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Abstract— Anti-roll bars aims to increase the driving comfort by reducing the roll angle during cornering
and also assist the self-steering behaviour of the vehicle chassis. This paper presents a comparison between a
passive anti-roll bar and an active anti-roll bar. The bars are modelled by FEM (Finite Element Method) and
a controller LQG (Linear Quadratic Gaussian) is designed to the active system. In addition, the vehicle lateral
dynamic is hybridized to the flexible model in order to obtain an unique mathematical model. It reviews the
vehicle roll dynamics and describes the FEM applied to dynamic modelling of flexible structures. The influence
of the active anti-roll system is illustrated through numerical simulation, and a comparison among the passive
anti-roll system and the system without anti-roll is also presented. To the best of the authors’ knowledge, the
modelling approach presented in Sections 3.1 and 3.2 have not been reported in the literature.

Keywords— Anti-roll system, flexible structures, control, finite element method.

Resumo— Barras de anti-rolagem visam aumentar o conforto através da redução do ângulo de rolagem em
curvas e também auxiliam na auto-dirigibilidade do chassis do véıculo. Este trabalho apresenta uma comparação
entre um sistema com barra de anti-rolagem passiva e outro com barra. As barras são modeladas pelo MEF
(Método dos Elementos Finitos) e um controlador LQG (Linear Quadrático Gaussiano) é projetado para o
sistema ativo. Além disso, à dinâmica lateral do véıculo, é adicionada a parte flex́ıvel para obter um único
modelo matemático. O trabalho revisa a dinâmica de rolagem véıcular e descreve o MEF aplicado à modelagem
dinâmica de estruturas flex́ıveis. A influência do sistema ativo é ilustrada através de simulação, e uma comparação
entre os sistemas passivo e sem barra de anti-rolagem também é apresentada. Até onde vai o conhecimento dos
autores, a abordagem dada à modelagem nas Seções 3.1 e 3.2 não foi relatada na literatura.

Palavras-chave— Sistema anti-rolagem, estruturas flex́ıveis, controle, método dos elementos finitos.

Nomenclature

l lateral distance between left and right sus-
pensions.

h height of the vehicle’s c.g..

ay lateral acceleration of the vehicle.

ms vehicle sprung mass.

mu unsprung mass on vehicle’s left/right side.

Ixx roll moment of inertia about the c.g..

g acceleration due to gravity.

Flat total lateral tire force.

φ roll angle.

zs vertical deflection of the vehicle’s c.g..

zul vertical deflection of the left unsprung mass.

zur vertical deflection of the right unsprung mass.

zrl left road displacement input.

zrr right road displacement input.

ks suspension stiffness.

bs suspension damping coefficient.

kt tire stiffness.

v nodal displacements.

EI bending rigidity.

ρ mass density per unit length.

(̇) time derivative.

()n n-order spacial derivative.

1 Introduction

The composition of the current automotive fleet
consists of 36% of light trucks, minivans and sport
utility vehicles (SUVs). Unfortunately, the rate of
fatal rollovers for pickups is twice the rate for pas-
senger cars, and the rate for SUVs is almost three
times the rate for passenger cars. While rollover
affects about 31% of passenger cars involved in
crashes with occupant fatalities, it accounts for
51% of passenger cars occupant fatalities in sin-
gle crashes. These statistics are from 2016 and
has motivated several studies to improve passen-
ger cars’ safety by preventing rollover via active
stability control (NHTSA, 2016).

An active anti-roll system allows the control
of the roll angle and, thus, improves the vehicle
stability, especially when turning or moving on
slopping ground (Jamil et al., 2017). A rollover
is a type of vehicle crash in which a vehicle tips
over onto its side or roof and have a higher fa-
tality rate than other types of vehicle collisions
(Phanomchoeng and Rajamani, 2012).



This present paper is focused on finding hy-
bridized dynamic models that merge the car’s dy-
namic roll movement with a flexible anti-roll bar
that is attached to the suspension system. This
anti-roll bar can be passive or active. This last
model must be well suited to the design of active
feedback controllers, which are used to mitigate
the rollover occurrence. Only linear time invariant
models are considered. The flexible bar’s mathe-
matical model is obtained by FEM.

