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Abstract— Functional electrical stimulation (FES) has been used to restore and aid motor functions in para-
plegics, promoting better therapeutic results for its users. From experimental results, we observe that the control
signal is uncertain for an operating point, because of plant uncertainties. We present an experimental setup to
identify the linear model containing polytopic uncertainties, and design robust p(r,ξ)(t) and switched controller
p(σ,ξ)(t) that compensate uncertain control signal through an adequate switching law. Results obtained from
open-loop control p0, robust controllers pr(t) and p(r,ξ)(t), and switched controllers pσ(t) and p(σ,ξ)(t) are com-
pared. These results indicate that switched controller p(σ,ξ)(t) minimizes the uncertainty in the control signal,
returns the smallest time derivative value of the Lyapunov function, consequently minimizing the angular position
error in steady state (ess ≈ 0.20◦) in electrically stimulated lower limbs.

Keywords— Switched control, linear matrix inequalities (LMIs), rehabilitation, neuromuscular electrical stim-
ulation.

Resumo— A estimulação elétrica funcional (FES) tem sido utilizada para restaurar e auxiliar as funções
motoras em paraplégicos, promovendo melhores resultados terapêuticos. Por meio de resultados experimentais,
foi observado que o sinal de controle é incerto para um ponto de operação, pois depende das incertezas da
planta. Neste trabalho foi utilizado um aparato experimental para identificar o modelo linear contendo incertezas
politópicas e então projetaram-se controladores robusto p(r,ξ)(t) e chaveado p(σ,ξ)(t) que compensam a incerteza
no sinal de controle através de uma lei de chaveamento adequada. Resultados obtidos de malha aberta (p0),
controladores robustos pr(t) e p(r,ξ)(t), e chaveados pσ(t) e p(σ,ξ)(t), são comparados. Dentre as comparações,
o melhor resultado se deu do controlador chaveado p(σ,ξ)(t) minimizou a incerteza no sinal de controle com o
menor erro de posição angular em estado estacionário (ess ≈ 0.20◦), e retornou o menor valor de derivada da
função de Lyapunov.

Palavras-chave— Controle chaveado, desigualdades matriciais lineares (LMI’s), reabilitação, estimulação elé-
trica neuromuscular, FES.

1 Introduction

The functional electrical stimulation (FES) is a
very promising technique to minimize muscle spas-
ticity and assist in restoring the movements of
paraplegic individuals.

Closed-loop control allows smoother stimu-
lated limb movement. The system’s mathemat-
ical model to be controlled is fundamental for the
controllers design. In particular, the relationship
between the voltage or current pulse width and
the joint motion must be well understood. How-
ever, this process involves biomechanical interac-
tions and several complex, nonlinear and uncer-

tain physiological phenomena.

Currently, several control techniques have
been applied. Downey et al. (2017) developed
switching between stimulation channels. Rodor
et al. (2017) proposed a PID with feedback er-
ror learning for position control. Da Mata et al.
(2017) verified the robust H∞ controller behavior
to reject disturbances.

Other studies are worth discussing. Guaracy
et al. (2016) designed a controller by fuzzy slid-
ing modes, considering that there is repeatability
and a linear relationship between pulse width and
angular position. However, Guaracy et al. (2016)



supposition and also several other authors, does
not correspond to the experimental reality since
the lower limb movement has a non-linear, com-
plex and uncertain dynamic behavior.

Covacic and Gaino (2014) presented an con-
trol design for strictly positive real (SPR) systems
using polytopic uncertainties only in the charac-
teristic matrix. In this paper, we analyze uncer-
tainties in the state and input matrices.

In all previous studies, none has experimen-
tally recognized that the control signal is uncer-
tain. Through experimental results, we show that
the control signal at an operating point is uncer-
tain because it depends on the uncertainties of the
plant. Unfortunately, this was not done in previ-
ous studies, since they used the identification pa-
rameters obtained by Ferrarin and Pedotti (2000)
and validated the control technique in closed loop
by simulation.

In this work, propose an experimental setup
to identify the linear model containing polytopic
uncertainties. FES involves repetitive stimulation
of the muscle, which can lead to fatigue. An im-
portant contribution given in this paper is to show
how to identify experimentally the uncertain pa-
rameters in the state space model. So it is pos-
sible to evaluate model parametric variation for
non-fatigued and fatigued muscle conditions.

