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Abstract— In this paper, we propose a modified version of the Symbiotic Organisms Search (SOS) algorithm.
The proposed version of SOS is applied to the nonlinear system parameter estimation problem. Numerical
experiments are carried out to evaluate the performance of the proposed algorithm using two nonlinear models:
the Output Error Polynomial (OEP) and the Output Error Rational (OER) models. The results show that the
proposed algorithm provided good accuracy in both models, outperforming other algorithms. Also, the reduced
number of parameters to be chosen simplifies the parameter tuning process of SOS when compared with other
metaheuristics. Based on the results, the proposed version of SOS can be considered as a good alternative to
solve nonlinear system parameter estimation problems.
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Resumo— Neste artigo, é proposta uma versão modificada do Algoritmo de Busca por Organismos Simbióticos
(Symbiotic Organisms Search - SOS). A versão proposta é aplicada ao problema de estimação de parâmetros
de sistemas não lineares. Experimentos numéricos foram realizados com o objetivo de avaliar o desempenho
do algoritmo proposto em dois modelos de sistemas não lineares: o modelo OEP (Output Error Polynomial) e
o modelo OER (Output Error Rational). Os resultados mostraram que o algoritmo proposto apresentou boa
acurácia nos dois modelos, apresentando melhor desempenho que outros algoritmos. Além disso, o número
reduzido de parâmetros a serem definidos simplifica o processo de sintonização de parâmetros do algoritmo SOS,
quando comparado a outras metaheuŕısticas. Com base nos resultados observados, é posśıvel concluir que a versão
proposta do SOS pode ser considerada como uma boa alternativa para a solução do problema de estimação de
parâmetros de sistemas não lineares.

Palavras-chave— Algoritmo de Busca por Organismos Simbióticos, Identificação de Parâmetros, Sistemas
Não Lineares.

1 Introduction

A wide variety of tools is available to solve the pa-
rameter identification problem for linear systems
such as modal testing (Ewins, 2000) and modal
analysis (Maia and Silva, 1997).

However, for nonlinear systems, a mathemat-
ical model to describe the system under consid-
eration cannot be obtained by performing the
system identification process at a single input
level. The model obtained at a single operating
point can, at best, provide information about the
equivalent linear system at that operating point
(Gondhalekar, 2009). Authors divide the nonlin-
ear system identification problem into three differ-
ent phases: Nonlinearity Detection, Nonlinearity
Characterization, and Nonlinear Parameter Esti-
mation (Gondhalekar, 2009).

The first phase (Nonlinearity Detection) con-
sists in detecting the presence of nonlinearities
within the system. Different techniques are
available in the literature to perform this phase
(Vanhoenacker et al., 2002).

The second phase (Nonlinearity Characteriza-
tion) consists in characterizing the nonlinearities
identified in the first phase. In this phase, the
type, the location, the form, the intensity, and
other characteristics of the nonlinearities in the
system are investigated (Kerschen et al., 2006).
Some techniques to perform the second phase
can be found in the literature (Adams and Alle-
mang, 1999), (Tanrikulu and Ozguven, 1991).

The third phase (Nonlinear Parameter Esti-
mation) consists in estimating the parameter val-
ues of the nonlinear model. The techniques used
in this phase are commonly divided into spatial
methods (Masri and Caughy, 1979) and modal
methods (Kerschen et al., 2009).

In this paper, we propose a modified version
of the SOS algorithm and apply the proposed ver-
sion in the third phase of the nonlinear system
identification problem. Good results have been
achieved in this problem by metaheuristic algo-
rithms such as Artificial Neural Networks (Samad
and Mathur, 1992), Genetic Algorithms (Yao and
Sethares, 1994) and Particle Swarm Optimization



(Schwaab et al., 2008), among others. Numerical
experiments using two nonlinear models are car-
ried out to evaluate the performance of the pro-
posed algorithm. The results obtained using the
original version of SOS, as well as the results ob-
tained in previous works using the Cuckoo Search
via Lévy Fights algorithm (Souza et al., 2014)
and the Teaching-Learning Based Optimization
(TLBO) algorithm (Rodrigues et al., 2016) are
also computed.

