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Abstract— This article contributes with two major improvements related to the learning performance of the
least mean squares (LMS) adaptive filtering algorithm under challenging scenarios, low signal-to-noise ratio and
in the presence of impulsive noise. The first problem is solved through the insertion of the coefficient reuse
technique in the update equation, while the second one uses the maximum correntropy criterion to make the
algorithm less sensitive to impulsive noise, which is very often present in real applications.
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1 Introduction

Adaptive filtering (AF) techniques can be em-
ployed to electronically emulate the acoustic cou-
pling between a loudspeaker and a microphone.
Acoustic echo cancellers commonly use this sys-
tem identification technique to establish a duplex
communication (Kumar et al., 2017). Other appli-
cations can still be contemplated by the AF strate-
gies, such as control, channel equalization and
time series prediction (Diniz, 1997). For the most
part, the AF algorithms perform a nonlinear es-
timation of the coefficients in a transversal struc-
ture, which are collected in a vector1 w(k) ∈ R

N ,
where N is an adjustable parameter.

Among the various AF algorithms, the LMS
(Least Mean Squares) is the most popular. Usu-
ally, it is argued that such widespread usage is due
to its low computational complexity (Venkatesan
et al., 2018) and its ability to approximate the sup-
posedly optimal Wiener solution. More recently,
several articles have highlighted some LMS opti-
mization properties that demonstrate their supe-
riority over the Wiener filter under certain con-
texts. These properties further motivate the adop-
tion of the LMS algorithm. The delay in realiz-
ing that the LMS can overcome the Wiener filter
seems to be due to the fact that classical analysis

1All vectors in this article are column type.

techniques, such as the independence hypotheses
(Quirk et al., 2000), relax the dependence of the
LMS estimator on the previous input vectors x(k),
defined by

x(k) ,
[
x(k) x(k − 1) . . . x(k −N + 1)

]T
,

(1)
where x(k) is k-th input signal sample (Quirk
et al., 1998).

According to (Ikuma et al., 2008), the au-
thors argue that the mean coefficients of an equal-
izer based on the steady-state LMS solution differs
from theWiener coefficients in the presence of nar-
row band additive noise ν(k), and that the mean
square error of the LMS filter may be significantly
better than the Wiener filter solution. Interest-
ingly, this result is not restricted to small values
of the learning factor β (Ikuma et al., 2007; Ikuma
et al., 2008). The approach of (Reuter and Zei-
dler, 1999), approximates analytic expressions for
the mean square error (MSE) of the LMS algo-
rithm that is developed through the construction
of transfer functions. Depending on the signal-to-
noise ratio (SNR), the signal-to-interference ratio
(SIR), the equalizer lengthN and the learning fac-
tor, the LMS presents advantages when compared
to the Wiener filter.

The results of (Reuter and Zeidler, 1999) were
refined by (Ikuma and Beex, 2008), with similar



conclusions. These properties (including the fact
that the LMS presents optimality H∞ (Hassibi
et al., 1996)) demonstrate that this algorithm can
overcome, under certain situations, its normalized
versions, such as the normalized LMS (NLMS)
algorithm. Instead of minimizing the MSE, the
NLMS minimizes the following cost function by
means of the stochastic gradient technique:

F [w(k)] = E

[
e2(k)

‖x(k)‖2
]

, (2)

whose minimum may differ2 from the MSE ξ(k) ,
E
[
e2(k)

]
, where the error e(k) consists of the dif-

ference between the reference signal d(k) and the
filter output y(k):

e(k) , d(k)−

,y(k)
︷ ︸︸ ︷

w
T (k)x(k) . (3)

It is known that the LMS shows a steady-
state performance deterioration when the SNR is
low (Sayed, 2011). This article presents an op-
timization problem whose solution is an LMS-
type algorithm with coefficient reuse (RC), a tech-
nique originally proposed for normalized algo-
rithms (Kim et al., 2011). The resulting algo-
rithm (RC-LMS), however, exhibits great sensi-
tivity to impulsive noise, a phenomenon that can
be caused, for example, by double-talk in acoustic
echo cancellation systems (Petraglia et al., 2016)
or by atmospheric phenomena in telecommunica-
tion systems (Das and Narwaria, 2017). In order
to address these ubiquitous phenomena, this pa-
per also uses the maximum correntropy criterion
to make the performance of the proposed RC-LMS
algorithm relatively insensitive to impulsive noise.

