
DETERMINING A PROCESSOR UTILIZATION MODEL BASED ON FUZZY
C-MEANS CLUSTERING

Augusto J. S. Firmo∗, Saulo O. D. Luiz†, Antonio M.N. Lima†

∗Post-Graduate Program in Electrical Engineering - PPgEE - COPELE

†Electrical Engineering Department (DEE)
Federal University of Campina Grande (UFCG)

58429-900, Campina Grande - PB - Brazil

Emails: augusto.firmo@ee.ufcg.edu.br, saulo@dee.ufcg.edu.br, amnlima@dee.ufcg.edu.br

Abstract— The present work presents the modeling of the processor utilization by means of Fuzzy inference
systems. We have applied data analysis by means of the Fuzzy C Means clustering method. Experiments were
also performed for validating the generated model. It was possible to improve the estimation and the generality of
the model by using idleness as an input, enabling the estimation of the processor utilization for several workloads.

Keywords— Model, Modeling, Fuzzy, Fuzzy C means, FCM, processors, CPU, utilization, estimation, Takagi,
Sugeno, Cluster, Clustering.

1 Introduction

Processors are a critical part of any electrical
or electronic controlled system. From basic ap-
pliances to large factories or also computers of
general-purpose and smartphones.

Processor utilization models are widely used
in the estimation of consumption of systems fed
by batteries, as shown by (Zhang et al., 2017),
(Kim et al., 2012a) and (Kim et al., 2012b), for
smartphones, for example.

In the case of general-purpose computers, due
to the unpredictability of their workload over
time, the development of an accurate model of
energy consumption becomes quite complicated,
being necessary the use of advanced estimation
techniques for the accomplishment of such task,
as presented by (Neves et al., 2013) and (Luiz
et al., 2014). Therefore, it’s important to con-
sider situations where processor consumption is
based on a utilization model. The power ma-
nagers Ondemand1 of Linux system or the Pro-
cessor Power Manager2 of Windows system are
implemented without incorporating information
about the power consumption models of the pro-
cessors, and base frequency and voltage changes
for the reduction of energy consumption in pro-
cessors mainly in the estimation of their utiliza-
tion. This is mainly due to the large number of
processors on the market, being impossible to in-
corporate information of the models of the energy
consumption of all available processors.

In this context, this paper analyzes the hy-
pothesis that Fuzzy Logic can be used to modeling
the processors utilization, mainly due to the ap-
plicability in complex systems to obtain a better

1https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt

2https://docs.microsoft.com/en-us/windows-
hardware/customize/power-settings/configure-processor-
power-management-options

result.

2 Takagi-Sugeno Fuzzy Models

The principles of Fuzzy Logic were first develo-
ped by Jan Lukasiewicz (1878-1956), who in 1920
developed and introduced membership functions
or membership groups, that combined with the
concepts of classical logic, developed by Aristo-
tle, gave sufficient background in order that in the
60’s, Lofti Asker Zadeh, professor of computer sci-
ence at the University of California proposed the
Fuzzy Logic (Chenci et al., 2011).

The membership functions or membership
groups, can be represented by different types of
functions,such as gaussian, trapezoidal and trian-
gular functions. By means of such functions, its
possible evaluate how much a determinate data
belongs to a particular group, and not only if it
belongs to the particular group. The image of such
functions is named degree of membership µ, where
µ ∈ [0, 1]. An example of membership groups A
and B for a generic input, with triangular mem-
bership functions is shown in Figure 1. Note that
in the interval [0, 0.5) the input value is more be-
long to group A and less to group B, and in (0.5,
1], it belongs more to group B and less to group
A.

Figure 1: Membership functions for the example.

There are different types of Fuzzy controllers
described in the literature, differing mainly by
their method used to evaluate the output. Ac-
cording to (Sugeno, 1985) these controllers can be
grouped into the following:

1. Controllers based on Fuzzy membership func-
tions and in operators for the definition of
their Fuzzy output.

2. Controllers based on Fuzzy membership func-
tions, but without operators for the defini-
tion of the output, Where is obtained by
a linear or constant function. The Takagi-
Sugeno type controllers belong to this group.

