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Abstract— The paper presents an approach to obtain the transfer function of a Flywheel Inverted Pendulum
(FIP) prototype when only parameters related to the static mechanical structure are known (mass and pendulum
length). The proposed approach combine analytical and experimental techniques, the former conducted over the
non-inverted version, since the FIP has an unstable nature. The state space representation is also determined
and a digital PID controller is implemented to compute the DC motor voltage required to balance the FIP. A
Matlab simulation and experiments with the built prototype have been carried out to validate the effectiveness
of the proposed method.
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Resumo— O artigo apresenta uma abordagem para obter a função de transferência de um protótipo de
Pêndulo Invertido atuado através de um Volante de Reação (PIVR) quando somente os parâmetros relacionados
à estrutura mecânica estática são conhecidos (massa e comprimento do pêndulo). A abordagem proposta combina
técnicas anaĺıticas e experimentais, a última realizada sobre a versão não invertida, uma vez que o PIVR tem uma
natureza instável. A representação do espaço do estado também é determinada e um controlador PID digital é
implementado para calcular a tensão do motor CC necessária para equilibrar o PIVR. Simulações usando Matlab
e experiências usando o protótipo constrúıdo foram realizadas para validar a eficácia do método proposto.

Palavras-chave— Volante de reação, pêndulo invertido, identificação experimental, Controlador PID

1 Introduction

Flywheel Inverted Pendulum (FIP) is a type of
under-actuated mechanical system, which consists
of an inverted pendulum and a rotating inertia
wheel. Inverted pendulum is a control system
with the feature of high order, multi-variable,
non-linearity and naturally unstable (Ruan and
Wang, 2010). The main objective of an FIP sys-
tem is to keep the pendulum balance based on the
reaction torque following the Newton third law.
The reaction torque is produced by the flywheel,
which is driven by a DC motor.

As other inverted pendulum models such as
cart-pole, acrobat, pendubot, FIP is one of the
most favorite nonlinear system for testing and
verifying control algorithms (Nguyen and Huynh,
2016). This class of mechanical system has re-
ceived a lot of interest as they appear in many
practical applications like the balance in unicy-
cle vehicles (Jin et al., 2016) or even for mov-
ing devices in an environment in which the me-
chanical and electronic parts can not be exposed
(Gajamohan et al., 2013).

There are already many applications based on
convencional control methods (Olivares and Al-
bertos, 2013; Nguyen and Huynh, 2016), space-
state based methods (Block et al., 2007), fuzzy
control method (Ruan and Wang, 2010) among
others.

Generally, the system model is obtained

through rigorous procedures based on physics
principles and then linearized. That was the case
for all those works cited here. However they con-
sider all model parameters as knowns even those
depending on the DC motor characteristics. In
most cases it is very difficult to create an accu-
rate analytical model due to the system comple-
xity and lack of information. In those cases, an
approach that combines analytical modeling and
parameter estimation using plant data must be
applied.

Since the FIP system is naturally unstable an
stable version of the FIP, the Flywheel Pendulum,
must be considered for the experimental identifi-
cation approach.

The main objective of this paper is to obtain
a transfer function which accurately represent the
behavior of the FIP. Also, an state space model
with an state vector composed by standard di-
rected measured variables1 need to be obtained
in order to apply state space control methods in
future works. It is also presented a conventional
control algorithm based on PID digital controller
to stabilize the FIP system.

1The standard state space vector is composed by the
pendulum angular position, the pendulum angular velocity
and the flywheel angular velocity.



2 Mathematical Model

The DC motor modeling does not depend on the
pendulum position. The dynamics of the DC mo-
tor can be obtained using the Kirchoff’s law and
the Newton’s second law. Fig. 1 shows the equi-
valent electric circuit and the free-body diagram
of the rotor.

Figure 1: DC motor equivalent model.
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Since the parameters Kv, Kt, bm, J and Ra
are constants, (3) can be rewritten as:
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where K1 and K2 are constants to be estimated
from plant experiments.

The mechanical part of the FIP system con-
sists of a pendulum and a flywheel as shown in
Fig. 2

Figure 2: Flywheel Inverted Pendulum mechani-
cal model.

