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Abstract— In this paper, a multivariable fuzzy identification methodology for Unmanned Aerial Vehicles
(UAVs) based on Observer/Kalman Filter Identification (OKID) and the Eigensystem Realization Algorithm
(ERA) is presented. The UAV is represented by a fuzzy Takagi-Sugeno (TS) model, whose antecedent is consti-
tuted by linguistic variables (fuzzy sets) and the consequent is constituted by linear sub-models in state-space
discrete representation. The antecedent parameters are obtained using clustering fuzzy algorithms and the con-
sequent parameters (state matrix, input matrix, output matrix and direct transition matrix) are obtained using
the OKID/ERA-based algorithm discussed in details in this paper. In order to demonstrate its efficiency, a
comparative analysis of the multivariable fuzzy identification methodology presented in this paper and others
methodologies accepted in the literature is performed in a traditional multivariable nonlinear benchmark system.
In addition, experimental results for identification of a quadrotor UAV are presented, in order to illustrate the
applicability of the methodology in a real system.

Keywords— Unmanned Aerial Vehicles, Multivariable Fuzzy Identification, Observer/Kalman Filter, Eigen-
system Realization Algorithm, AR.Drone 2.0.

Resumo— No presente artigo é apresentada uma metodologia de identificação fuzzy multivariável para Véı-
culos Aéreos Não Tripuláveis (VANTs) baseada nas teorias de Identificação do Observador/Filtro de Kalman
e Algoritmo de Realização de Autossistema. O VANT é representado por um modelo nebuloso Takagi-Sugeno
(TS), cujo antecedente é constitúıdo por variáveis lingúısticas (conjuntos fuzzy) e o consequente é constitúıdo por
submodelos lineares com representação discreta no espaço de estados. Os parâmetros do antecedente são obtidos
utilizando-se algoritmos de agrupamento fuzzy e os parâmetros do consequente (matriz de estados, matriz de
entrada, matriz de sáıda e matriz de transição direta) são obtidos utilizando o algoritmo baseado nas técnicas
OKID/ERA. De forma a demonstrar a eficiência da metodologia apresentada neste artigo, é feita uma análise
comparativa com outras metodologias aceitas na literatura em um problema de identificação de um sistema ben-
chmark não linear multivariável tradicional. Ainda, são apresentados resultados experimentais para identificação
de um VANT do tipo quadrirrotor, a fim de ilustrar a aplicabilidade da metodologia em um sistema real.

Palavras-chave— Véıculos Aéreos Não Tripuláveis, Identificação Fuzzy Multivariável, Observador/Filtro de
Kalman, Algoritmo de Realização de Autossistema, AR.Drone 2.0.

1 Introduction

Learning fuzzy models from data is a re-
cent and powerful tool for applications to Un-
manned Aerial Vehicles (UAVs), and nonlinear
multivariable systems in general (Angelov et al.,
2017), (Vafamand et al., 2018), (Costa and Serra,
2015). On the other hand, most of the pro-
posed techniques have been analyzed considering
Multiple-Input and Multiple-Output (MIMO) sys-
tems through a set of Single-Input and Single-
Output (SISO) systems (Jia et al., 2016), (Münker
and Nelles, 2018). Real systems, such as UAVs,
that presents interdependence between variables,
also known as coupled systems (such as mechan-
ical couplings, magnetic couplings, and so forth),
depending on the level of coupling, may have
modeling totally or partially compromised using
methodologies that represent the systems by a set
of SISO subsystems.

In this context, the literature of multivari-
able fuzzy identification has been reviewed for
applications in coupled nonlinear MIMO sys-
tems, and methologies recently proposed based on
Observer/Kalman Filter Identification (OKID),

Eigensystem Realization Algorithm (ERA) and
Fuzzy systems, has demonstrated several advan-
tages in this kind of problem. In the Table 1, these
methodologies are presented and compared in high
level caracteristics. In this paper, an offline ap-
proach for quadrotor UAVs modeling is presented.
Both, the antecedent and consequent, are esti-
mated in a batch formulation by using Fuzzy C-
Means and Batch Fuzzy OKID/ERA algorithms,
respectively. Computational results and compar-
ative analysis are performed in a traditional mul-
tivariable nonlinear benchmark system. Experi-
mental results for identification of a six degrees of
freedom (6-DOF) quadrotor UAV, AR.Drone 2.0,
are presented.