In both types of controllers, the control law is
obtained by means of a set of rules. These are of
type IF-THEN and may be divided in precedent,
rule and consequent, as shown in the following ex-
ample:

Precedent: if x is A and y is B

Rule: if x is A and y is B, then z is C

consequent: z is C

This rule can be read as: If the input x be-
longs to the membership group A and the input
y belongs to the membership group B, then the
output z belongs to the membership group C. In
this example, x and y are input variables of the
process and z is the control output. The groups A
and B correspond to the membership function µA
and µB , referring to the input variables. For the
Takagi-Sugeno type controllers, C is a first-order
function.

In the current work, the rules for the Takagi-
Sugeno controllers are described as:

Rule(Ri): if x is Ai and y is Bi, then zi =
fi(x, y), where i is the index of the rule and
fi(x, y) is a first-order function corresponding to
the rule Ri.

The result of each rule is a numerical value
and not a Fuzzy membership group, such as con-
trollers with their output based on membership
groups.

For Takagi-sugeno controllers with more then
one input, the output z is obtained by weighing
the various outputs obtained by each rule, as
shown in (1).

z =

∑n
i=1 wizi∑n
i=1 wi

(1)

Where n is the number of controller rules, zi is
the output for the rule i, wi is the weight assigned
to the rule i. This weight is determined as the
lowest degree of membership between the inputs
of the rule i, as shown in Figure 2. The weight w1

is determined as the lowest degree of membership
of the inputs x and y to the membership groups
A1 and B1

Figure 2: Definition of weights for the Takagi-
Sugeno controller.

3 Fuzzy C Means algorithm

Fuzzy C Means (FCM) is a clustering method that
allows the allocation of a piece of data in one or
more groups, named clusters. This method was
developed by (Dunn, 1973) and further enhanced
by (Bezdek, 1981). It is widely used in pattern
recognition and is based on minimizing the objec-
tive function shown in (2), where n is the num-
bers of data to be grouped, c is the numbers of
adopted clusters, m is a positive real number, such
as m ∈ (1,∞), xi is the ith data to be grouped,
cj is the j th cluster and µij is the degree of mem-
bership of the data xi to the cluster cj .

J =

n∑
i=1

c∑
j=1

(µij)
m||xi − cj ||2 (2)

The initial values of degrees of membership
µij are randomly defined and used in updating
the clusters cj as shown in (3).

cj =

∑n
i=1(µij)

mxi∑n
i=1(µij)m

(3)

When the cluster values are updated, the va-
lues of the degrees of membership of each data
may also be updated, as shown in (4).

µij =
1∑c

k=1(
||xi−cj ||
||xi−ck||)

2
m−1

(4)

The objective function (2) is evaluated again
and this process is repeated until J is less than
a minimum error adopted or until it reaches the
maximum number of iterations specified.

The methods presented in this section will be
used for treating the data obtained in the experi-
mental platform for the construction of the Fuzzy
model.

4 Implementation

4.1 Measuring processor utilization

The experimental platform used was a personal
computer composed of an Intel i5-6500 processor

with the frequency set {800 MHz, 1GHz, 1.1GHz,
1.3GHz, 1.5GHz, 1.7GHz, 1.8GHz, 2GHz,
2.2GHz, 2.3GHz, 2.5GHz, 2.7GHz, 2.9GHz,
3GHz, 3.2GHz}, 8 GB memory and 1TB hard
drive. The adopted Operating System was the
Linux Mint 18.3 Sylvia Cinnamon 64-bit.