The suitability for controller synthesis is de-
termined by a number of factors, including the
accuracy of the model for moderate steering in-
puts (e.g. linear tire behaviour and small roll
angles) and the order and simplicity of the dy-
namic model. The finite element approach pro-
duces models with large number of degrees of free-
dom, which causes numerical difficulties in dy-
namic analysis and control design. Thus, a model
reduction is applied aiming to glean a suitable sys-
tem with lower order to design the LQG controller.

The remainder of the paper is organized as
follows: the section 2 presents the results of the
literature survey. The section 3 presents the mod-
els chosen for this study. The control design is
presented in the section 4. The section 5 exhibits
the results taken from three models: 1) the roll
dynamics model without anti-roll system, 2) with
passive and 3) active anti-roll bar system as well.
Finally, the section 6 presents preliminary conclu-
sions from this ongoing study.

2 Literature survey

Carlson and Gerdes use Model Predictive Control
(MPC) theory to develop a framework for auto-
motive stability control. The framework is then
demonstrated with a roll mode controller, which
seeks to actively limit the peak roll angle of the
vehicle while simultaneously tracking the driver's
yaw rate command (Carlson and Gerdes, 2003).

Cameron and Brennan present results of
an initial investigation into models and control
strategies suitable to prevent vehicle rollover due
to untripped driving maneuvers. A challenging
task is identifying suitable vehicle’s models from
the literature, comparing these models with exper-
imental results, and determining suitable parame-
ters for the models (Cameron and Brennan, 2005).

A pair of MPC capable of modifying the nom-
inal roll dynamics of a vehicle through control of
the planar vehicle dynamics are presented by Beal
and Gerdes. Each of these controllers is based
on a linear model of the vehicle. Results from
a nonlinear vehicle model demonstrate that the
differential-drive technique results in significant
lateral-longitudinal tire force coupling and satu-
ration, which degrades the validity of the model
used for controller design (Beal and Gerdes, 2010).

Kim presents the design of an active roll con-

troller for a vehicle, as well as an experimen-
tal study using the electrically actuated roll con-
trol system. Firstly, parameter sensitivity anal-
ysis is performed based on the 3DOF linear ve-
hicle model. The controller is designed in the
framework of lateral acceleration control and gain-
scheduled control scheme considering the varying
parameters induced by laden and running vehicle
condition (Kim and Park, 2004).

A method for designing a controller which
uses an active anti-roll bar (AARB) and an elec-
tronic stability program (ESP) for rollover pre-
vention is presented by Yim. An ESP can carry
out active braking to reduce vehicle’s speed and
lateral acceleration to prevent rollover. The con-
troller for the AARB was designed based on linear
quadratic static output feedback control method-
ology, which attenuates the effect of lateral ac-
celeration on the roll angle and the roll rate, by
controling the suspension stroke and the tire’s de-
flection of the vehicle (Yim et al., 2012).

3 Mathematical models

Assuming that the axles and tires have a known
mass, a four degrees-of-freedom (dof) roll dynamic
model is developed in the following, considering
vertical translation of the sprung mass, denoted by
zs, vertical translation of the left unsprung mass,
denoted by zul, vertical translation of the right
unsprung mass, denoted by zur, as well as the roll
motion of the sprung mass, denoted by φ. The
Fig. 1 illustrates the modelled system.
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Figure 1: Four degree-of-freedom roll dynamics
model (source: the authors).

Rajamani (Rajamani, 2012) shows that the
overall equations of motion for the model is given
by:

msz̈s = − ks (2zs − zur − zul)

− bs (2żs − żur − żul) ,
(1)

mur z̈ur = ks

(
zs −

l

2
sinφ− zur

)

+ bs

(
żs −

l

2
φ̇ cosφ− żur

)
− kt (zur − zrr) ,

(2)



mulz̈ul = ks

(
zs +

l

2
sinφ− zul

)

+ bs

(
żs +

l

2
φ̇ cosφ− żul

)
− kt (zul − zrl) ,

(3)

and

Jsφ̈ =msayh cosφ+msgh sinφ

− ksl
2

2
sinφ− bsl

2

2
φ̇ cosφ

+
ksl

2
(zul − zur) +

bsl

2
(żul − żur) ,

(4)

where Js = (Ixx +msh
2).