As showed in (Nguyen and Huynh, 2016), con-
sidering all torques applied to the pendulum, (5)
describes the pendulum movement:
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where J = m1l
2
1 +m2l

2
2 + J1 + J2. J1 and J2 are

respectively the pendulum moment of inertia and
the wheel moment of inertia.

When considered the Flywheel Pendulum in
its not inverted position, angle θ must be replaced
with 180◦+ θ. Linearizing (5) for that angle2 (6)
was obtained:
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Applying Laplace Transform considering null
initial conditions in (6) the Transfer Function

(TF) Θ(s)
Φ(s) was obtained
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where ml = m1l1 +m2l2
Applying Laplace Transform considering null

initial conditions in (4) the TF Φ(s)
U(s) was obtained
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The TF Θ(s)
U(s) describe the relationship

between the pendulum angle position and the vol-
tage applied to the DC motor.
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3 FIP system construction

The FIP prototype was built in PLA, using a 3D
printing device for the construction of mechanical
parts. The design was made using Solidworks
and it is shown in Fig. 3.

Figure 3: FIP prototype mechanical design.

2sin(180 + θ) ≈ −θ when -15◦≤ θ ≤ 15◦



The FIP system is composed of an angu-
lar position sensor, which was implemented using
a 10 KΩ potentiometer. A DC motor model
AK360/PL 12-12500 is driven by a H-Bridge
L298N using a 12 V power supply. The hardware
controller was based on the Arduino Nano plat-
form. Full hardware controller is shown in Fig.
4.

Figure 4: Flywheel Inverted Pendulum hardware
controller.

4 Experimental identification

The experiments were conducted using a 10 ms
sampling time (100 Hz). The first experiment con-
ducted used a step signal in order to identify
the system natural frequency. Using data from
that experiment, 5 Pseudo Random Binary Sig-
nals (PRBS) were generated, using idinput com-
mand available in Matlab software according to
parameters established in (Ljung, 1999)

The plant data obtained using those 5 PRBS
as input are shown in Fig. 5

Figure 5: Data from five experiments on Matlab
System Identification Toolbox user interface.

For those experiments, the input signal is
the DC motor voltage and the output signal is
the pendulum angular position in rad, precom-
puted from the potentiometer voltage. Then,
the constant used to convert voltage to angle
was already included in the TF to be deter-
mined. Model parameters estimation was con-
ducted using the Matlab System Identification
Toolbox (Ljung, 1992).

Equation (10) shows the TF desired struc-
ture, which is a two zeros, 4 poles with no de-
lay. Using Matlab identification toolbox function

Estimate → Transfer Function Models, a TF
was obtained with 4 poles and 2 zeros. The model
obtained achieved a 89.19 % precision.

G1(s) =
−0.02882s2 − 0.001487s+ 0.006707

s4 + 2.467s3 + 76.05s2 + 46.67s+ 1.1 × 10−10

The G1(s) transfer function was adapted to fit
the desired model structure leading to a 84.77 %
precision.

G2(s) =
−0.03s2

s4 + 2.467s3 + 76.05s2 + 46.67s
(11)

Table 1 shows the precision obtained using
different experiment data.

Table 1: Model precision for each experiment (%)
TF Exp1 Exp2 Exp3 Exp4 Exp5
G1(s) 89.19 82.65 80.97 81.35 85.1
G2(s) 84.77 83.1 79.09 80.45 87.12

Even when model precision was better for
G1(s) the step response fails to follow the real be-
havior of the FIP system while model G2(s) pre-
sented the correct behavior.

5 Obtaining the FIP Transfer Function

The FIP transfer function can be obtained from
G2 transfer function. Note that FIP must operate
around 0◦ while the stable version operate around
180◦. The linearization of eq. 5 will follow the
next equation:
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Considering equations 8 and 12, the TF of the
FIP is:
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Note that terms s4 and s3 remains the same
and term s will be the same but negative. Coeffi-
cient for term s2 must be determined.

Since parameters m1, l1, m2, l2 can be easily
obtained from the FIP design and g is known there
is a system of algebraic equations of size three.
Table 2 shows the FIP known parameters.