2 Multivariable Fuzzy Identification
Strategy

In this paper, the multivariable UAV sys-
tems are represented by the following fuzzy model
structure:

Ri = IF z1k is F i1 and z2k is F i2 and · · · zpk is F ip



Table 1: Main works found in the literature based on Observer/Kalman Filter Identification, Eigensystem
Realization Algorithm and Fuzzy Systems.

State-of-the-art methodologies based on Fuzzy OKID/ERA

Paper (Torres and Serra,
2018)

(Torres and Serra,
2016)

(Pires and
Serra, 2018)

(Rodrigues Júnior
and Serra, 2017)

Approach Online Online Online Online

Problem System modeling System modeling System modeling Forecasting of sea-
sonal time series

Antecedent
Estimation

Evolving Fuzzy Clus-
tering

Recursive Fuzzy
Clustering

Evolving Fuzzy Clus-
tering

Evolving Neuro-
Fuzzy Clustering

Consequent
Estimation

Recursive Fuzzy
OKID/ERA

Recursive Fuzzy
OKID/ERA

Recursive Fuzzy
OKID/ERA

Recursive Fuzzy
OKID/ERA

Applications Industrial Evapo-
rator Process and
2DOF Helicopter

Nonlinear Bench-
mark System

Rocket FTI (or
Fogtrein-I)

Seven Benchmark
Time Series and De-
tection of Anomalies
Based on ECG Data

Results Experimental Re-
sults

Computational
Results

Experimental Re-
sults

Experimental Re-
sults

THEN

{
xik+1 = Aixik + Biuk

yik = Cixik + Diuk
(1)

where Ri denotes the i-th fuzzy inference rule
(i = 1, 2, · · · , R), zk = [z1k, z

2
k, · · · , z

p
k] are the an-

tecendent variables on k-th instant of time, F ij is
the i-th fuzzy set of the j-th antecedent parame-
ter (j = 1, 2, · · · , p). In the consequent part, Ai ∈
<n×n, Bi ∈ <n×r, Ci ∈ <m×n and Di ∈ <m×r
are the parameters of the i-th submodel of order
n, r inputs and m outputs, xik ∈ <n is the state
vetor of the i-th submodel, yik ∈ <m is the output
vector of the i-th submodel and uk ∈ <r is the
input vector of the system.

Let µi
F ij

(zjk) : R → [0, 1] (j = 1, 2 · · · , p) the

activation degree associated with the k-th sam-
ple of the linguistic variable, zjk, in an universe
of discourse Uzj partitioned by fuzzy sets F ij , or
linguistic terms, then the activation degree of the
i-th fuzzy rule is given by:

hik = µiF i1
(z1k) ◦ µiF i2 (z2k) ◦ · · · ◦ µiF ip(zpk), (2)

where ◦ denotes a T-norm operator.

The normalized activation degree of the i-th
rule is given by:

γi(zk) =
hik

R∑
i=1

(hik)

. (3)

Then, the output of the fuzzy TS model is
given by: 

x̃k+1 =
R∑
i=1

γi(zk)xik+1

ỹk =
R∑
i=1

γi(zk)yik

(4)

Replacing Eq. (1) in Eq. (4) gives:


x̃k+1 =

R∑
i=1

Aiγi(zk)xik +
R∑
i=1

Biγi(zk)uk

ỹk =
R∑
i=1

Ciγi(zk)xik +
R∑
i=1

Diγi(zk)uk

(5)

2.1 Batch Fuzzy Clustering Algorithm

Fuzzy clustering algorithms should be used to
estimate the antecedent fuzzy sets F iJ in Eq. (1)
by experimental data sets of the system. Among
the most well known algorithms are: Fuzzy C-
Means (FCM) (Bezdek et al., 1984); Gustafson-
Kessel (GK) (Gustafson and Kessel, 1979); and
Fuzzy Maximum Likelihood Estimates (FLME)
(Denoeux, 2011). In this paper, the Fuzzy C-
Means (FCM) clustering algorithm is chosen.