In addition, this study contributes to the anal-
ysis of an uncertain control signal, compares the
performance of robust and switched controllers,
and compensates uncertain control signal by a
switched control law p(σ,ξ)(t).

The article is organized as follows: in sec-
tion 2, the dynamic model in the state space con-
sidering polytopic uncertainties is presented; in
section 3 describes the experimental protocol for
polytopic uncertainties identification; in section 4
indicates the robust and switched control design
for electrically stimulated lower limb considered
as linear system in an operating point and results
obtained; and section 5 concludes about results.

2 Modeling of the Lower Limb

considering Polytopic Uncertainties

In a system that presents parametric uncertain-
ties, these can be restricted by a convex linear
combination belonging to the set described as
polytope.

2.1 State-space model

Sanches (2013) in his study proposed a state-
space model modification to facilitate practical
implementation with accelerometers. Thus, the
torque state variable was replaced by acceleration.
Further details of this technique can be found in
Sanches (2013).

In this paper, we consider the linear system
with polytopic uncertainties given by:

ẋ(t) = A(α)x(t) +B(α)u(t), (1)

y(t) = Cx(t), (2)

being A(α) ∈ Rnxn the state matrix, B(α) ∈
Rnxm the input matrix, x(t) ∈ Rn the state vec-
tor, u(t) ∈ Rm the input control, y(t) ∈ Rq the
output vector, and C ∈ Rqxn the output matrix.

The system (1) and (2) can be described as a
convex combination of the polytope vertices, with
parameters belonging to the unitary simplex U:

U =

{

(A,B)(α) :
r

∑

i=1

αi(A,B)i;
r

∑

i=1

αi = 1;

αi ≥ 0; i ∈ Qr} , (3)

Qr = {1, 2, · · · , r}. (4)

Regarding to knee joint movement due to elec-
trical stimulation applied in the quadriceps, the
state-space representation (1) and (2) is given by:

A(α) =





0 1 0
0 0 1

L̃(z) Ĩ(z) E (τ)



 ,

B(α) =





0
0

B(G, τ)



 ,

C =





1 0 0
0 1 0
0 0 1



 ,

where the state vector x(t) =
[

x1(t) x2(t) x3(t)
]T

, and the control input

u(t) = pn(t), z(t) = [x1(t) λ E ω]
T

∈ R4;
λ and E are coefficients of the exponential term
related with movement stiffness; ω the elastic
resting angle of the knee; G and τ are parameters
that express the first-order relation of the torque
and electric stimulus pulse width pn(t).

In relation to parameters and variables, we
define that x1(t) is the angular position of the knee
joint, x2(t) is the angular velocity, x3(t) is the
angular acceleration.

For convenience of notation, all state variables
will be considered as time-dependent, for example
x1(t) = x1. When x1(t) is explicit, it will be to
emphasize dependence in the time domain.

The system control input pn(t) at the equilib-
rium point is given by:

pn(t) = p(t)− p0, (5)

where p(t) is the pulse width in µsec, and p0
is pulse width that produces active torque by
the electrical stimulation at the desired operating
point.



The vertices number of polytope is given by
2s, where s is the uncertainties number. In this
paper we adopt four uncertainties (s = 4), corre-
sponding to a polytope composed of 16 vertices.

A linearized model obtained based on the re-
sults presented in Ferrarin and Pedotti (2000) and
Sanches (2013) is presented in (6), so the model
(1) is given by:





ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





0 1 0
0 0 1
l i e









x1(t)
x2(t)
x3(t)



+





0
0
b



 pn(t), (6)

where l, i, e, and b ∈ R are uncertain parameters
obtained experimentally.

3 Parameters Identification

3.1 Subjects

This study was authorized through a research
ethics committee involving human beings (CAEE
79219317.2.1001.5402) in São Paulo State Univer-
sity (UNESP), Ilha Solteira campus. An able-
bodied male subject, 26 years old, participated in
the study.