The file /proc/stat3 was used for measure the
processor utilization. Such file has a variety of
different system data since it was restarted for the
last time. An example of its content regarding the
processor and its cores is presented below:

cpu 79242 0 74306 842486413 756859 6140 67701

cpu0 49663 0 40234 104757317 542691 4420 39572

cpu1 2724 0 2118 105420424 767 1719 6084

cpu2 18578 0 18430 105191522 204592 0 714

cpu3 513 0 979 105428698 739 0 2907

cpu4 1623 0 2105 105426291 444 0 3373

cpu5 3491 0 5326 105414798 7134 0 3087

cpu6 1636 0 3081 105420689 201 0 8229

cpu7 1011 0 2029 105426670 288 0 3731

The sampling intervals of the processor cores
are time units USER HZ or Jiffies (usually thou-
sandths of seconds, and may change according to
the architecture or distribution used). The nume-
rical values file /proc/stat are values of counters
that are incremented at each sampling interval at
which the processor or certain core performs a cer-
tain activity.

The first line “cpu” of the file /proc/stat con-
tains data for all processor cores. The next lines
“cpui”, where i = 0, 1, 2, 3, ..., 7, contain data for
each core in the processor. Each column of these
lines refers to some type of core activity:

• 1st column (User): processes running in user
mode;

• 2nd column (Nice): high-priority processes
running in user mode;

• 3rd column (System): processes running in
kernel mode;

• 4th column (Idle): waiting time;

• 5th column (IOwait): waiting for input and
output processes;

• 6th column (Irq): service interruptions;

• 7th column (Softirq): process maintenance
time.

Based on these data, it is possible to evalu-
ate the utilization of each processor core i. The
sum of all these columns is named ttotal and the
sum of the Idle and IOwait columns is named tidle.
Measurements are performed at each sampling in-
terval. The elapsed interval ∆ttotal and the idle
interval ∆tidle are shown in (5) and (6) respec-
tively.

3http://www.linuxhowtos.org/manpages/5/proc.htm

∆ttotal(t) = ttotal(t)− ttotal(t− 1) (5)

∆tidle(t) = tidle(t)− tidle(t− 1) (6)

The utilization y and idleness ι are evaluated
as shown in (7) e (8) respectively.

y(t) =
∆ttotal(t)−∆tidle(t)

∆ttotal(t)
(7)

ι(t) =
∆tidle(t)

∆ttotal(t)
= 1− y(t) (8)

4.2 Selecting the processor frequency

(Luiz, 2012) described some usual workloads on
general-purpose computers, showing the relation
between frequency and utilization. Examples of
the average utilization as a function of frequency,
for a light and a heavy workload are shown in
Figures 3 and 4 respectively.

Figure 3: Utilization as a function of frequency
for a light workload.

Font: Adapted from (Luiz, 2012).

Figure 4: Utilization as a function of frequency
for a heavy workload.

Font: Adapted from (Luiz, 2012).

In this work, the data collected from the
processor were the chosen frequencies, the idle-
ness and the utilization. Workloads were se-
lected to generate demands that cause multiple
utilization ranges on the processor, these were
defined according to the range of coverage. Ex-
treme4, covering utilization between 55% and
95%. Heavy2, covering utilization between 35%
and 85%. Medium2, covering utilization between

4http://bbb3d.renderfarming.net/download.html

Table 1: Description of the used workloads.
Workload Description

Extreme
Video with resolution
4K (3840x2160) 60 fps
(frames per second)

Heavy
Video with resolution
4K (3840x2160) 30 fps

Medium
Video with resolution
1080p (1920x1080) 60 fps

Light
Video with resolution
1080p (1920x1080) 30 fps

Minimum Music

15% and 55%. Light5 covering utilization between
10% and 35%. And Minimum6, covering utiliza-
tion between 3% and 14%. These workloads are
shown in Table 1.

A software was implemented in C to run in
the Linux userspace and apply the same frequen-
cies to all the processor cores by means of the set
of utilities indicator-cpufreq7 and measure the uti-
lization y and idleness ι, using the methodology
presented in Section 4.1.