The remaining sections of this paper are or-
ganized as follows. Section 2 describes the nonlin-
ear system parameter estimation problem under
consideration. Section 3 introduces the SOS al-
gorithm. Section 4 presents the proposed version
of SOS. Section 5 presents the results obtained
in numerical experiments carried out to evaluate
the performance of the proposed version of SOS
in two different models. Concluding remarks are
presented in section 6.

2 Problem Description

In this section, we describe the nonlinear system
parameter estimation problem under considera-
tion. Consider a discrete nonlinear system A. Let
u(k) and y(k) be the input and the output of the
system at instant k, respectively. In this paper, we
assume that the output y(k) is a function of past
inputs, past outputs and measurements noise. A
mathematical model based on the nonlinear dif-
ference equation model is used to describe the be-
havior of system A according to Equation (1).

y(k) = f(y(k − 1), . . . , y(k − ny), (1)

u(k − 1), . . . , u(k − nu)) + e(k)

where f(·) is a nonlinear function, ny and nu are
the maximum lags in the output and input, re-
spectively, and e(k) is a white noise.

The structure of the model is assumed to be
known. Let θ be the parameter vector contain-
ing the parameters of the mathematical model of
system A. Each element of vector θ is a real num-
ber. The nonlinear system parameter estimation
problem consists in estimating the values of the
elements of vector θ.

Historical data containing an input signal
u(k) and the corresponding y(k), with k ∈
{1, . . . ,K} are available. So, it is possible to de-
fine an objective function J that quantifies, for a
given parameter vector θ, the mean squared error
between the estimated output ȳ(k) obtained with
θ and the real output y(k), when u(k) is used as
input. Therefore, estimates for the elements of
vector θ can be obtained by minimizing the ob-
jective function J presented in Equation 2.

J =
1

M

K∑
k=1

[y(k)− ȳ(k)]
2

(2)

3 Symbiotic Organisms Search

The Symbiotic Organism Search (SOS) algorithm
is a population-based metaheuristic optimization
algorithm that simulates the symbiotic interaction
strategies adopted by organisms to survive in the
ecosystem (Cheng and Prayogo, 2014).

The word symbiosis is used to describe a
relationship between two distinct species. The
most common symbiotic relationships found in
nature are mutualism, commensalism and para-
sitism (Kanimozhi et al., 2016). Mutualism is
a symbiotic relationship between two different
species in which both are benefited. One exam-
ple of mutualism is the relationship between star-
lings and buffalo illustrated in Figure 1(A). Star-
lings remove ticks from buffalo skin and the itch-
ing on buffalo skin is reduced (Prakash and Ra-
jathy, 2015). Commensalism is a symbiotic re-
lationship between two different species in which
one benefits and the other is neutral or unaffected.
One example of commensalism is the relationship
between remora fish and sharks illustrated in Fig-
ure 1(B). A remora fish is attached to a shark and
eats the leftover food of a shark without bene-
fiting or harming it (Tejani et al., 2016). Para-
sitism is a symbiotic relationship between two dif-
ferent species in which one benefits and the other
is harmed. One example of parasitism is the deer
tick shown in Figure 1(C). The deer tick attaches
itself to an animal to suck its blood and in that
way it gets benefited. However, the deer tick also
carries Lyme disease, causing joint damage and
kidney problems to the deer, which also suffers
from the loss of blood and may get sick (Cheng
and Prayogo, 2014).

The SOS algorithm simulates the different
types of symbiotic relationships to find good solu-
tions for the problem at hand. In each phase of
the algorithm, one symbiotic relationship is repre-
sented by a distinct operator. The SOS algorithm
comprises three phases: the mutualism phase, the
commensalism phase and the parasitism phase.