3.1 Passive anti-roll bar

Consider a system, as shown in Fig. 2, which con-
sists of a flexible bar connected to the unsprung
masses of the roll dynamic model. It is desired to
obtain a set of equations that represents this sys-
tem so that the influence of the added bar show
that the roll angle is reduced by this passive sys-
tem when compared to the roll dynamic model. If
EI is the equivalent bending rigidity, ρ is the mass
density of the beam (per unit length) and y(x, t)
the deflection of the bar, the kinetic energy T and
the potential energy V formulas are:

T =
msż

2
s

2
+
murẏ

2(0, t)

2
+
mulẏ

2(L, t)

2

+
Jsφ̇

2

2
+

1

2

∫ L

0

ρẏ2(x, t) dx,

(5)

V = msgh cosφ+
kt
2

(y(0, t) − zrr)
2

+
kt
2

(y(L, t) − zrl)
2

+
ks
2

(
zs −

l

2
sinφ− y(0, t)

)2

+
ks
2

(
zs +

l

2
sinφ− y(L, t)

)2

+
1

2

∫ L

0

EI (y′′(x, t))
2

dx.

(6)

The Lagrangian’s formula is:

L = T − V = LD +

∫ L

0

L̂ dx+ LB , (7)

where L̂ is a Lagrangian density and in which:

LD =
Jsφ̇

2

2
+
msż

2
s

2
−msgh cosφ

− ksz
2
s − ks

l2

4
sin2 φ,

(8)

and

L̂ =
1

2
ρẏ2(x, t) − 1

2
EI (y′′(x, t))

2, (9)

and

LB =
murẏ

2(0, t)

2
+
mulẏ

2(L, t)

2
− kt

2
(y(0, t) − zrr)

2

− kt
2

(y(L, t) − zrl)
2 − ksy

2(0, t)

2
− ksy

2(L, t)

2

− ks
2
l sinφ (y(0, t) − y(L, t))

+ kszs (y(0, t) + y(L, t)) .

(10)

The generalized Hamilton’s principle is used
to derive the equations of motion, i.e.:

∫ tf

t0

[
δLB +

∫ L

0

δL̂ dx+ δLB + δWnc

]
dt = 0,

(11)
where the virtual works of a dissipative force and
external forces are given by:

δWnc =

[
Flath cosφ− bs

l2

2
φ̇ cos2 φ)

+ bs
l

2
cosφ

(
ẏ(L, t) − ẏ(0, t)

)]
δφ

+ [bs (ẏ(0, t) + ẏ(L, t)) − 2bsżs] δzs

+

[
bs

(
żs −

l

2
φ̇ cosφ− ẏ(0, t)

)]
δy(0, t)

+

[
bs

(
żs +

l

2
φ̇ cosφ− ẏ(L, t)

)]
δy(L, t).

(12)

The discretization techniques, such as finite
differences, finite elements, and the Rayleigh-Ritz
method, are appropriate to extract the character-
istics of the systems. In this paper, the finite ele-
ment method is applied, which is based on selec-
tion of a set of shape functions satisfying the ge-
ometric boundary conditions of the problem. We
will search for solutions of the form:

y(x, t) =

n∑

i=1

Ni(x)vi(t), (13)

where n is the number of degree of freedom of the
element, N(x) are known polynomial shape func-
tions of the spatial coordinates, which are linearly
independent over the domain 0 ≤ x ≤ L as ex-
pressed in Eq. 14, and v(t) are unknown functions
of the time t:

Ni(x) = C1i +C2ix+C3ix
2 + ..., i = 1, ..., n. (14)

Hence the variations of the displacements can be
put in a matrix form as in Eq. 15.

δy = Nδv. (15)

The substitution of Eq. 15 into the variational
principle in Eq. 11 leads to:

mv̈ + cv̇ + kv = fd, (16)
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Figure 2: Roll dynamic model with passive anti-
roll bar (source: the authors).

where:

m =



Js 0 0
0 ms 0
0 0 m22


 , (17)

c =



bs
l2

2 0 bs
l
2 (N(0) −N(L))

0 2bs −bs (N(0) +N(L))
bs

l
2

(
NT (0) −NT (L)

)
−bs

(
NT (0) +NT (L)

)
bs
(
NT (0)N(0) +NT (L)NT (L)

)


,

(18)

k =



ks
l2

2 −msgh 0 ks
l
2 (N(0) −N(L))

0 2ks −ks (N(0) +N(L))
ks

l
2

(
NT (0) −NT (L)

)
−ks

(
NT (0) +NT (L)

)
k22


,

(19)

f =



msh 0 0

0 0 0
0 ktN

T (0) ktN
T (L)


 , (20)

where

m22 = Mv +NT (0)murN(0)

+NT (L)mulN(L),
(21)

k22 = Kv +NT (0) (ks + kt)N(0)

+NT (L) (ks + kt)N(L),
(22)

Mv =

∫ L

0

ρNT (x)N(x) dx, (23)

Kv =

∫ L

0

EIN ′′T (x)N ′′(x) dx, (24)

and

v = (φ, zs, v1, v2, ..., vn)
T
,

d = (ay, zrr, zrl)
T
.