The tests performed to train the model con-
sisted in running the workloads described in Table
1 in different frequencies, and measuring the uti-
lization y and idleness ι of the processor during the
test (first line of the file /proc/stat). The average
utilization and the idleness along time are shown
in Figures 5 and 6 respectively. The frequency was
increased every 140 seconds, from 800 MHz up to
3.2 GHz. The variation in utilization and idle-
ness values when the frequency is constant occurs
because of the scheduling of userspace workloads
and Kernel workloads.

4.3 The model estimation

In this work, a data set with the maximum fre-
quency divided by the current frequency, lagged
idleness and utilization, is defined in (9).

ZNl = {(u(t), ι(t− 1), y(t))}, t = 1, 2 . . . , N

l ∈ {ext, hea,med, lig,min}
(9)

where N stands for the number of data points,
and l denotes the type of workload.

The following data sets were acquired: Z2200
ext

for extreme load, Z2200
hea for heavy load, Z2200

med for
medium load, Z2200

lig for light load e Z2200
min for mini-

mum load. Such data sets are presented in Figures
5 and 6.

The sets uext(t), uhea(t), umed(t), ulig(t) and
umin(t) represent the maximum frequency divided
by the actual frequency values shown in Figure 6.

5https://durian.blender.org/download/
6http://freemusicarchive.org/
7https://launchpad.net/indicator-cpufreq

Figure 5: Utilization for different frequencies and
workloads.

Figure 6: Idleness for different frequencies and
workloads.

The frequency was as shown in equation (10),
where s0 is the maximum processor frequency and
s(t) is the actual processor frequency. The divi-
sion occurs because the utilization is a monotoni-
cally increasing function of s0

s .

u(t) =
s0

s(t)
(10)

The model presented by (Luiz, 2012) uses as
input the sets uext(t), uhea(t), umed(t), ulig(t) and
umin(t), and is presented in(11). As can be seen in
Figure 7, different values of yon and yoff are gener-
ated for each type of workload. The estimation of
these parameters at run time requires the use of an
estimation technique such as least squares recur-
sive, this may result in an overhead in the power
manager, which can be avoided through the use of

ι(t − 1), which gives an indirect indication of the
type of workload being executed, and thus, when
added to the model makes it more generic.

y(t) = u(t)yon + yoff (11)

Figure 7: Curves for each workload.

The inputs of the Fuzzy model were the data
sets of idleness ιext(t− 1), ιhea(t− 1), ιmed(t− 1),
ιlig(t−1) and ιmin(t−1) and maximum frequency
divided by the current frequency uext(t), uhea(t),
umed(t), ulig(t) and umin(t). As output of the
model was the set of utilization yext(t), yhea(t),
ymed(t), ylig(t) and ymin(t). First, from each indi-
vidual workload data set (composed of utilization
and idleness), clusters were generated by means of
the FCM algorithm presented in Section 3. The
stopping criterion was chosen as the maximum er-
ror of 5% or maximum of 100 iterations. Then the
clusters for each workload data set were grouped
in two sets of clusters, one for the idleness input
and one for the utilization output. It was seen that
maximum errors of less than 5 % did not produce
much better results on the quality of clusters.

The clusters generated for each dataset are
used to create the membership functions to the
Fuzzy model, for each workload.

Gaussian membership functions were
adopted, since these have only two parameters,
unlike the triangular and trapezoidal functions
that have 3 and 4 parameters respectively. The
centers are defined as the clusters and the width
σ is defined as shown in (12).

σ =

∑n
i=1

√
−(xi−cj)2

2log(µij)

n
(12)

Where xi is the data of an input, cj is the clus-
ter used as the center of the gaussian membership
function and µij are the degrees of membership of
the data xi to the cluster cj as shown in (4).

The membership functions obtained for the
frequency input are shown in Figure 8. The input
u(t) varies between 1 and 4, where 1 corresponds
to s(t) = s0 and 4 corresponds to s(t) = 800 MHz.

The membership functions for the input idle-
ness ι(t−1) for the extreme, heavy, medium, light
and minimum workloads are shown in Figures 9,

Figure 8: Membership functions for the input u.

Table 2: Parameters for the output functions for
the model rules.