The objective of FCM is to find a membership
matrix U = [µ1;µ2; · · · ;µi] ∈ <c×N , where c is
the number of clusters and N the number of data
points, and a centers matrix V = [v1; v2; · · · ; vc],
with vi ∈ <p and p the dimensionality of a data
set zk such that (Wang, 1997):

Jm =

N∑
k=1

c∑
i=1

(µi(zk))η(dik)2 (6)

where Jm is an objective function to be minimized,
µi(zk) is the membership function of the k-th data
point in the i-th cluster, η ∈ (1,∞) is a weighting
constant that control the degree of fuzzy overlap
and dik = ‖zk − vi‖ is the Euclidian distance be-
tween zk and cluster center vk.

Assuming that ‖zk − vi‖ 6= 0, ∀ 1 ≤ k ≤ N
and ∀ 1 ≤ i ≤ c, then U and V is a local minimum



for Jm only if:

µi(zk) =


c∑
i=1

‖zk − vi‖

‖zk − vi‖


2

η−1

, (7)

where

vi =

N∑
k=1

(µi(zk))ηzk

N∑
k=1

(µi(zk))η
. (8)

The FCM algorithm performs several itera-
tions in order to reduce as much as possible the
objective function defined in Eq. (6) until either
Eq. (9) or Eq. (10) is satisfied:

‖U (l+1) − U (l)‖ < ξ (9)

‖J (l+1)
m − J (l)

m ‖ < ξ, (10)

where l is the current iteration and ξ is a specified
minimum threshold or tolerance.

The Fuzzy C-Means algorithm is implemented
as follows:

Algorithm 1: Fuzzy C-Means Cluster-
ing Algorithm

Receives a data set zk with
k = 1, 2, · · · , N data points.

Fixes c ∈ 2, 3, · · · , N − 1 and η ∈ (1,∞).

Initialize U (0), i.e., randomly initialize
the cluster membership values, µi.

repeat
Compute the c mean vectors or
centers using Eq. (8).

Update U (l) to U (l+1) according Eq.
(7).

Calculate the objective function Jm
with Eq. (6).

until ‖U (l+1) − U (l)‖ < ξ or

‖J (l+1)
m − J (l)

m ‖ < ξ

2.2 Fuzzy system Markov parameters estimation

In order to obtain the submodel parameters
Ai, Bi, Ci and Di, in Eq. (1), through the input
and output data, fuzzy Markov parameters are re-
quired for each rule. For this, state sub-observers
are used by adding a term Kiyik on the right side
of the of the states of Eq. (1) (Juang et al., 1993):

xik+1 = Ā
i
xik + B̄

i
wik, (11)

where

Ā
i

= Ai + KiCi (12)

B̄
i

= Bi + KiDi (13)

wik =

[
uk
yik

]
, (14)

and Ki ∈ <m×r is the observer gain of the i-th
submodel.

Solving Eq. (11) in terms of uij and yij , with

j = 1, 2, · · · , k and xi0 = 0, the following result is
obtained:

xik =

k∑
j=1

(Ā
i
)j−1B̄

i
wik−j . (15)

So, replacing Eq. (15) in Eq. (1), it gives:

yik =

k∑
j=1

Ci(Ā
i
)j−1B̄

i
wik−j + Diuk. (16)

Due to the presence of the states observer,

it may be considered (Ā
i
)s ≈ 0, where s is the

number of steps or time instants ahead. Thus,
Eq. (16) can be rewritten as:

yik =

s∑
j=1

M̄
i
jw

i
k−1 + Diuk, (17)

where M̄
i
j = Ci(Ā

i
)j−1B̄

i
is the j-th observer

Markov parameter of the i-th submodel. This ex-
pression can be expressed in matrix form by:

yik = θikφ
i
k, (18)

where θi = [Di, M̄
i
1, · · · , M̄

i
s] is a matrix

<m×s(m+r)+r with the observer Markov parame-
ters for each rule and φik = [uTk , w

T
k−1, · · · , wTk−s]T

is the regressors matrix for each rule. The sub-
script k denotes that θik is estimated using data
obtained up to the k-th instant of time.