3.2 Test plataform

Experiments were performed on a test plat-
form shown in Figure 1. The platform is com-
posed of a chair instrumented by an electrogo-
niometer (Lynx R©), a gyroscope LPR510AL (ST
Microelectronics R©), two triaxial accelerometers
MMA7341 (Freescale R©), a NI myRIO controller
(National Instruments R©), a current-based neuro-
muscular electrical stimulator (more details can
be found in Sanches (2013), and an user interface
developed in the LabVIEW Student Edition. For

Accelerometers

Gyroscope

Electrogoniometer

Stop button

4-channel electric stimulator
Surface electrodes

Real-time processor

Control signals

Acquisition signals

Figure 1: The leg extension machine was equipped
with electrogoniometer, gyroscope and accelerom-
eter to measure the angle, velocity and accelera-
tion of the knee joint, respectively. From an em-
bedded controller control signals are sent to the
stimulator.

greater confidence and comfort of the volunteer,

the patient can deactivates the stimulation pulses
using a stop button. The chair backrest and the
knee joint position are adjustable for each volun-
teer.

The stimulation intensity is controlled by set-
ting the pulse amplitude to the quadriceps and
controlling the pulse width. The stimulus fre-
quency were fixed in 50 Hz. In a preliminary
test, pulse amplitude was determined at about 70
mA. The muscular electrostimulator delivers rect-
angular, biphasic, symmetrical pulse to the indi-
vidual’s muscle, and allows an adjustment of the
pulse width in a range of 0-500 µs.

3.3 Experimental setup

Before applying the stimuli to the quadriceps, a
muscle analysis determines the motor point for
proper positioning of the surface electrodes. Then,
scraping and cleansing procedures are performed
at the motor point. The electrodes used are rect-
angular self-adhesive CARCI 50 mm x 90 mm.

After the motor-point identification, open-
loop experimental tests are performed. The open-
loop test consists of applying a step-type signal
corresponding to a constant pulse width p0. The
test duration is about four seconds. Thereafter,
approximately 2-minutes time interval is timed for
muscle rest. After the rest period, the step-type
test is applied again for four seconds.

The pulse width, position, velocity and angu-
lar acceleration data are automatically recorded
at the end of the step-type signal.

At each test the measured angular position
should be the closest to the desired position. How-
ever, after several tests applied sequentially it
is noticeable that the measured angular position
tends to be more divergent from the desired an-
gular position, Figure 2. Note that after a large
number of tests the error becomes very large. Our
hypothesis is that the muscle fibers recruited lo-
cally by the surface electrodes are saturated which
leads to the fatigue state. The criterion used to de-
termine the saturation condition of the fibers was
defined by the evaluation of the error obtained be-
tween the desired and measured position. With an
relative error greater than 15-20%, the test results
are referred to as fatigued situation for identifica-
tion at an operating point x0.

After a day of several tests, we observed a
early fatigue in the muscles. Therefore, about
24 hours after, muscular behavior was evaluated
again for step-type signals. In these trials the ob-
tained results were referred as fatigued situation,
Figure 2.

3.4 Vertices of the Polytope

The experimental data were processed via MAT-
LAB. The parameters values of the identification
sets (non-fatigued and fatigued) are shown in the
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Figure 2: Parameters identification test for the
model (6), performed by the successive application
of step-type signals interspersed 2 minutes and
considering a one-day interval between fatigued
and non-fatigued run.

Table 1 and vertices of the polytope (Ai, Bi),
given by:

A1 = A2 =





0 1 0
0 0 1

lmin imin emin



 ,

A3 = A4 =





0 1 0
0 0 1

lmin imin emax



 ,

A5 = A6 =





0 1 0
0 0 1

lmin imax emin



 ,

A7 = A8 =





0 1 0
0 0 1

lmin imax emax



 ,

A9 = A10 =





0 1 0
0 0 1

lmax imin emin



 ,

A11 = A12 =





0 1 0
0 0 1

lmax imin emax



 ,

A13 = A14 =





0 1 0
0 0 1

lmax imax emin



 ,

A15 = A16 =





0 1 0
0 0 1

lmax imax emax



 ,

B1 = B3 = B5 = · · · = B15 =





0
0

bmin



 ,

B2 = B4 = B8 = · · · = B16 =





0
0

bmax



 .

Table 1: Parameters values of the model, eq. (6).