Table 2: FIP known parameters
Symbol Description Value
m1 pendulum mass 0.015 Kg
m2 motor and wheel mass 0.0995 Kg
l1 pendulum mass center 0.13 m
l2 pendulum length 0.169 m



K2 +
b

J
= 2.467

(K2b+ 0.1839)

J
= 76.05

0.1839K2

J
= 46.67

The parameters value obtained were
K2 = 0.6342, b = 0.0046 and J = 0.0025 Kg/m2.
Solution for J comes from a third order polyno-
mial equation with one real solution (0.0025) and
two discarded complex solutions.

The TF of the FIP system is:

Θ(s)

U(s)
=

−0.03s2

s4 + 2.467s3 − 72.4s2 − 46.67s
(13)

The FIP system’s negative gain means that
clockwise rotation in DC motor, obtained apply-
ing a negative voltage, increases the pendulum an-
gular position, while counter-clockwise rotation in
DC motor, obtained applying a positive voltage,
decreases the pendulum angular position.

5.1 Validating the FIP Transfer Function

The homogeneous version of (6) can be used to de-
termine some system parameters such as the sys-
tem frequency ω.
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+
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θ = 0 (14)

Since the system behavior is underdamped the
(14) solution has the form:

θ(t) = eσt(c1 cosωt+ c2 sinωt) (15)

where σ = − b
2J and ω =

√
b2−4Jmlg

2J

Note that ω is the system damping frequency
and can be validated trough the system impulse
response. The G2 impulse response obtained
using Matlab is shown in Fig. 6.

Frequency of G2 was obtained by:

2π

ωd
= 0.733 s⇒ ωd = 8.57 rad/s⇒ fd = 1.364 Hz

The frequency obtained analytically from FIP
parameters was ωd = 8.5277 rad/s which confirm
data obtained by experimental identification.

The frequency spectrum of potentiometer sig-
nal in experiment 5 (Exp5) is shown in Fig. 7

The frequency spectrum shows two important
things:

• There are 4 dominant frequencies, the
more important of them is the dam-
ping frequency of mechanical system
fd = 1.401 Hz ≈ 1.364 Hz;

Figure 6: Impulse response of TF G2 obtained
with Matlab.

Figure 7: Frequency spectrum of pendulum angu-
lar position in experiment 5.

• There are no significant information above
5 Hz frequency. According to Nyquist-
Shannon Theorem, a sampling rate of 10 Hz
(two times 5 Hz) will ensure no information
losses when sampling the pendulum angular
position.

6 The FIP State Space Model

To obtain the FIP state space model parameters
J2, and K1 are necessary. Considering the total
moment of inertia J and assuming that the wheel
moment of inertia (J2) is many times greater than
the pendulum moment of inertia J1,3 so J2 can be
computed by:

J1 + J2 = J − (m1l
2
1 +m2l

2
2)

J1 + J2 = 0.000 595 Kg/m2

J2 ≈ 0.9(J1 + J2) = 0.000 536 Kg/m2

From the FIP model (11) and (12), the pa-
rameter K1 can be estimated.

−J2K1

J
= −0.03⇒ K1 =

0.03J

J2
= 0.14

3It is assumed here that J2 is 90% of the total moment
of inertia J



The FIP state space model is given as follow:θ̇θ̈
φ̇
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 =
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Substituting the FIP parameters the system

representation was obtained:

θ̇θ̈
φ̇

φ̈

 =


0 1 0 0

73.56 −1.83 0 0.13
0 0 0 1
0 0 0 −0.63


︸ ︷︷ ︸
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The eigenvalues of state matrix A are
[7.7092 − 9.5420 0 − 0.6342]T which correspond
with poles in TF in (13).

Note that, the flywheel angular position (φ),
does not affect any other variable4. Thus, if there
is not any interest in its evolution, it can be dis-
carded leading to a more simplified state space
model as in (Olivares and Albertos, 2013).

[
θ̇

θ̈

φ̈

]
=

[
0 1 0

73.56 −1.83 0.13
0 0 −0.63

][
θ

θ̇

φ̇

]
+

[
0

−0.03
0.14

]
u

7 Control Strategy

In this paper, the control strategy only concern
was the system stabilization. In doing so, there
was necessary to deal with some issues like noise
generated by the potentiometer, saturation and
dead zone in DC motor behavior.