The process of generating new candidate solu-
tions in each phase of the SOS algorithm is driven
by the characteristics of the symbiotic relation-
ships (Talatahari, 2016). In the Mutualism Phase,
new candidate solutions are created for both or-
ganisms. In the Commensalism Phase, a new can-
didate solution is created only for one organism.
In the Parasitism Phase, one of the organisms can
be replaced by a new solution. The process is re-
peated until the stop criteria are met. Figure 2
shows the flowchart of the SOS algorithm.

3.1 Mutualism Phase:

In the mutualism phase of SOS, for each organism
Xi, an organism Xj , with j 6= i, is randomly cho-
sen from the population to interact with organism



Figure 1: Examples of symbiotic relationships: (A) Mutualism between bufalo and starligs; (B) Com-
mensalism between remora fish and sharks; (C) parasitism between deer and deer tick

Figure 2: SOS Flowchart

Xi. In a mutualistic symbiosis, both organisms
benefit from the relationship. New candidate solu-
tions for both organisms Xi and Xj are calculated
according to Equations (3) and (4), respectively.

XiNew = Xi + rand(0,1)×Di (3)

XjNew = Xj + rand(0,1)×Dj (4)

where Di and Dj are given by Equations (5) and
(6), respectively.

Di = Xbest − (M ×BFi) (5)

Dj = Xbest − (M ×BFj) (6)

where BFi and BFj are the benefit factors for or-
ganisms Xi and Xj , calculated according to Equa-
tions (7) and (8), respectively, Xbest is the organ-
ism with the best solution in the ecosystem, and
M is the mutual vector that represents the rela-
tionship between organisms Xi and Xj , calculated
according to Equation (9).

BFi = round (1 + rand(0,1)) (7)

BFj = round (1 + rand(0,1)) (8)

M =
Xi +Xj

2
(9)

Benefit factors are calculated independently
for each organism because some mutualism rela-
tionships produce a greater advantage for one of
the organisms. In the mutualism phase of SOS,
benefit factors BFi and BFj are determined ran-
domly as either 1 or 2.

If the new candidate solution XiNew is bet-
ter than Xi, then solution XiNew is accepted and
solution Xi is discarded. Similarly, if the new can-
didate solution XjNew is better than Xj , then so-
lution XjNew is accepted and solution Xj is dis-
carded.

3.2 Commensalism Phase:

Similar to the mutualism phase, in the commen-
salism phase of SOS, for each organism Xi, an
organism Xj , with j 6= i, is randomly chosen
from the population to interact with organism Xi.
However, in a commensalistic relationship, only



organism Xi benefits from the interaction, while
organism Xj is not affected. A new candidate so-
lution for organism Xi is calculate according to
Equation (10).

XiNew = Xi + rand(−1,1)× (Xbest −Xj) (10)

If the new candidate solution XiNew is bet-
ter than Xi, then solution XiNew is accepted and
solution Xi is discarded.

3.3 Parasitism Phase:

In the parasitism phase of SOS, organism Xi gen-
erates a parasite vector. This parasite vector is
created by replicating organism Xi and then mod-
ifying some randomly selected dimensions using a
random number. An organism Xj , with j 6= i,
is randomly chosen from the population to act as
the host of the parasite vector.

The parasite vector is compared with organ-
ism Xj using the objective function. If the par-
asite is better than organism Xj , then parasite
kills organism Xj and occupies its position in the
ecosystem. Otherwise, Xj is considered immune
to the parasite vector and is not affected. The
parasite vector is discarded.

4 Proposed Version of SOS

In this section, we present a modified version of
the Symbiotic Organism Search algorithm, de-
noted by MSOS. We add modifications in the com-
mensalism and parasitism phases of SOS.

During the commensalism phase of SOS, an
organism Xj is randomly selected to interact with
organism Xi. Then, organism Xi is modified to
try to improve its solution. However, using this
approach, an organism Xj with a worse solution
could guide the generation of the candidate solu-
tion XiNew, which is not logical considering the
commensalism relationships in nature.