Non-fatigued Fatigued

min max min max
l -104,8630 -45,5413 -53,6807 -18,9582
i -55,2046 -34,4644 -35,1242 -15,5393
e -6,3065 -5,0064 -8,6351 -5,6134
b 0,1111 0,2516 0,0279 0,0738

4 Robust and Switched Control Design

The control technique used in this work is derived
from De Souza et al. (2013). We assume an anal-
ysis of the system around a point of equilibrium
x̄(t) = x0, so a linearization can be applied to
the plant ˙̄x(t) = f (x̄(t), p̄(t)), and control input
p̄(t) = p0. Consider that x0 is known, p0 is uncer-
tain because it depends on the plant uncertainties,
but

D =
{

p0 ∈ R∗
+; p0min < p0 < p0max

}

, (7)

where p0min and p0max are known.
Thus, we considered in this paper the lin-

earized system given by:

ẋ(t) = A(α)x(t) +B(α)p(t), (8)

such that x(t) = x̄(t)−x0, x̄(t) is the state vector
of the plant, pn(t) = p̄(t) − p0, p(t) is the control
signal,B(α) = Bg(α), B is a constant matrix, and
the bounded function g(α) ∈ R∗

+, that depends on
uncertain parameters α.

Considering for all α given in (3), so the sys-
tem linearized (8) can be rewritten as:

ẋ(t) = A(α)x(t) +Bg(α)p(t). (9)

where B is a constant, and g(α) > 0.
In this paper, consider two state-feedback

control law. The first control law is classical for
the robust controller, given by:

p̄(t) = p̄r(t) = −Krx(t), (10)

where Kr ∈ Rmxn. Replacing (10) in (9), one
obtains the feedback system:

ẋ(t) = A(α)x(t)−B(α)Krx(t),

=

r
∑

i=1

αi (Ai −BiKr)x(t),
(11)

The second feedback control law is specified
for switched controller given by:

p̄(t) = p̄α(t) = −

r
∑

i=1

αiKix(t) = −K(α)x(t),

(12)
where Ki ∈ Rmxn, i ∈ Qr. Considering (12) and
from (3) and (9),

ẋ(t) = A(α)x(t)−B(α)K(α)x(t),

=

r
∑

i=1

r
∑

j=1

αiαj (Ai −BiKj)x(t),
(13)



Besides the stability, it is desired guarantee
other performance indices for the controlled sys-
tem, such as the setting time, norm constraint and
others. The setting time is related to the decay
rate of the system.

4.1 Stability + Decay Rate

Theorem 1 Boyd et al. (1994) - The linear sys-
tem with polytopic uncertainties given in (11) is
quadratically stabilizable, with decay rate greater
than or equal to β, if and only if there exist a sym-
metric positive definite matrix X and M ∈ Rm×n

such that, for all i ∈ Qr, the following LMIs hold:

XA
T
i +AiX−BiM−M

T
B

T
i + 2βX < 0, (14)

If there exists such a solution, the controller gain
is given by Kr = MX

−1 and Pr = P = X
−1.

Proof: The proof is detailed in Boyd et al. (1994),
considering V̇ (x) ≤ −2βV (x). ✷

Theorem 2 De Souza et al. (2013) - The equi-
librium point x = 0 of the linear system with poly-
topic uncertainties given in (13) is asymptotically
stable in the large, with decay rate greater than
or equal to β, if there exist a common symmetric
positive definite matrix X and Mi ∈ Rm×n such
that, for all i, j ∈ Qr, the following LMIs hold:

XA
T
i +AiX−BiMi −M

T
i B

T
i +2βX < 0, (15)

(Ai+Aj)X+X(Ai +Aj)
T −BiMj −BjMi

−M
T
i B

T
j −M

T
j B

T
i + 4βX ≤ 0, i < j (16)

If (15) and (16) are feasible, the controller gains
are given by Ki = MiX

−1, i ∈ Qr, and P = X
−1.

Proof: The proof is similar to that of Theorem 1.
✷

4.2 Norm Constraint

One can constraint the norm of the controller
gains by imposing restrictions on Mi, i ∈ Kr, and
X−1 as in Šiljak and Stipanovic (2000). Thus,
given the constants η > 0 and ηx > 0, impos-
ing that MT

i Mi < ηIn, i ∈ Kr and X−1 < ηxIx,
then a constraint on the controller gains may be
established by the following theorem.

