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Abstract— Electric power systems sometimes experience transient situations in which their steady state
behavior is no longer respected. In these scenarios, the electric power supply can be compromised as well
as economic losses may occur. In order to better predict such accidents, system identification uses several
methods to define signal parameters. One method is the definition of frequency-dependent network equivalent
(FDNE) models to analyse eletromacnetic transitories. Another method is the definition of transient signals’
eletromechanic modes based on Wide Area Monitoring (WAM) systems. An important technic of parameter
identification is the Matrix Pencil method, which can be applied in both problems described. In this work, it
is proposed to study and evaluate the performance of the Matrix Pencil algorithm in the WAM problem and
in the estimation of eletromechanic modes. It is also purposed to compare it with the Vector Fitting method,
which has been used in similar applications. Three study cases are presented in order to evaluate and compare
the problem described: One synthetic test signal and two real cases considering ringdown data extracted from
the North American Eastern Interconnection system and from the Brazilian Interconnected Power system.

Keywords— Power Systems Stability, Electromechanical Modes, Ringdown Analysis, System Identification,
Matrix Pencil.

1 Introduction

System identification is a very important field in
engineering, which enables us to create models of
dynamic systems, in order to study and analyse
them. When it comes to modelling power systems,
the difficulties faced in the process are due to the
fact that power systems have become extensive,
complicated and ever more interconnected (Pierre
et al., 2012). Therefore, its modelling is on the
one hand challenging but on the other hand very
necessary, given the importance of electricity.

To model these systems and all their complex-
ity, one possibility is to create frequency depen-
dent network equivalents (FDNE) of large power
systems in order to study electromagnetic oscil-
lations. In the frequency domain, this model
is inferred by using a rational approximation of
the network admittance matrix that could be
obtained by different methods (Sheshyekani and
Tabei, 2014).

Aother application of power systems’ mod-
elling, is the estimation of eletromechanic modes
from systems that suffer transient interferences.
In other words, when the oscillations in the sys-
tem are originated from a big disturbance, we have
a transient response of big intensity, this tran-
sient period is called ringdown. However, electric
power system suffer constant little perturbations
as well, such as load variations and minor topolog-
ical changes. The measurements during this nor-
mal operation time are called ambient data (Pierre
et al., 2012). In this paper, the identification will
be focused on ringdown signals.

As far as linear methods based on ringdown
data are considered, estimating methods were de-

veloped working either in the time domain or
in the frequency domain (Peng and Nair, 2012),
(Hwang and Liu, 2017), (Crow and Singh, 2005),
(Schumacher et al., 2018). Among these methods,
we have for example, the Prony Method, which
was one of the earliest to work with time do-
main transient signals (Sarkar and Pereira, 1995),
the Subspace method, that has applications both
in time and frequency response data (McKelvey
et al., 1996) (Viberg, 1995), the Vector Fitting
(VF), that has been widely used for the fit-
ting of measured or calculated time-domain re-
sponses and also applications in ringdown signals
(Schumacher et al., 2018).

Another frequently used method is the Matrix
Pencil (MP) which was first introduced by Sarkar
and Pereira (1995) to identify parameters of time
domain transient data. Further on, it was mod-
ified by Sheshyekani et al. (2012) to operate also
with FDNE models. The MP algorithm shows sat-
isfactory noise filtering results, specially in lower
frequencies (Sheshyekani et al., 2012), what, in the
field of system identification, could imply in a sig-
nificant reduction of the computational burden.
(Jeremias et al., 2012) The MP method presents
a direct process, whereas the VF method, for in-
stance, requires the definition of starting poles.
Through the Matrix Pencil, this poles are ob-
tained by a generalized eigenvalue problem, as
shown by Sarkar and Pereira (1995). Even though
both MP and VF are widely applied in identifica-
tion problems, studies that compare them in order
to evaluate in which case each one has a better
performance are still sparse.

This paper presents an application of the MP
method in the identification of eletromechanic



modes in eletric power systems. Furthermore, the
performance of the method in the presence of noise
is evaluated. The problem is applied in the time
domain with further intention to be transformed
to the frequency domain as well. The obtained re-
sults will then be compared with the performance
of the VF method applied to the same problem
as showed by Schumacher et al. (2018), so that a
thorough comparison can be presented.

The paper is organizes as follows: In the sec-
ond section, the problem is stated, in the third sec-
tion, the MP method is explained. In the forth,
the simulations’ results are shown. The conclu-
sions are featured in section five.

2 Problem Statement

Due to electric power systems’ large scale and
small frequency inter-area oscilation, Wide Area
Monitoring (WAM) systems are necessary in view
of detecting and further counteracting grid in-
stabilities. The measurements are performed by
Phasor Measurement Units (PMU), which extract
phasors (magnitude and phase angle) of the volt-
age and current signals in a power system. All
phase angles are precisely referenced to a common
time frame with the aid of the GPS. The data is
collected, time aligned and stored by Phasor Data
Concentrators (PDCs). (Annakage et al., 2017)
(Ray, 2017).