Replacing Eq. (18) in Eq. (4), it obtains the
output of the fuzzy model:

ỹk =

R∑
i=1

γi(zk)θikφ
i
k. (19)

Thus, Eq. (19) can be expanded in matrix
form as:

ỹk = [θ1k, · · · , θRk ]

 γ1(zk)φ1k
· · ·

γR(zk)φRk

 . (20)

As the experimental data remain the same for
each fuzzy rule, then φ1k = φ2k = · · · = φRk = φk.
Therefore, Eq. (20) can be expressed in batch for
k > s as follows:

Ȳk = Θ̄kΦ̄k (21)

where Ȳ = [ys+1, ys+2, · · · , yk] is the output vec-
tor, Θ̄k = [θ1k, θ

2
k, · · · , θRk ] is the vector with the

fuzzy observer Markov parameters of all local lin-
ear models, Φ̄ = [φ̄s+1, φ̄s+2, · · · , φ̄k] is the fuzzy



regressors matrix in the k-th instant, the opera-
tor ⊗ is the Kronecker tensor product, and Γk =
[γ1(zk), γ2(zk), · · · , γR(zk)]T the fuzzy weighting
matrix with the normalized membership degrees
from Eq. (3).

The least squares solution of Eq. (21) is given
as follows:

Θ̄k = ȲkΦ̄†k, (22)

where Φ̄†k = Φ̄Tk [Φ̄kΦ̄Tk ]−1 is the pseudoinverse of
Φ̄k.

The fuzzy system Markov parameters of each
submodel are obtained by solving the following
equations (Juang, 1994):

Mi
k = M̄

i(1)

k + M̄
i(2)

k Mi
0 +

k−1∑
j=0

M̄
i(2)

j Mi
k−j−1,

for k = 1, 2, · · · , s (23)

Mi
k = −

k−1∑
j=0

M̄
i(2)

j Mi
k−j−1, for k > s (24)

where M̄
i
k = [M̄

i(1)

k , M̄
i(2)

k ], M̄
i(1)

k ∈ <m×r and

M̄
i(2)

k ∈ <m×m are partitions of matrix M̄
i
kr used

to find the system Markov parameters through the
observer Markov parameters.

2.3 Fuzzy Eigensystem Realization Algorithm

Fuzzy Eigensystem Realization Algorithm is
used to obtain the submodel parameters Ai, Bi,
Ci and Di from fuzzy Markov parameters which
can be defined as:

Mi
0 = Di (25)

Mi
j = Ci(Ai)j−1Bi, j = 1, 2, · · · , s. (26)

This algorithm begins with the formation of
the generalized Hankel matrix Hi

0 ∈ <αm×βr,
where α and β are integers such that βr ≥ αm.
The Hankel matrix is composed of fuzzy system
Markov parameters:

Hi
0 =


Mi

1 Mi
2 · · · Mi

β

Mi
2 Mi

3 · · · Mi
β+1

...
...

. . .
...

Mi
α Mi

α+1 · · · Mi
α+β−1

 . (27)

Replacing Eq. (26) in Eq. (27), it gives:

Hi
0 =


CiBi · · · Ci(Ai)β−1Bi

CiAiBi · · · Ci(Ai)βBi

...
. . .

...

Ci(Ai)α−1Bi · · · Ci(Ai)α+β−2Bi

 .
(28)

The generalized Hankel matrix can be rewrit-
ten in terms of the controllability matrix Pi

α and

the observability matrix Qi
β , as follows:

Hi
0 =


Ci

CiAi

...

Ci(Ai)α−1

 [Bi,AiBi, · · · , (Ai)β−1Bi]

(29)
Hi

0 = Pi
αQi

β . (30)

The maximum order n of Hi
0, i.e., the number

of nonzero singular values is equal to the order of
Pα and Qi

β in an observable and controlled sys-

tem. Decomposing Hi
0 in singular values, it gives:

Hi
0 = UiΣi(Vi)T , (31)

where the columns of the matrices Ui and Vi are
orthonormal and Σi a rectangular matrix:

Σi =

[
Σi
n 0

0 0

]
(32)

with

Σi
n =


σi1 0 · · · 0
0 σi2 · · · 0
...