Outputs a1 a2 a3

zext −2.855× 10−9 -1 1
zhea −1.535× 10−8 -1 1
zmed 4.747× 10−9 -1 1
zlig −3.846× 10−8 -1 1
zmin 2.144× 10−9 -1 1

10, 11, 12 and 13 respectively. The idleness values
corresponding to the centers of the membership
functions increase from the extreme load to the
minimum load, because the extreme load is less
idle than the minimum load. The membership
functions for idleness input ι(t − 1) of the model
is composed of all the membership functions pre-
sented for all workloads (Figures 9, 10, 11, 12 and
13).

The output functions for the model rules are
obtained by least squares method for the datasets
of each workload. This way, we have the output
for the Fuzzy system as shown in (13).

zi = a1u(t) + a2ι(t− 1) + a3 (13)

Solving a1, a2 and a3 as shown by (Gruen
and Akca, 2005), for each workload, it’s obtained
five output function as shown in Table 2. Where
zext is the function for the extreme workload, zhea
is the function for the heavy workload, zmed is
the function for the medium workload, zlig is the
function for the light workload and zmin is the
function for the minimum workload.

The rules for the Fuzzy model are shown in
Table 3.

The block corresponding to the developed
model is shown in Figure 14. The input ι(t− 1) is
used to detect the system workload and the input
u(t) to detect the current processor frequency.

5 Model validation

In this section, the results of a validation experi-
ment will be presented. By means of the inputs
in the validation data and the Fuzzy model pre-
sented in Section 4.3, outputs were estimated and

Table 3: Rules for Fuzzy model.
Inputs Output

Rules
u(t) t-norm ι(t− 1) y(t)

R1 Medium AND Extreme1 zext

R2 High AND Extreme2 zext

R3 Low AND Extreme3 zext

R4 Medium AND Heavy1 zhea

R5 High AND Heavy2 zhea

R6 Low AND Heavy3 zhea

R7 Medium AND Medium1 zmed

R8 High AND Medium2 zmed

R9 Low AND Medium3 zmed

R10 Medium AND Light1 zlig
R11 High AND Light2 zlig
R12 Low AND Light3 zlig
R13 Medium AND Minimum1 zmin

R14 High AND Minimum2 zmin

R15 Low AND Minimum3 zmin

Figure 9: Membership functions for idleness input
ι and extreme load.

Figure 10: Membership functions for idleness in-
put ι and heavy load.

Figure 11: Membership functions for idleness in-
put ι and medium load.

compared to the outputs in the validation data.
The validation data is composed of several differ-

Figure 12: Membership functions for idleness in-
put ι and light load.

Figure 13: Membership functions for idleness in-
put ι and minimum load.

Figure 14: Block corresponding to the Fuzzy
model.

ent workloads at different frequencies. The loads
were the open license videos and songs. During
the experiment, the computer network interfaces
were disconnected, and the update processes and
other non-essential processes of the operating sys-
tem were canceled.

The experiment was performed in the follow-
ing sequence:

1. For t ∈ [0, 140]s: Video reproduction with
resolution 2K (2048x1080), 30 fps, and pro-
cessor with 3 GHz frequency.

2. For t ∈ (140, 280]s: Video reproduction with
resolution 2K (2048x1080), 60 fps, and pro-
cessor with 2.5 GHz frequency.

3. For t ∈ (280, 420]s: Video reproduction with
resolution 4K (3840x2160), 60 fps, and pro-
cessor with 2.7 GHz frequency.

4. For t ∈ (420, 560]s: Video reproduction with
resolution 720p (1280x720), 60 fps, and pro-
cessor with 1.5 GHz frequency.

5. For t ∈ (560, 700]s: Video reproduction with
resolution 360p (640x360), 30 fps, and pro-
cessor with 1 GHz frequency.

6. For t ∈ (700, 840]s: Music reproduction, and
processor with 800 MHz frequency.

The validation data and the estimated data
are shown in Figure 15.

Figure 15: Result of the validation experiment,
with εN = 0.0027.