Theorem 3 Šiljak and Stipanovic (2000) - The
constraint on the norm of the controller gains such
that KiK

T
i ≤ ηη2xIm, i ∈ Kr is enforced if there

exist constants η > 0 and ηx > 0, such that the
LMIs from Theorems 2 or 1 (replacing Ki = K

and Mi = M), with the LMIs below hold:
[

ηxIn In

In X

]

≥ 0,

[

ηIn M
T
i

Mi Im

]

≥ 0, (17)

Proof: The proof is detailed in Šiljak and Sti-
panovic (2000). ✷

4.3 Robust and Switched control law for uncer-
tainty in the control signal

Assume that the robust gain Kr = MX−1, and
the matrix Pr = X−1, have been obtained using
the vertices of the polytope of the system (8) in
the LMIs from Theorem 1. Now, given a constant
ξ, define the switched control law:

pn(t) = pn(r,ξ)(t) = p̄(r,ξ)(t)− p0, (18)

with
p̄(r,ξ)(t) = −Krx(t) + γξ(t). (19)

Moreover, assume that the gains Ki =
MiX

−1, i ∈ Qr and the matrix P = X−1, have
been obtained using the vertices of the polytope
of the system (8) in the LMIs from Theorem 2.
Now, given a constant ξ, define the switched con-
trol law:

pn(t) = pn(σ,ξ)(t) = p̄(σ,ξ)(t)− p0, (20)

with
p̄(σ,ξ)(t) = −Kσx(t) + γξ(t), (21)

where
Kσ ∈ {K1,K2, · · · ,Kr} ,

σ = arg min
i∈Kr

{

−xTPBKix
}

.

In both controllers the switching law γξ(t) is
defined by:

γξ(t) =











p0max, if xTPB(t) < −ξ

pl, if
∣

∣xTPB(t)
∣

∣ ≤ ξ

p0min, if xTPB(t) > ξ

, (22)

where pl =
[

(p0min − p0max)x
TPB(t)

]

(2ξ)−1 +
p0.

Consider the index Ξ(t) ∈ Z, as the signal
switching state γξ(t):

Ξ(t) =











1, if xTPB(t) > ξ

2 if
∣

∣xTPB(t)
∣

∣ ≤ ξ

3, if xTPB(t) < −ξ

. (23)

Theorem 4 Suppose that the conditions from
Theorem 1 hold, from the system (8) with the
control law (10) and obtain Kr = MX

−1, and
Pr = X

−1. Then, the robust control law (18),
(19), and (22) makes the system (8) uniform ul-
timate bounded.

Theorem 5 De Souza et al. (2013)- Suppose that
the conditions from Theorem 2 hold, from the
system (8) with the control law (12) and obtain
Ki = MiX

−1, i ∈ Qr, and P = X
−1. Then, the

switched control law (20), (21), and (22) makes
the system (8) uniform ultimate bounded.

Proof: The proof is detailed in De Souza et al.
(2013). ✷



The solutions of the LMIs for the design of
the gains of the controllers were carried out using
the modelling language YALMIP (Lofberg (2004))
with the solver SeDuMi(Sturm (1999)).

For the robust and switched controllers, we
adopted the norm constraint η = 600 and ηx =
30,and decay rate β = 0.5. The following symmet-
ric positive matrix Pr and gainsKr were obtained
for the robust controller:

Pr =





28.7796 5.3481 0.4551
5.3481 2.5941 0.1872
0.4551 0.1872 0.0534



 ,

Kr =
[

80.8672 52.1583 4.0207
]

.

While that for the switched controller, the fol-
lowing symmetric positive matrix P and gains Ki

were obtained:

P =





8.7724 1.3997 0.1548
1.3997 0.6004 0.0495
0.1548 0.0495 0.0149



 ,

K1 =
[

−7.4958 −0.5771 −0.0518
]

,

K2 =
[

−32.5384 −4.8576 −0.5143
]

,

K3 =
[

−207.9231 −35.8229 −3.8138
]

,

K4 =
[

−139.8365 −25.1311 −2.5777
]

,

K5 =
[

158.8758 29.8286 3.1164
]

,

K6 =
[

126.9480 25.1264 2.5832
]

,

K7 =
[

91.5987 23.3575 2.2327
]

,

K8 =
[

49.8391 15.3702 1.4101
]

,

K9 =
[

157.0941 25.8703 2.8435
]

,

K10 =
[

139.4140 22.7201 2.5133
]

,

K11 =
[

109.7619 12.4137 1.6724
]

,

K12 =
[

86.9418 9.2396 1.3009
]

,

K13 =
[

213.4855 36.5931 3.9388
]

,

K14 =
[

189.4155 32.7910 3.5200
]

,

K15 =
[

197.7200 34.2314 3.6752
]

,

K16 =
[

182.0206 31.7998 3.4064
]

.