(25)

3.2 Active anti-roll bar

Consider the system, as shown in Fig. 3, which
consists of two flexible bars, each one connected
to an unsprung mass and the electric motor, which
provides the control torque for the active system.
As in the previous section, it is desired to seek a
set of equations that represents the system, so that
the influence of the control torque shows that the
roll angle will be minimized by the active system
when compared to the passive system. Denote by
yA(x, t) the deflection of the bar A and yB(x, t)

the deflection of the bar B. The kinetic energy T
and potential energy V expressions are:

T =
msż

2
s

2
+
murẏ

2
A(0, t)

2
+
mulẏ

2
B(L, t)

2
+
Jsφ̇

2

2

+
1

2

∫ L

0

ρẏ2A(x, t) dx+
1

2

∫ L

0

ρẏ2B(x, t) dx,

(26)

V = msgh cosφ+
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2
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2
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2

(yB(L, t) − zrl)
2

+
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2

(
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l

2
sinφ− yA(0, t)

)2
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2

(
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l

2
sinφ− yB(L, t)
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+
1

2
EI

∫ L

0

(
(y′′A(x, t))

2
+ (y′′B(x, t))

2
)

dx.

(27)

As in Eq. 7, the Lagrangian terms are:

LD =
Jsφ̇

2

2
+
msż

2
s

2
−msgh cosφ

− ksz
2
s − ks

l2

4
sin2 φ,

(28)

L̂ =
1

2
ρẏ2A(x, t) +

1

2
ρẏ2B(x, t)

− 1

2
EI (y′′A(x, t))

2 − 1

2
EI (y′′B(x, t))

2
,

(29)

LB =
murẏ

2
A(0, t)

2
+
mulẏ

2
B(L, t)

2

− kt
2

(yA(0, t) − zrr)
2 − kt

2
(yB(L, t) − zrl)

2

− ksy
2
A(0, t)

2
− ksy

2
B(L, t)

2

− ks
l

2
sinφ (yA(0, t) − yB(L, t))

+ kszs (yA(0, t) + yB(L, t)) .

(30)

Again, the generalized Hamilton’s principle
(Eq. 11) is used to derive the equations of motion,
where the virtual work of dissipative and external
forces, considering the control torque provided by
the motor, is given by:

δWnc =

[
Flath cosφ+ bs

l

2
cosφ (ẏB(L, t) − ẏA(0, t))

− bs
l2

2
φ̇ cos2 φ)

]
δφ− uδθyA(L,t) + uδθyB(0,t)

+ [bs (ẏA(0, t) + ẏB(L, t)) − 2bsżs] δzs

+
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(
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2
φ̇ cosφ− ẏA(0, t)

)]
δyA(0, t)

+

[
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(
żs +

l

2
φ̇ cosφ− ẏB(L, t)

)]
δyB(L, t),

(31)



where u is the torque input applied by the motor.
As a simplification, the dynamic model of the mo-
tor is neglected and the torque is directly applied
as moments at the tips of each bar connected to
the motor, as shown in Fig. 3.

Likewise the previous section, the finite ele-
ment method is employed in this analysis, where:

yk(x, t) =

n∑

i=1

Nki(x)vki(t), (32)

and k = A,B. Hence the variations of the dis-
placements have the form:

δyk = Nkδvk. (33)

The substitution of Eq. 33 for each bars into
the variational principle in Eq. 11 leads to:

mv̈ + cv̇ + kv = fd+ hu, (34)

where:

m =




Js 0 0 0
0 ms 0 0
0 0 m22 0
0 0 0 m33
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 , (35)
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0
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−NT
A (L)

NT
B (0)


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where:

m22 = MvA +murN
T
A (0)NA(0), (40)

m33 = MvB +mulN
T
B (L)NB(L), (41)

k22 = KvA + (ks + kt)N
T
A (0)NA(0), (42)

k33 = KvB + (ks + kt)N
T
B (L)NB(L), (43)

Mvi =

∫ L

0

ρNT
i (x)Ni(x) dx, (44)

Kvi =
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0

EIN ′′Ti (x)N ′′i (x) dx, (45)

and
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,
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T
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(46)
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Figure 3: Roll dynamic model with active anti-roll
bar (source: the authors).