The error between the validation and the esti-
mation data was the root mean squared error, as
shown in (14). An error of 0.0027 was obtained,
with the weight wt equal to 1 for all estimations.

εN =

√∑N
t=1 wt (y(t)− ŷ(t))

2

N
(14)

The model proposed in this work was com-
pared to the model developed by (Luiz, 2012) pre-
sented in (11), where u(t) is presented in (10). The
parameters yon and yoff were estimated for each
workload presented in this section. Such parame-
ters were estimated by means of curve fitting, and
the result are shown in Table 4.

Table 4: Parameters yon and yoff.
Workloads yon yoff

Extreme 0.1106 0.4975
Heavy 0.1791 0.0876
Medium 0.1083 0.0386
Light 0.0506 0.0428
Minimum 0.0221 0.0120

The validation and estimation data are shown
in Figure 16. The estimated output follows the av-
erage value of the utilization y, this occurs because
this model don’t uses idleness as a input, causing
an error of 0.0042, greater than the error of 0.0027
obtained by the model presented in this work.

6 Conclusion

In this work, a Fuzzy model for the processor uti-
lization was developed using data clustering tech-
niques. The proposed model was validated as de-

Figure 16: Result of the validation experiment
with the model developed by (Luiz, 2012), with
εN = 0.0042.

scribed in Section 5. It was also possible to im-
prove the estimation of processor utilization by
means by including the idleness as input of the
model. The generality of the model has also been
improved, because the utilization due to several
types of workloads, may be estimated by means
of a single model, not requiring the use of differ-
ent parameters for each type of load and another
type of estimation for the current processor work-
load as presented by (Luiz, 2012).

Acknowledgment

The authors would like to thank the PPgEE-
COPELE and CAPES for the necessary support
during this work.

References

Bezdek, J. C. (1981). Objective function cluster-
ing, Pattern recognition with fuzzy objective
function algorithms, Springer, pp. 43–93.

Chenci, G. P., Rignel, D. G. and Lucas, C. A.
(2011). Uma introdução a lógica fuzzy, Re-
vista Eletrônica de Sistemas de Informação e
de Gestão Tecnológica 1(1).

Dunn, J. C. (1973). A fuzzy relative of the iso-
data process and its use in detecting compact
well-separated clusters, Journal of Cybernet-
ics 3(3): 32–57.

Gruen, A. and Akca, D. (2005). Least squares
3d surface and curve matching, ISPRS Jour-
nal of Photogrammetry and Remote Sensing
59(3): 151–174.

Kim, M., Kong, J. and Chung, S. W. (2012a).
Enhancing online power estimation accuracy
for smartphones, IEEE Transactions on Con-
sumer Electronics 58(2).

Kim, M., Kong, J. and Chung, S. W. (2012b).
An online power estimation technique for

multi-core smartphones with advanced dis-
play components, Conf. Rec. ICCE, IEEE,
pp. 666–667.

Luiz, S. O. D. (2012). Gerenciamento
dinâmico de energia em processadores com
cargas de trabalho variantes no tempo,
Tese de Doutorado, UAEE/UFCG, Campina
Grande, PB .

Luiz, S. O. D., Silva, A. V. d. N., Santos, D. R.
and Melo, T. (2014). Increasing power mod-
els accuracy by means of synchronized mea-
surements, Conf. Rec. ICCE, IEEE, pp. 318–
322.

Neves, B. H., Cruz, B. M., Mendes, R. R., Bublitz,
F. M., Silva, J., Luiz, S. O. D., Perkusich, A.
and Almeida, H. (2013). Computer systems
power model estimation, Conf. Rec. ICCE,
IEEE, pp. 173–176.

Sugeno, M. (1985). An introductory survey of
fuzzy control, Information Sciences 36(1): 59
– 83.

Zhang, Y., Liu, Y., Liu, X. and Li, Q. (2017). En-
abling accurate and efficient modeling-based
cpu power estimation for smartphones, Conf.
Rec. IWQoS, IEEE, pp. 1–10.