This article is structured as follows. In Sec-
tion 2, we describe the coefficient reuse strategy
(in qualitative terms), which motivates the deriva-
tion of the first algorithm proposed in Section
3, whose unbiased property of the estimation is
demonstrated by means of a theorem. The adop-
tion of the maximum correntropy criterion, de-
scribed in Section 4, allows insertion of the robust-
ness to impulsive interferences in the previously
derived algorithm, which is described in Section
5. Section 6 verifies the advantages in the perfor-
mances of the proposed algorithms, while Section
7 contains the final conclusions of the article. The
three theorems enunciated in Sections 3 and 5 are
finally demonstrated in the Appendix.

2 Reuse of Coefficients

Adaptive filtering algorithms that employ the co-
efficient reuse technique present better conver-
gence rates with good steady-state responses (Cho

2Such difference tends to be emphasized when the equal-
izer size is small, in which case the correlation between the
random variables‖x(k)‖2 and e

2(k) tends to be greater.

et al., 2009). Such reusing takes explicitly into
account the adaptive coefficients obtained in past
iterations, which mitigates the magnitude of the
oscillations of the adaptive estimation. Several al-
gorithms, such as the APA (Affine-Projection Al-
gorithm) increase the convergence rate using the
input data reuse criterion (Simon, 2002). These
algorithms usually present a loss of performance
in steady-state condition, being considered dual
in relation to the algorithms that use the coef-
ficient reuse technique, like the algorithm pro-
posed in (Kim et al., 2011). The RC family al-
gorithms show a good steady-state performance
and a (sometimes imperceptible) loss in the con-
vergence rate (Kim et al., 2011), which can be ex-
plained by the fact that the RC strategy uses the
last L vectors of adaptive coefficients (w(k − l),
l ∈ {0, · · · , L− 1}), whose effect is to smooth the
oscillations of the parameters to be estimated.

3 RC-LMS

The first contribution of this article is to propose a
constrained optimization problem whose solution
(obtained by the Lagrange multiplier technique)
gives rise to an LMS algorithm with coefficient
reuse, capable of improving the steady-state per-
formance of the LMS algorithm. The resulting
algorithm is obtained by Theorem 1 below.

Theorem 1. Consider the following opti-
mization problem:

min
w(k+1)

FRC[w(k + 1)] (4)

s.t. ep(k) = (1− β‖x(k)‖2)e(k),
where

FRC[w(k+1)] ,

L−1∑

l=0

ρl‖w(k+1)−w(k−l)‖2 (5)

and

e(k) , d(k)−
(

ρ− 1

ρL − 1

) L−1∑

l=0

ρlwT (k−l)x(k), (6)

where ρ ∈ (0, 1] and L ∈ N are factors at the
discretion of the designer and the error a posteriori
is defined by

ep(k) , d(k)−w
T (k + 1)x(k). (7)

It can be proved that the update equation
that solves (4) is given by

w(k+1) =

(
ρ− 1

ρL − 1

) L−1∑

l=0

ρlw(k− l)+βe(k)x(k).

(8)
Demonstration: see Appendix.
Remarks : Considering that FRC[w(k+1)] is a cost
function that penalizes solutions w(k+1) that are



very distant from the previous vectors w(k − l),
l ∈ {0, 1, . . . , L − 1}, it gives rise to the update
equation (8) of the proposed RC-LMS algorithm.
When L = 1, FRC[w(k + 1)] degenerates in the
classic Minimum Distortion Principle cost func-
tion (Simon, 2002), giving rise to the LMS (par-
ticular case of the proposed algorithm).