The controllability of FIP can be established
by the controllability matrix:

Co =
[
B AB A2B A3B

]
=


0 −0.0300 0.0740 −2.3549

−0.03 0.0740 −2.3549 9.7687
0 0.1400 −0.0888 0.0563

0.14 −0.0888 0.0563 −0.0357


Since the rank of Co matrix is 4, it cor-

responds to the size of the state space vector
[θ θ̇ φ φ̇]T . Thus FIP is a completely controllable
system.

The ideia was to implement a PID controller
with a lowpass filter in the derivative action and
anti-windup feature. To deal with the noise gene-
rated by the potentiometer it was decided to turn
off the derivative action when the pendulum an-
gular position reached certain balance range.

It was also used a positive feedback loop in
order to deal with positive gain for PID controller.
The control architecture is shown in Fig. 8

The K gain was used to convert from rad to
degrees.

4Third column of the states matrix A is null

Figure 8: Control strategy for balancing FIP.

7.1 Choosing an appropriate sampling time

Since a digital controller will be used, the sampling
time for the control loop must be determined and
the plant must be discretized for the chosen sam-
pling time. Even when the Nyquist-Shannon theo-
rem is satisfied, for control purposes, such sam-
pling rate is not enough to satisfy the system per-
formance requirements.

Besides the desired behavior of the closed-loop
response, other requisites must be considered like
processor time consumption, which its related to
the power consumption. Such requirement is an
important feature when dealing with embedded
systems.

The sampling rate was chosen being as slow
as possible, but fast enough to allow to achieve
balance, avoiding to reach the controller action
saturation limits.

The relevant higher frequency was obtained
from Fig. 7, which was about 2 Hz. A sampling
rate of ten times that frequency was considered in
order to achieve a system performance similar to
the continuous transfer function.

Using a 20 Hz sampling rate (a sample time
Ts = 0.05 s), the discrete TF was obtained. The
Matlab Graphical Controller Design Toolbox was
then used to tune a PID controller. Even when
the system became stable, the controller gain was
so high that the control action blowup the satu-
ration limits resulting in an unstable closed-loop
response, when saturation effects were considered.

The procedure was repeated for a sampling
rate of 25 Hz (Ts = 0.04 s) with similar results and
then with a sampling rate of 40 Hz (Ts = 0.025 s)
when the stability condition was achieved even
considering the saturation of the control action.

The discrete-time transfer function was:

G(z) =
−9.22 × 10−6z2 + 1.87 × 10−7z + 9.03 × 10−6

z3 − 2.985z2 + 2.924z − 0.9402

7.2 Simulation results

Simulations results for the controlled FIP when
subject to a disturbance impulse with 0.15 rad am-
plitude and 0.5 s duration are shown in Fig. 9.

The FIP response in Fig. 9 was obtai-
ned for PID controller parameters (Kp=6500,



Figure 9: Simulation results of controller FIP.

Ki=3500 and Kd=700) and PI controller parame-
ters (Kp=5000, Ki=2200). The PI controller was
activated when −1.15 ◦ ≤ θ ≤ 1.15 ◦.

8 Experimental Results

The control strategy shown in Fig. 8 was imple-
mented in the laboratory prototype. The experi-
mental results obtained using the same parame-
ters in simulation are shown in Fig. 10.

Figure 10: Experimental results of controller FIP.

In this experiment the disturbance was ap-
plied by a slight tapping on the pendulum rod in
order to remove it from the equilibrium position.

Other experiments were conducted using sam-
pling rates of 20 Hz and 25 Hz but the system
could not remain in balance for more than 5 se-
conds even when no disturbance was applied.

9 Conclusion

The approach here proposed allows to determine
the FIP transfer function even when dealing with
a system that is naturally unstable and not all
parameters were known or easily determined.

Despite the simplicity of the control strategy,
the FIP was successfully stabilized using the exact
tuning obtained in simulation which confirm the
obtained transfer function validity. The adequate

sample rate was also determined based on simu-
lations. Several implementations of the controller
using faster sampling rates fails like predicted by
simulation.
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