3.3 Parameters

Table 1 presents the parameter’s values used
for simulation. These parameters were obtained
by Yim from an small SUV car in software
CarSim®(Yim et al., 2012).

Table 1: Parameters values.
Variable Value Units
ms 984.6/2 kg
mur 40 kg
mul 40 kg
h 0.45 m
Ixx 439.9/2 kgm2

ks 28721 N/m
bs 2000 n/(m/s)
kt 230000 N/m
l 1.6 m
g 9.81 m/s2

E 210 GPa
ρ 7850 kg/m3

Table 2: Passive bar geometry coordinates.
Spatial distribution of the nodes

Description x [m] y [m] z [m]
n1 0 0 0
n2 0 0 -0.1
n3 0 0 -0.2
n4 0 0 -0.3
n5 0.2 0 -0.3
n6 0.4 0 -0.3
n7 0.6 0 -0.3
n8 0.8 0 -0.3
n9 1.0 0 -0.3
n10 1.2 0 -0.3
n11 1.4 0 -0.3
n12 1.6 0 -0.3
n13 1.6 0 -0.2
n14 1.6 0 -0.1
n15 1.6 0 0

Figure 4 illustrates the spatial discretization
of the passive bar. Table 2 shows the coordinates
xyz of each node. All models use beam element,



where each node has six dof’s: displacements xyz
and their respective rotations. The cross-section
is circular with radius r = 21.8mm.
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Figure 4: Geometry of the passive bar (source:
the authors).

Figure 5 illustrates the spatial discretization
of the active bar. The Tables 3 and 4 shows the
coordinates x-y-z of each node.
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Figure 5: Geometry of the active anti-roll bar
(source: the authors).

Table 3: Active bar ”A” geometric coordinates.
Spatial distribution of the nodes

Description x y z
n1 0 0 0
n2 0 0 -0.1
n3 0 0 -0.2
n4 0 0 -0.3
n5 0.2 0 -0.3
n6 0.4 0 -0.3
n7 0.6 0 -0.3
n8 0.8 0 -0.3

Table 4: Active bar ”B” geometric coordinates.
Spatial distribution of the nodes

Description x y z
n1 0.8 0 -0.3
n2 1.0 0 -0.3
n3 1.2 0 -0.3
n4 1.4 0 -0.3
n5 1.6 0 -0.3
n6 1.6 0 -0.2
n7 1.6 0 -0.1
n8 1.6 0 0

4 Control design

The design of LQG control law for the active anti-
roll system is performed in two steps, where the

model is expressed in following form:

ẋ = Ax+Bu+Gw,

y = Cx+ v,
(47)

where w is white process noise signal and v is the
white measurement noise signal.

kalman
filter

−K
Plant ∑u y

vw

KLQG

Figure 6: LQG scheme (source: the authors).

Considering Fig. 6: the Kalman filter is
firstly determined by minimizing the steady-state
error covariance E[e(t), eT (t)], where the error is
e(t) = x(t)− x̂(t). The process of minimization of
the error covariance is strongly associated with the
matrices Ξ and Θ, that are expressed in Eq. 48,
which also represent the covariances of the process
and measurement noises, respectively:

E[wwT ] = Ξ, E[vvT ] = Θ, E[wvT ] = Ψ.
(48)

Properly chosen values of the above matrices
lead to the gain L of Kalman filter, that is:

˙̂x = Ax̂+Bu+ L[y − Cx̂]. (49)

The state feedback gain matrix K is deter-
mined by the minimization of the cost functional
expressed in Eq. 50 for the particular selection of
the weight matrices Q and R:

J =
1

2

∫ ∞

0

(
xTQx+ uTRu

)
dt. (50)

The control law resulting from this process
has the following form:

u = −Kx̂, (51)

where x̂ is the estimated values delivered by the
Kalman filter.