...
. . .

...
0 0 · · · σin

 . (33)

In Eq. (33), σi1 > σi2 > · · · > σin > 0 are the
n most significant values of Hi

0, considering that
above the order n there are no significant singular
values. Defining Ui

n and Vi
n the first n columns of

Ui and Vi, respectively, the matrix Hi
0 becomes:

Hi
0 = Ui

nΣi
n(Vi

n)T . (34)

Examining Eq. (29), Eq. (30) and Eq. (34),
it gives:

Hi
0 = [Ui

n(Σi
n)1/2][(Σi

n)1/2(Vi
n)T ] ≈ Pi

αQi
β .
(35)

The approximation of Eq. (35) is useful in
cases where there is noise and very small singular
values. To compute the matrix Ai, it shifts Hi

0 as
below:

Hi
1 =


CiAiBi · · · Ci(Ai)βBi

Ci(Ai)2Bi · · · Ci(Ai)β+1Bi

...
. . .

...

Ci(Ai)αBi · · · Ci(Ai)α+β−1Bi


(36)

Hi
1 = Pi

αAiQi
β = Ui

n(Σi
n)1/2Ai(Σi

n)1/2(Vi
n)T .

(37)
Solving Eq. (37) for Ai, it gives:

Ai = (Σi
n)−1/2(Ui

n)THi
1V

i
n(Σi

n)−1/2. (38)

The matrices Bi and Ci are obtained through
Eq. (29) and Eq. (35):

Bi = first r columns of Qi
β = (Σi

n)1/2(Vi
n)T

(39)
Ci = first m rows of Pi

α = Ui
n(Σi

n)1/2. (40)



3 Results and Analysis

In order to evaluate the performance of the
proposed methodology, two case studies are pre-
sented. The first case study consists in the iden-
tification of a multivariate nonlinear benchmark
system, in which a comparative analysis will be
used with another methodology already accepted
in the state of the art of systems identification.
The second case study consists in the identifica-
tion of an unmanned aerial vehicle (UAV) of the
quadrotor type, demonstrating the efficiency and
applicability of the proposed methodology in re-
lation to nonlinear coupled systems with fast dy-
namics.

3.1 Identification of a Multivariable Nonlinear
Benchmark System

A traditional multivariable nonlinear bench-
mark system can be described by the following
equations (Narendra and Parthasarathy, 1990):

y1,k+1

y2,k+1

 =


y1,k

1 + (y2,k)2
y1,k · y2,k

1 + (y2,k)2

+

u1,k
u2,k

 (41)

whose input signals are given by:u1,k
u2,k

 =

sin (2πk/25)

cos (2πk/25)

 . (42)

For the estimation of this benchmark system,
a set of N = 100 data samples is used. To perform
the estimation of the rule antecedent parameters,
the Fuzzy C-means algorithm is implemented us-
ing the number of clusters c = 2, weighting degree
η = 1.25 and tolerance ξ = 0.001. The fuzzy sets
obtained for the two outputs are shown in Fig. 1.
The normalized activation degree of each rule is
shown in Fig. 2.

A generalized fuzzy rule for this model, con-
sidering Eq. (2), is given by:

Ri = IF z1k is F i1 and z2k is F i2

THEN

{
xik+1 = Aixik + Biuk

yik = Cixik + Diuk
(43)

where i = 1, 2 (R = 2), z1k = [y1,k y2,k u1,k]T and
z2k = [y2,k y1,k u2,k]T . The linguistic variables
were chosen in this way because the relation be-
tween input and output became stronger, follow-
ing a sinusoidal pattern due to the input signals,
as can be verified in Eq. (41).

Once the degree of normalized activation was
obtained, successive tests were carried out by
varying the main parameters of the OKID/ERA
algorithm, that is, the s, α and β variables. Thus,

Figure 1: Membership Functions during the Mul-
tivariable Nonlinear Benchmark System identifi-
cation: (a) output y1, (b) output y2.