The relative weight given to the previous vec-
tors can be controlled by the factor ρ, with higher
values of ρ tending to give similar weights to the
L previous vectors. The L parameter controls
the magnitude of the coefficient reuse, and can
be changed dynamically to maximize the transient
performance (Kim et al., 2011). An important fea-
ture of the LMS is that it is an unbiased estimator
of w⋆ ∈ R

N (the optimal filter). The following
theorem demonstrates that RC-LMS inherits this
LMS property.

Theorem 2. Let the input signal x(k) be
stationary with full rank autocorrelation matrix
R , E

[
x(k)xT (k)

]
, and w

⋆ be the ideal (and un-
known) plant that the algorithm intends to iden-
tify, with the reference signal described by:

d(k) = (w⋆)
T
x(k) + ν(k). (9)

The following hypotheses are considered:
H1. The filter converges at the steady state;
H2. The additive noise ν(k) presents zero mean
and is independent of the other random variables
involved;
H3. The filter coefficients w(k) are independent
of the input x(k).
Considering H1−H3, we can assert that the RC-
LMS is an unbiased estimator. It should be noted
that H3 is the strongest hypothesis of all (partic-
ularly in a transverse structure), being known in
the literature as independence hypothesis (Haykin
and Widrow, 2003).
Demonstration: see Appendix.

4 Robustness to Impulsive Noise

The use of the maximum correntropy criterion
(MCC) may result in robust AF algorithms for
impulsive noise (Singh and Principe, 2009). The
derivation of such algorithms, however, employs a
stochastic gradient, not a constrained formulation
like (4). The insertion of the MCC into algorithms
that were derived through Lagrange multipliers
was first proposed in (Haddad et al., 2016). The
resulting algorithms are able to cope with non-
Gaussian noise scenarios, which are common in
real-world applications (Liu et al., 2017). Corren-
tropy is a measure of local similarity between ran-
dom variables X and Y given by (Liu et al., 2007)

V (X,Y ) =

∫∫

x,y

κσ(x− y)fXY (x, y)dxdy, (10)

where fXY (x, y) is the joint probability density
function of random variables X and Y , and the

Gaussian kernel3 κσ(x− y) is

κσ(x− y) ,
1√
2πσ

exp

[

− (x− y)2

2σ2

]

(11)

and σ determines the width of the Gaussian
kernel, which influences the trade-off between
steady-state performance and convergence rate
(Liu et al., 2011). The Gaussian kernel function
in (10) transforms the data into an infinite dimen-
sion Hilbert space F, so that a nonlinear mapping
Φ(·) yields

κσ(x− y) = 〈Φ(x),Φ(y)〉
F
, (12)

where 〈·, ·〉
F
denotes the inner product in F.

The MCC-LMS algorithm is obtained from
the stochastic gradient maximization of the cost
function (Chen et al., 2014)

FMCC[w(k)] , E

{

exp

[

−e2(k)

2σ2

]}

, (13)

resulting in the following update equation (Singh
and Principe, 2009)

w(k+1) = w(k)+βexp

[

−e2(k)

2σ2

]

e(k)x(k), (14)

which degenerates into the LMS algorithm when
σ → ∞. The normalized version (MCC-NLMS)
of (14) is given by (Liu et al., 2011)

w(k + 1) = w(k) + βexp

[

−e2(k)

2σ2

]
e(k)x(k)

‖x(k)‖2 .

(15)
The update equations (14) and (15) can be

derived by solving the following deterministic op-
timization problem (Haddad et al., 2016):

min
w(k+1)

FMDP [w(k + 1)] , ‖w(k + 1)−w(k)‖2

(16)

s.t. ep(k) =

{

1− γexp

[

−e2(k)

2σ2

]}

e(k),

where γ = β‖x(k)‖2 and γ = β for the MCC-
LMS and MCC-NLMS, respectively. In this work,
we focus on the non-normalized MCC-LMS algo-
rithm.