In the parasitism phase of SOS, an organism
Xj is also randomly selected to interact with or-
ganism Xi. Then, organism Xi is modified to
create a parasite vector that will try to replace
organism Xj in the ecosystem. However, if an or-
ganism Xj with a high quality solution is selected,
the probability of creating a parasite that will kill
organism Xj is low.

In the proposed MSOS, we compare the solu-
tions of organisms Xi and Xj during commensal-
ism and parasitism phases in order to define which
organism is going to benefit from the interaction
(in the commensalism phase) and which organism
will be attacked by the parasite (in the parasitism
phase). In the commensalism phase of MSOS, the
organism with the worst solution between organ-
isms Xi and Xj will benefit from the interaction.
In the parasitism phase of MSOS, the organism

with the best solution between organisms Xi and
Xj will generate the parasite that will try to kill
the organism with the worst solution. The moti-
vation behind the proposed MSOS is to increase
the probability of generating new solutions during
the execution of the algorithm.

5 Numerical Experiments

In this section, we present the results obtained in
numerical experiments carried out to investigate
the performance of MSOS in two different models:
the Output Error Polynomial (OEP) model and
the Output Error Rational (OER) model.

Both the OEP and the OER models were al-
ready used to evaluate the performance of meta-
heuristic algorithms in parameter estimation of
nonlinear systems. The Cuckoo Search via Lévy
Fights algorithm was used in (Souza et al., 2014),
while the Teaching-Learning Based Optimization
(TLBO) algorithm was used in (Rodrigues et al.,
2016). The results obtained in these works are
used in this paper as a comparison reference.

5.1 Parameter Settings

In order to provide a fair comparison among the
different algorithms, we will define a fixed num-
ber of objective function evaluations. In (Souza
et al., 2014), the authors used as stop criterion the
maximum number of generations (1,000) without
a significant improvement in the objective func-
tion, a population size p of 15, a discovery rate r
of 25%. In (Ong, 2014), the author concluded that
the average number of generations needed for the
Cuckoo Search algorithm to converge was about
1,500. Thus, the estimated number of generations,
g, needed for the stop criterion adopted in (Souza
et al., 2014) to be reached is 2,500. Finally, the
number of objective function evaluations in the
Cuckoo Search algorithm, nCS , can be obtained
based on Equation (11).

nCS = p+ g × [1 + (r × p)] (11)

The estimated number of objective function
evaluations in the Cuckoo Search algorithm in
(Souza et al., 2014) is 11,890. This number of
objective function evaluations will be adopted in
this paper.

To choose the population size for the SOS al-
gorithm, PS, we used nine possible values: [20,
30, . . ., 100]. For each candidate value, a Monte
Carlo method with 30 iterations was performed.
The best results for the OEP and the OER mod-
els were 40 and 30, respectively.

5.2 OEP Model

In this experiment, the Output Error Polynomial
(OEP) model originally presented in (Piroddi and



Spinelli, 2003) is considered. The OEP model is
described by Equations (12) and (13). Figure 3
shows the Matlab Simulink R© implementation of
the OEP model used to run the experiments.

w(k) = 0.75w(k − 2) + 0.25u(k − 1) (12)

−0.2w(k − 2)u(k − 1)

y(k) = w(k) + e(k) (13)

Figure 4 shows the signal used as input for
the OEP model, u(k), as well as the correspond-
ing output signal, y(k). One characteristic of the
OEP model is that it presents an unstable behav-
ior, which brings an additional difficulty to the pa-
rameter estimation problem because it may gen-
erate multiple local minima in the objective func-
tion. In this example, the minimum and the max-
imum values of y(k) are -3.67x1012 and 6.93x103,
respectively.

A series of 300 measurements was used in the
experiments. The error e(k) is a white Gaussian
noise with mean zero and variance 0.25. A Monte
Carlo method with 1,000 iterations was used. Ta-
ble 1 shows the results obtained with the different
algorithms.