A WAM system is represented in Figure 1.

Figure 1: Typical architecture of a wide area syn-
chrophasor network (Annakage et al., 2017).

When an electric power system suffers a sud-
den disturbance, the representation of this phe-
nomenon is similar to the representation of an
impulse applied as input to a linearised system
(Kennaugh and Moffatt, 1965), which is much
simpler to analyse. In order to best predict the
behaviour of the power system in a transient sce-
nario, these signals, which are frequently referred
to as ringdown, are well modelled as a sum of
damped sinusoids (Pierre et al., 2012).

So, the ringdown data for a SISO system is
represented as follows. (Liu, 2010):

y (t) = x (t) + n (t) ≈
M∑
1

Rie
(sit) + n (t) , (1)

0 ≤ t ≤ T, i = 1, 2 · · · ,M.

where:

y (t) : observed time response,

n (t) : noise in the system,

x (t) : signal,

Ri : residues or complex amplitudes,

si = −αi + jωi,

αi : damping factors,

ωi : angular frequencies (ωi = 2πfi),

M : signal’s order.

The problem of eletromechanic modes estima-
tion is equivalent to the estimation of angular fre-
quencies and damping factors of a signal modelled
by equation 1.

3 Matrix Pencil Method

The Matrix Pencil indentification algorithm uses,
in this work, the general representation of a ring-
down signal as shown in equation (1) to estimate
the system’s modes, represented by zi, as in equa-
tion (3) bellow. Hence, for the sampled signal, t
will be substituted for Tsk, where Ts is the sam-
pling time and k is a natural number:

y (Tsk) = x (Tsk) + n (Tsk) ≈
M∑
1

Riz
k
i + n (Tsk) ,

(2)

k = 0, · · · , N − 1.

and

zi = e(−αi+jωi)Ts , i = 1, 2 · · · ,M. (3)

The main goal of the algorithm is to find the
best estimates for Ri and zi. Therefore, once all
the N samples are obtained, a Hermitian matrix
with size (N − L)× (L+ 1) is defined as proposed
by Sarkar and Pereira (1995):

Y =


y (0) y (1) · · · y (L)
y (1) y (2) · · · y (L+ 1)
...

...
. . .

...
y (N − L− 1) y (N − L) · · · y (N − 1)


(4)

where L is the Pencil Parameter and it is chosen
between N/2 and N/3.

From Matrix Y , two sub-matrixes, with di-
mensions (N − L)× (L), are created as follows:



Y1 =


y (0) y (1) · · · y (L− 1)
y (1) y (2) · · · y (L)
...

...
. . .

...
y (N − L− 1) y (N − L) · · · y (N − 2)


(5)

Y2 =


y (1) y (2) · · · y (L)
y (2) y (3) · · · y (L+ 1)
...

...
. . .

...
y (N − L) y (N − L+ 1) · · · y (N − 1)


(6)

As Sarkar and Pereira (1995) proposed, the pa-
rameters zi from equation (2) are equal (in the
noiseless case) to the eigenvalues λi from the pair
of matrixes Y1 and Y2. These parameters can
be obtained through the solution of a generalized
eigenvalue problem represented bellow:

Y +
1 Y2 − λI (7)

where I is an identity matrix, λ is a diagonal ma-
trix containing the eingenvalues of the pair Y +

1 Y2
and Y +

1 is the pseudo-inverse of the matrix Y1 de-
fined by:

Y +
1 = {Y H1 Y1}−1Y H1 (8)

However, when dealing with noise infected
data, the simple eigenvalue problem showed above
does not result in the problem’s sollution and has
to be addapted, in order to find the correct sys-
tem’s modes. The method’s next step consists in
a singular value decomposition (SVD), which is a
factorisation of the matrix Y , in order to obtain
three oder matrixes containing eigenvectors and
eigenvalues (Nascimento, 2012) as shown bellow:

Y = UEV H (9)

in which
U → Matrix of the eigenvectors of Y H ,
V → Matrix of the eigenvectors of Y HY ,
E → Diagonal Matrix containing the singular

values of Y ,
[.]H → Transposed conjugate of the matrix.

After defining the singular value matrix E for
the noise infected data, the sistem’s order estima-
tion M is chosen, which is the number of signif-
icant singular values of the main matrix, defined
by:

σc
σmax

≥ 10−p (10)

in which p is the order of significant decimal digits
in the data, chosen by the operator, σc represents
an evaluated singular value and σmax is the largest
singular value of the matrix E. The number of
singular values that follow (10) is equal to M .