5 MCC-RC-LMS Algorithm

The adoption of the MCC technique allows to
strengthen the RC-LMS algorithm in the pres-
ence of impulsive noise. The resulting algo-
rithm, named MCC-RC-LMS, combines the ad-
vantages of data reuse and robustness to impul-
sive interference. To derive a new algorithm that
reuses the previous L adaptive coefficient vectors

3There are other options for the kernel, but the Gaus-
sian kernel is preferred because of the resulting computa-
tional simplification (Erdogmus and Principe, 2002).



(Cho, 2009), we formulate the following optimiza-
tion problem:

min
w(k+1)

FRC[w(k + 1)] (17)

s.t. ep(k) =

[

1− γe−
e
2(k)

2σ2

]

e(k),

whose solution is given in the theorem below.
Theorem 3. The solution of the constraint

optimization problem (17) is given by:

w(k + 1) =

(
ρ− 1

ρL − 1

) L−1∑

l=0

ρlw(k − l)

+βexp−
e
2(k)

2σ2 e(k)x(k), (18)

which is the update equation of the proposed
MCC-RC-NLMS algorithm.
Demonstration: See Appendix.

6 Simulations

The algorithms used for comparison with the pro-
posed MCC-RC-LMS algorithm were LMS, MCC-
LMS and RC-LMS, with the following parameters:
L = 7, ρ = 0, 9 and σ2

MCC = 2, chosen for perfor-
mance optimization. The metric used to evaluate
the performance of the algorithms is the MSD,
defined by

MSD(k) , ‖w(k)−w
⋆‖2. (19)

The additive noise ν(k) was generated by

ν(k) = (1− ω(k))ϕ(k) + ω(k)φ(k), (20)

where ω(k) is a Bernoulli process with Pr[ω(k) =
1] = 0.99, ϕ(k) and φ(k) consist of white Gaus-
sian noise sequences with zero-mean and variances
σ2
φ = 10−1 and σ2

ϕ = 1, respectively. Note that
ϕ(k) simulates a possible occurrence of impulsive
noise. The mean results are from 500 independent
Monte Carlo trials. The transfer function of the
unknown system was the Model 1 of (TSG, 2004).
Figures 1 and 2 show the MSD evolution as a func-
tion of β for white noise and impulsive noise, re-
spectively, with σ2

ν = 10−1. From these figures,
it can be seen that the proposed RC-LMS and
MCC-RC-LMS algorithms present better perfor-
mance at steady state than the LMS and MCC-
LMS algorithms. The MCC-RC-LMS presents
better performance than the RC-LMS mainly in
the presence of impulsive noise (Fig. 2).

Figure 3 shows the MSD evolutions of the
algorithms in the presence of white noise, using
the same parameters mentioned above, except for
the probability of occurrence of impulsive noise
which was arbitrated at 2%. The learning factors
were selected so that all algorithms presented sim-
ilar convergence rates. The resulting values were:
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Figure 1: Steady-state MSD as a function of β in
the presence of white noise.
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Figure 2: Steady-state MSD as a function of β in
the presence of impulsive noise.

βLMS = 10−2, βMCC-LMS = 10−2, βRC-LMS =
1, 5 · 10−2 and βMCC-RC-LMS = 2 · 10−2. It can be
noticed that the proposed RC-LMS and MCC-RC-
LMS algorithms present better steady-state be-
havior than the LMS and MCC-LMS. Again, the
MCC-RC-LMS presented the best performance.
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Figure 3: MSD evolution (in dB) on the iterations
in the presence of white noise.

Figure 4 presents the MSD evolution of the al-
gorithms in the presence of impulsive noise, with
the same parameters used in the experiment with
white noise. It may be noted again that the adop-
tion of the maximum correntropy strategy associ-
ated to the reuse of coefficients resulted in better
convergence properties.
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Figure 4: MSD evolution (in dB) on the iterations
in the presence of impulsive noise.