The results presented in Table 1 show that, for
the OEP model, all the metaheuristics provided an
excellent accuracy in the estimates of parameters
θ1 and θ3. It can also be noticed that θ2 is the
most difficult parameter to be estimated in this
model. It was consistently observed in the results
of all the metaheuristics. Based on these results,
the applicability of SOS to the nonlinear system
parameter estimation problem can be validated.
Also, the proposed MSOS presented better esti-
mates for all the parameters, with more accurate
mean values and lower standard deviations.

5.3 OER Model

In this experiment, the Output Error Rational
(OER) model originally presented in (Zhu, 2005)
is considered. The OER model is described by
Equations (14) and (15). Figure 5 shows the Mat-
lab Simulink R© implementation of the OER model
used to run the experiments.

w(k) =
N(k)

D(k)
(14)

y(k) = w(k) + e(k) (15)

where N(k) and D(k) are defined according to
Equations (16) and (17), respectively.

N(k) = 0.3w(k − 1)w(k − 2) (16)

+0.7u(k − 1)

D(k) = 1 + w(k − 1)2 + u(k − 1)2 (17)

For the OER model, a random number gen-
eration block was used to generate an uniformly
distributed input signal with mean zero and vari-
ance 0.33. A series of 1,000 measurements were
used in the experiments. The error e(k) is a white
Gaussian noise with mean zero and variance 0.01.
A Monte Carlo method with 1,000 iterations was
used. Table 2 shows the results obtained with the
different algorithms.

The results presented in Table 2 show that, for
the OER model, MSOS outperformed the original
SOS algorithm in terms of mean value for all pa-
rameters θi. MSOS presented lower standard de-
viations for all parameters, except for θ4. Again,
the results present by MSOS were consistent in
comparison with the other algorithms in terms of
the relative difficulty to estimate the parameters,
with θ3 presenting the highest standard deviation.

6 Conclusions

In this paper, we proposed a modified version of
the Symbiotic Organism Search (SOS) algorithm,
denoted by MSOS, and investigated its perfor-
mance in the solution of the nonlinear system pa-
rameter estimation problem. We conducted nu-
merical experiments using the Output Error Poly-
nomial (OEP) and the Output Error Rational
(OER) models. The results obtained with MSOS
were compared with the results obtained with the
original SOS, as well as with the results obtained
by (Souza et al., 2014) with the Cuckoo Search
via Lévy Fights algorithm and with the results
obtained by (Rodrigues et al., 2016) with the
Teaching-Learning Based Optimization (TLBO)
algorithm.

The comparison with other algorithms vali-
dated the applicability of SOS to solve the non-
linear system parameter estimation problem. For
the OEP model, MSOS outperformed the SOS al-
gorithm in terms of mean value for all parameters.
MSOS also presented a lower standard deviation
for all parameters. For the OER model, MSOS
outperformed the SOS algorithm in terms of mean
value for all parameters. The standard deviation
obtained for parameter θ4 with SOS was lower in
comparison with MSOS. For the other parameters,
MSOS presented lower standard deviations.

Although many variants for all the meta-
heuristics considered in this paper can be found
in the literature, we used the original version of
all the algorithms in this paper. One possible
suggestion for extending this paper is to evaluate
the performance of different variants of the meta-
heuristics in the solution of the nonlinear system
parameter estimation problem.



Figure 3: OEP model

Table 1: Simulation results for the OEP model

θi Ref.
CS TLBO SOS MSOS

Mean Std Mean Std Mean Std Mean Std

θ1 0.75 0.7500 0.0000 0.7499 0.0009 0.7498 0.0008 0.7499 0.0004
θ2 0.25 0.2336 0.0402 0.2424 0.0508 0.2668 0.0591 0.2597 0.0363
θ3 −0.20 −0.2000 0.0000 −0.2004 0.0006 −0.2003 0.0008 −0.2001 0.0001

Figure 4: Unstable behavior of the OEP model
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