Finally, the state-space equation of LQG con-
troller with the Kalman filter can be written in
following form:

˙̂x = [A− LC −BK] x̂+ Ly,

u = −Kx̂,
(52)

where y is the vector of the plant’s output (sen-
sors) measurements.

5 Results

For the analysis, it was adopted a known unitary
lateral acceleration input aiming to compare the



final results between the three models chosen for
simulation. The chosen input represents a mod-
erate driver’s maneuver that starts a cornering at
1.0 second and maintain a circular trajectory for
3.0 seconds. Figure 7 illustrates the lateral accel-
eration used as input to the models.
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Figure 7: Input taken for lateral acceleration
(source: the authors).

Typically, the models provided by the finite
element method present large number of degree of
freedom, and the design of the controller becomes
a complicated task. In this paper, the order re-
duction through truncation was applied by using
the Hankel singular values of the balanced repre-
sentation of the system. Figure 8 shows the origi-
nal model with 196 states and the reduced model
with the four more relevant states to the controller
design. The obtained controller was applied to
the original system. In the first step, the gain L
of the Kalman filter is determined. In this case,
the steady-state error covariance is minimized by
choosing the weighting matrices Q and R as:

Q =
[
CTC

]
, R =

[
1e−12

]
. (53)
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Figure 8: Magnitude plot of the original and re-
duced models for active anti-roll bar (source: the
authors).

In order to improve steady-state response of
controller, an integrator was added throughout
the designing. The controller’s transfer function
obtained is given in Eq. 54, where 8e6 stands for
8 × 106 and so forth:

K(s) =
8e6s4 + 1e8s3 + 3e9s2 + 2e10s+ 1e11

s6 + 56s5 + 2e3s4 + 4e4s3 + 5e5s2 + 3e6s
(54)

Figure 9 a) shows the model eigenvalues with-
out anti-roll system, which is naturally stable with
all complex conjugate poles. In Fig. 9 b) it is
presented both passive and active anti-roll system
poles. It is seen the typical characteristics of flex-
ible structures, which are the complex conjugate
poles with small real parts. The addition of the
controller included some real poles with large real
part in order to attain the control objective. Fig-
ure 9 c) shows a zoom of b) where it is seen the
controller’s influence in the poles near the origin.
The arc pattern of the poles resulted of the ap-
plication of the Rayleigh damping on the flexible
portion to make the system well conditioned nu-
merically.
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Figure 9: Eigenvalues for the systems: A(without
anti-roll bar), B(passive bar), C(active bar)
(source: the authors).

Figure 10 shows the main result of this work.
The system without anti-roll bar suffers a roll an-
gle of 0.58 degree under influence of a unitary lat-
eral acceleration. When the passive bar is added,
the roll angle is reduced to 0.41, that represents a
decrease of approximately 30%. The passive bar
also improves the roll occurrence during the ramp
acceleration between 1.0 and 3.0 seconds. The
third model, with active bar, reduces the roll angle
to zero under influence of the unitary lateral ac-
celeration at steady-state. During the ramp accel-
eration, the active model is not able to reduce the
roll angle to zero. However, the controller tends
to maintain the roll angle below 0.1 degree.
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Figure 10: Roll angle for system: 1) without bar,
2) with passive and 3) with active anti-roll bar
(source: the authors).

The active system presented a dc gain of
299Nm/degree. It means that the motor provides
299Nm of torque to compensate one degree of roll
angle. This value is similar to others presented
in the literature, on real active anti-roll system
(Bharane et al., 2014). Figure 11 shows the con-
trol torque applied by the motor whereby the roll
angle was reduced. While the vehicle was cor-
nering at a circular trajectory, the motor kept a
torque of 122Nm to compensate the roll angle.
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Figure 11: Control signal: torque provided by the
motor (source: the authors).

6 Conclusion

There is a significant opportunity to improve the
safety of the current fleet by preventing vehicle
rollover. In this work, it was proposed a model
of the flexible anti-roll bar system with FEM
in both passive and active version. The model
proposed was hybrid, in the sense that it inte-
grated the lumped parameter part (roll vehicle’s
dynamic) and the flexible part. The active model
was used to design a LQG controller to reduce the
rolling. The passive anti-roll bar reduced the roll
behaviour in 30% compared to the system with-

out it. On the other hand, the active bar reduced
the roll angle to zero under constant lateral accel-
eration and showed a significant reduction during
varying lateral acceleration.
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