabilizing the cart-pole with both para-
metric uncertainties and unmodeled dynamics.



where u is the same control action determined by
the (16) and ν represents the new system input:[

mc +m ml cos θ
ml cos θ ml2

] [
ẍ

θ̈

]
=

=

[
mlθ̇2 sin θ
mgl sin θ

]
+

[
ν
0

]
. (18)

Then, new simulations were carried out by
considering the dead-zone input. Besides the un-
known dead-zone, all other control and system pa-
rameters are kept the same as in the first numer-
ical study. Figure 3 shows the obtained results.

As observed in Fig. 3, when unmodeled dy-
namics are also considered, the difference between
the performance of the two control schemes is
remarkable. Figure 3 shows the improved per-
formance of the proposed intelligent controller
when compared with the conventional control ap-
proach presented in (Ashrafiuon and Erwin, 2008),
which confirms that, even in the case of underac-
tuated systems, intelligent control represents the
most adequate choice for plants subject to large
uncertainties (Bessa and Barrêto, 2010; Bessa
et al., 2012). In addition, it should be noted in
Fig. 3 that the intelligent scheme is much more
efficient than the conventional one. Besides im-
proving the stabilization, Figs. 3a and 3b, it also
shows a reduced control effort, Figs. 3c.

4 Concluding remarks

The present work addresses the problem of con-
trolling uncertain nonlinear underactuated sys-
tems with a sliding mode control approach, but
enhanced by a fuzzy compensation scheme. The
convergence properties of the resulting intelligent
controller are proved by means of the Lyapunov
stability theory. In order to illustrate the con-
troller design method, the proposed scheme is ap-
plied to a cart-pole system. The control system
performance is confirmed by means of numerical
simulations. The adoption of a fuzzy inference
system provided an smaller balancing error due
to its ability to compensate the performance drop
caused by the change of the sign function for the
saturation function. Also, the simulation studies
show that the intelligent sliding mode controller
can more efficiently deal with underactuated sys-
tems, even when a high level of uncertainty is in-
volved.
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