7 Conclusions

In this article, new adaptive filters that general-
ize the LMS algorithm were proposed, being de-
rived by the technique of Lagrange multipliers,
able to solve problems of optimization with con-
straints. It has been demonstrated, through hy-
potheses commonly used in the literature, that the
proposed RC-LMS and MCC-RC-LMS algorithms
correspond to unbiased estimators of the optimal
filter coefficients. The presented results confirm
the superiority of the proposed algorithms, which
can obtain MSD gains of more than 6 dB.
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Appendix

Theorem 1. The constrained optimization prob-
lem (4) can be converted into an equivalent prob-
lem without restriction by the Lagrange multipli-
ers technique, giving rise to:

F [w(k + 1)] =

L−1∑

l=0

ρl‖w(k + 1)−w(k − l)‖2

+λ(ep(k)− (1− β||x(k)||2)e(k)). (21)

Equating to zero the gradient of (21) for mini-
mization effects, we obtain

L−1
∑

l=0

ρ
l
w(k + 1) =

L−1
∑

l=0

ρ
l
w(k − l) +

λ

2
x(k)

or, equivalently,

w(k + 1) =

(
ρ− 1

ρL − 1

) L−1∑

l=0

ρlw(k − l)

+

(
ρ− 1

ρL − 1

)
λ

2
x(k) (22)

Replacing (22) in the constraint of (4) results in

(
ρL − 1

ρ− 1

)
λ

2
= βe(k), (23)

which, when inserted in (22), provides (8). ✷

Theorem 2. Substituting (6) in (8), we get

w(k + 1) =

(

ρ− 1

ρL − 1

) L−1
∑

l=0

ρ
l
w(k − L) + βx(k)ν(k)

+β

(

ρ− 1

ρL − 1

) L−1
∑

l=0

ρ
l
x(k)xT (k)w̃(k − l) (24)

where w̃(k) , w
⋆ −w(k) is the deviation vector,

which reflects the discrepancy between the vec-
tor of adaptive coefficients at instant k and their
respective ideal values. Expressing (24) only in
terms of the deviation vector, we find

w̃(k+1) =

(

ρ− 1

ρL − 1

) L−1
∑

l=0

ρ
l

[

I − x(k)xT (k)
]

w̃(k−l)

−βx(k)ν(k), (25)

where I is the identity matrix of dimensions N ×
N . Applying the statistical mean operator to Eq.
(25) and using hypotheses H2 and H3, we obtain

E [w̃(k + 1)] =

(

ρ− 1

ρL − 1

) L−1
∑

l=0

ρ
l [I −R]E [w̃(k − l)] .

(26)

Hypothesis H1 allows us to write

lim
k→∞

E [w̃(k)] = E [w̃(k − l)] , E [w̃∞] , (27)

for l ∈ {0, 1, . . . , L−1}. Substituting (27) in (26),
we get

{(
ρ− 1

ρL − 1

) L−1∑

l=0

ρlR

}

E [w̃∞] = 0, (28)

which implies E [w̃∞] = 0. ✷

Theorem 3. Applying the Lagrange mul-
tipliers technique to problem (17) with γ =
β‖x(k)‖2, we obtain

F [w(k + 1)] =

L−1∑

l=0

ρl‖w(k + 1)−w(k − l)‖2

+ λ(ep(k)− (1− βexp

[

−e2(k)

2σ2

]

||x(k)||2)e(k))

(29)

By equating the derivative of (29) with respect to
w(k + 1) to zero, we obtain

w(k + 1) =

(

ρ− 1

ρL − 1

) L−1
∑

l=0

ρ
l
w(k − l)

+

(

ρ− 1

ρL − 1

)

λ

2
x(k), (30)



which, after substituted in the constraint of (17),
generates

λ

2

(
ρL − 1

ρ− 1

)

= βexp

[

−e2(k)

2σ2

]

e(k). (31)

Replacement of (31) in (30) gives rise to (18). ✷
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