3.1 Pre-filtering

Before estimating the parameters of the valuated
signal, a filtering process is proposed in order to
eliminate the noise effect in the signal (Sarkar and
Pereira, 1995). The parameter M is extremely im-
portant at this moment, because it will help elim-
inate the elements that are above the signal’s or-
der, in other words, eliminate the non-significative
values of the sampled data.

New submatrixes are created from matrix V
as follows:

V ′ = [V1, V2, · · · , VM ] (11)

Values from M + 1 until L, corresponding to
the lower singular values are discarded. Therefore,
it is observed that:

Y1 = UE′[V ′1 ]H (12)

Y2 = UE′[V ′2 ]H (13)

in which V ′1 is obtained by eliminating the last row
of V ′, V ′2 is obtained by eliminating the first row
of V ′ and E′ is obtained from the first M columns
of E, which correspond to the dominant singular
values.

After this reductions, it has been proven
in Hua and Sarkar (1990) that the eigenvalue
problem shown in equation (7) can be rewritten
through the new obtained matrixes V ′1 and V ′2 :

{[V ′2 ]H−λ[V ′1 ]H} → {{[V ′2 ]
H}+ [V ′1 ]

H}−λI} (14)

Through this method, the estimation of the
modes zi ,which are equal to λi, in noise presence
becomes more precise. Once the modes and M
are known, the residues Ri are solved through the
following least squares problem:



y0
y1
...

yN−1


=



1 1 · · · 1
z1 z2 · · · zM
...

...
. . .

...

(z1)
N−1 (z2)

N−1 · · · (zM )N−1





R1

R2

...
RM


(15)

3.2 Parameters estimation

In order to estimate the model’s parameters
showed in equations 2 and 3, a set of mathematical
properties were used to extrat those parameters
from the modes (zi) and residues (Ri) obtained
through the Matrix Pencil Method in equation 15.

The equations used are better described in
Nascimento (2012) and Jeremias et al. (2012) but
are summarized in Table 1. The operators Re and
Im represent the real and the imaginary value of
a complex number.



Table 1: Synthetic Signal’s Parameters.

Parameter Equation

Damping (αi) Re(zi)

Frequency (ωi) tg−1( Im(zi)
Re(zi)

)

Amplitude (Ai) |Ri|

Phase (φi) angle(Ri)

4 Results

In this paper, three cases were evaluated in or-
der to validate the Matrix Pencil algorithm ac-
curacy. The cases were taken from Schumacher
et al. (2018) where the authors worked with a
novel method called Ringdown Time-Domain Vec-
tor Fitting (RTD-VF), the results concerning the
RTD-VT method’s performance can also be found
in the article quoted. These three cases were ap-
plied then to the MP algorith and a comparison
between the two methods was carried out.

In the first study case, a synthetic signal with
parameters known beforehand was evaluated by
the algorithm. On the other two cases, extracted
from the North American Eastern Interconnection
(NAEI) system and from the Brazilian Intercon-
nected Power (BIP) system, the parameters were
not known. Therefore, the so-called R2 coefficient
of determination is used to compare the perfor-
mance of RTD-VF and MP methods. The R2 co-
efficient of determination is defined by:

R2 =

(
1−

∑N−1
k=0 (yn[k]− ŷ[k])2∑N−1
k=0 (yn[k]− ȳn)2

)
× 100% (16)

where yn[k] is the measured ringdown signal with
mean value ȳn and ŷ[k] corresponting to the es-
timated value of yn[k]. This coefficient indicates
the fitting rate between measured and estimated
data, with R2 = 100% representing a perfect fit.

4.1 Synthetic signal identification

The synthetic signal evaluated in the first study
case follows the equation 17.

y(t) = 1× e−0.1697t cos(1.4351t− 2.5122)+
1.32× e−0.8150t cos(3.9270t− 1.8850)+
1.13× e−1.8230t cos(6.4654t− 0.3142).

(17)

The above described signal was applied to the
Matrix Pencil algorithm, considering an estima-
tion order equal to six (M = 6) and sampling
time Ts = 0.01s. However, before the identifica-
tion process, a white Gaussian noise n[k] with zero

mean and 0.052 variance was added to the simu-
lated data y(t). Therefore, measurements are ac-
tually given by yn[k] = y[k]+n[k]. Figure 2 shows
the noise afected signal and the signal estimated
by the MP algorithm. It is possible to observe
that the noise interference is eliminated by the
MP algorithm’s performance.