In relation to the control law (22), the max-
imum and minimum values of p0 must be find.
However, these values can not be determined an-
alytically. So, we define these values by means of
the experimental results obtained in the section
parameters identification:

max {p0} = 350µsec, (24)

min {p0} = 250µsec. (25)

For the numerical simulation, at t = 0s it con-
sidered the initial condition x̄(0) =

[

0◦ 0 0
]

,
and p0 = 300µs. It is emphasized that the angu-
lar position state x1 is given in rad, but the value
shown in the Figure 3 is degrees. In t = 2s, from
Figure 3, the system stabilizes in the desired po-
sition x̄(2) =

[

42◦ 0 0
]

. From t ∈ [10 20) s
and t ∈ [25 40] s the p0 value of the system is
purposely altered in order to compare the robust
and switched controllers. During the time interval
t ∈ [10 15] s the p0 value increases linearly and
remains constant equal to 350µs until t = 20s.
Note that the tendency of the leg position is to
decline, corresponding to fatigued situations. In
t ∈ [20 25) s the value of p0 returns to nomi-
nal p0 = 300µs. In t ∈ [25 30] s the value of
p0 decreases linearly and remains constant equal
to 250µs until t = 40s. Now the tendency of the
leg position is to rise, corresponding to the non-
fatigued situations. This situation explains be-
cause the same pulse width of the controller does
not give repeatability for leg position control. The
results show that the p(r,ξ)(t) and p(σ,ξ)(t) con-
trollers presented good compensation of the un-
certain control signal.

An interesting analysis is to verify the details
of the system operation for the uncertain con-
trol signal compensation (Figure 4). In open-loop
the position error in steady-state (ess) is equal
to 15.83◦, while that robust pr(t) and switched
p(σ,ξ)(t) controllers were 10.94

◦ and 7.26◦, respec-
tively. We obtained the smallest error by including
the switching law (22), so that for the robust and
switched controllers were 0.36◦ and 0.20◦, respec-
tively.

The control law uses the signal xTPB(t) as a
decision variable. The control signal uncertainty
is evident in xTPB(t). By setting a given ξ which
minimizes uncertainty, makes the system uniform
ultimate bounded. Thus, it is explicit from the
Figure 4 that the controller with γξ(t) law is more
efficient than the one commonly used in the liter-
ature. The switched controller p(σ,ξ)(t) returned
the smallest time derivative value of the Lyapunov
function. It is worth mentioning that if the value ξ
tending to zero, it will make the function γξ(t) dis-
continue and consequently the control signal will
be discontinuous, causing chattering as shown in
Figure 4.

5 Conclusions

This paper investigated the uncertain control sig-
nal problem involving electrical stimulation of
lower limbs. The study focused on a linear analy-
sis around an operating point. Experimental data
were obtained for the identification of the poly-
topic linear model. A comparison between open-
loop control and four closed-loop controllers. The
switched controller p(σ,ξ)(t) returned the smallest
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Figure 3: Dynamic behavior of lower limb electrical stimulation around an operating point (42◦) with
uncertain control signal. Considering decay rate β = 0.5, norm constraint η = 600 and ηx = 30,
nominal pulsewidth p0 = 300µs, ξ = 1x10−7, and variation analysis of the uncertain control signal
∆p0 = ±16, 67%.
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Figure 4: Position error e(t), dynamic behavior xTPB(t) considering uncertain control signal, and
Lyapunov function V (x) and time-derivative V̇ (x).

time derivative value of the Lyapunov function
and compensated the uncertainty in the control
signal.
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Brasileiro de Automática-CBA, pp. 104–109.

Lofberg, J. (2004). Yalmip: A toolbox for mod-
eling and optimization in matlab, Computer
Aided Control Systems Design, 2004 IEEE
International Symposium on, IEEE, pp. 284–
289.

Rodor, F. F., Pugliese, L. F., Pereira, R. L.,
Guaracy, F. H. D. and Kozan, R. F.
(2017). Controle de posição da perna de pes-
soas h́ıgidas utilizando feedback error learn-
ing, XIII Simpósio Brasileiro de Automação
Inteligente-SBAI, pp. 1184–1189.

Sanches, M. A. A. (2013). Sistema eletrônico para
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