Figure 2: Synthetic signal reconstruction

Figure 3: Estimated normalized probability den-
sity funtions for: (a) amplitude, (b) damping fac-
tor, (c) angular frequency and (d) phase. The
real values of the parameters are represented by
the highlighted constants

Conjointly, an estimation of the signal’s pa-
rameters was performed. The parameter estima-
tion procedure was repeated 1000 times for estatis-
tics analysis. The resulting histogram, for the 3
estimated modes, is showed in Figure 3 and re-
sembles a gaussian distribution. Some parame-
ters are more directly identified, whereas the am-
plitude estimation curve, for example, shows a
bigger bias. In Table 2 the estimated parame-
ters’ mode is shown and compared with the results
given through the RTD-VF method, both estima-
tion values are very close and have estimated the
original value of almost all of the parameters.



Table 2: Synthetic Signal’s Parameters.

Method modes (i)

1 2 3

Ai MP 1 1.14 1.32

RTD-VF 1 1.13 1.32

αi MP -0.1697 -0.8150 -1,827

RTD-VF -0.1697 -0.8150 -1.823

ωi MP 1.435 3.927 6.465

RTD-VF 1.4351 3.927 6.4654

φi

[rad]
MP -2.513 1.885 0.3142

RTD-VF -2.513 1.885 0.3142

4.2 NAEI system

On April 27, 2017, austere weather conditions led
to a large generation trip in the Easter Inter-
connection (EI) system in North America and as
a consequence, low frequency ocillations (LFOs)
occured between the northern and the south-
ern areas of the system, during the ringdown
event (Hwang and Liu, 2017). Two sets of Fre-
quency Disturbance Recorders (FDR) frequency
data were chosen, one from Maine and the second
from Florida with sampling time of Ts = 0.1s.
Those two sets of data were gathered as a dif-
ference sequence ’Maine-Florida’ (signal Maine
minus signal Florida) to form a ringdown se-
quence as shown in Figure 4 (a). The signal was
then applied (after a specified time of 5.6s) to the
MP algorithm and the results of the parameters
estimation and signal reconstruction are shown in
Table 3 and in Figure 4 (b). In Table 3, the val-
ues obtained from the MP algorithm are compared
to the ones from the RTD-VF method, which are
very close values and present high R2 rates. Since
the original parameters of the system are unknown
and the signal reconstruction is well suceeded, the
method fullfills it’s aim.

4.3 BIP system

As presented by Canizares et al. (2017), after
an electrical bushing explosion, on September 02,
2011 at 19h43m3s UTC (Coordinated Universal
Time), the Itaipu Hydroeletric was disconnected
from the rest of the BIP system and reconnected
at 19h49m7s. Both disconnection and reconnec-
tion events caused the southern, northern, south-
eastern and northeastern areas from the system to
oscillate against each other with varying dc com-
ponents. Oscillations were measured by a FDR
(located at the Federal University of Santa Cata-
rina), with a sampling time of Ts = (1/60)s. The
sampled signal is taken (after the time of 1.5s)
and the mode indentification MP algorithm is ap-

Figure 4: (a) Transient and (b) ringdown response
of the NAEI system

Table 3: NAEI Signal’s Parameters.

Method modes (i)

1 2

Ai MP 0.0341 0.0301

RTD-VF 0.0345 0.0311

αi MP -0.2024 -0,2207

RTD-VF -0.2028 -0,2279

ωi MP 1.2475 2.1982

RTD-VF 1.2522 2.1819

φi [rad] MP -1.4898 -1.4246

RTD-VF -1.4612 -1.4448

R2 MP 94.4422%

RTD-VF 94.5728%

plied. Table 4 shows both parameter estimations
from the MP and the RDT-VF. Figure 5 shows
the reconstruction of the BIP signal through the
modes found by the MP algorithm. In this third
case study, the MP method shows once more it’s
estimation accuracy and when compared to the
RTD-VF, presents very satisfying parameter val-
ues.

5 Conclusion

In this paper the Matrix Pencil Method was eval-
uated through an application in eletric power sys-
tems. More specific, an estimation of eletrome-
chanic modes based on WAM data captured by
PMU equipment was carried out. With the re-
sults obtained until now, it can be said that the
Matrix Pencil algorithm works well for the iden-
tification of time domain signal’s parameters even
in the presence of noise. Furthermere, when com-
pared to the RTD-VF, which is an identification



Figure 5: BIP system

Table 4: BIP Signal’s Parameters.

Meth. modes
(i)

1 2 3 4

Ai MP 0.0184 0.0099 0.0091 -0.0415

VF 0.0145 0.0129 0.0091 -0.0603

αi MP -0.4146 -0.1311 -0.1954 -0.0227

VF -0.3837 -0.1729 -0.1862 -0.0993

ωi MP 4.1932 3.5908 2.3239 0

VF 4.3713 3.6016 2.3578 0

φi MP -2.0558 -1.7211 0,6195 0

VF -2.2833 -1.6350 0.4951 0

R2 MP 99.1408%

VF 99.2988%

method with high estimation precision, the results
are quite similar and don’t present huge varia-
tions.
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