Figure 2: Normalized degree of activation during
the Multivariable Nonlinear Benchmark System
identification.

initial s input and output data, which may nega-
tively affect the dynamics of the proposed method-
ology, were disregarded. In addition, after ob-
serving the values of the fuzzy Markov parame-
ters of the system obtained, it is noticed that the
quantity of parameters with more significant val-
ues must be around α + β − 1, as shown in Eq.
(36).

Therefore, through this manual tuning
method, the following values for fuzzy identifica-
tion were considered: s = 1, α = 5, β = 5. Check-
ing the singular values of the Hankel matrix for
each fuzzy rule shown in Fig. 3, the significant
values may not be visible in Σ described in Eq.
(32). But, by analyzing the Σ values internally,
the chosen order for the identified model is n = 3.
A comparison between the output of the identi-
fied model and the actual response of the system
is shown in Fig. 4.

In order to quantify the quality of the pro-



Figure 3: Singular Values of Hankel matrix for
each local model of the benchmark system in
state-space.

Figure 4: Validation and comparison between (a)
real output y1 and estimated ȳ1 (b) and real out-
put y2 and estimated ȳ2.

posed methodology, a function VAF (Variance Ac-
counted For) is defined between two signals, given
as follows:

V AF =

(
1− var(y − ȳ)

var(y)

)
(44)

where y is the real output from system and ȳ is the
estimated output. The VAF measures the average
squared correlation between two signals to verify
the performance of a model.

In (A. Trabelsi and Enea, 2004), a method-
ology for identification of nonlinear multivariable
system by adaptative fuzzy Takagi-Sugeno model
is proposed. This paper presents the results for
identification of the multivariable benchmark sys-
tem, in Eq. (41) and Eq. (42), in two ways: with-
out adaptation (Rec. Id. 1) and with adaptation
(Rec. Id. 2). These results are compared with the
results of the present paper for the same problem
in Table 2.

As can be seen, the proposed methodology
presented better approximation of the nonlinear
multivariable system, greater VAF value, even
with a lower number of rules and without an op-
timization procedure. In order to further improve
the results presented by the proposed methodol-

Table 2: Comparison between the results obtained
by the proposed methodology and the recursive
identification methodology.

VAF (%)

Method Output 1 Output 2 Rules

Proposed 91.02 71.28 2

Rec. Id. 1 49.79 38.61 3

Rec. Id. 2 88.81 69.62 3

ogy, without using an optimization algorithm, one
of the possibilities is to use a clustering algorithm
with better performance than Fuzzy C-Means, as
for example using their variations as PFCM (Pos-
sibilistic Fuzzy C-Means), T2FCM (Type-2 Fuzzy
C-means) and DOFCM (Density Oriented Fuzzy
C-Means) (Gosaina and Dahiya, 2016).

3.2 Identification of a Quadrotor UAV

The Quadrotor UAV used in this case study
is the Parrot AR.Drone 2.0, a nonlinear mul-
tivariable system of fast dynamics as shown in
Fig. 5. This quadrotor has six degrees of free-
dom (6-DOF), i.e., it has four inputs and six out-
puts (Hernandez et al., 2013). Your inputs are:
{ϕref , ϑref , ψref , ζref} - roll, pitch and yaw an-
gle references, in radians, and vertical speed refer-
ence, in m/s. Your outputs are: {ϕ, ϑ, ψ, ζ, ẋ, ẏ}
- roll, pitch and yaw angles in radians, altitude
in meters and linear velocities in the longitudinal
and transversal axes in m/s .

Figure 5: The Quadrotor UAV AR.Drone 2.0.

For this case study, only three inputs and
three outputs will be considered, that is, u =
{ϕref , ϑref , ψref} and y = {ϕ, ϑ, ψ}. To estimate
the proposed model, a set of N = 101 sample data
was used1. The Fuzzy C-Means parameters are:
c = 4, η = 1.25 and ξ = 0.001. The fuzzy sets
obtained for the three outputs are shown in Fig.
6, with the same type of fit of the membership
functions as shown in the first case study. The

1http://bit.ly/2JmTyOt



normalized activation degree of each rule is shown
in Fig. 7.

Figure 6: Membership Functions for: (a) output
y1, (b) output y2, (c) output y3.

Figure 7: Normalized degree of activation during
the Quadrotor UAV identification.

For this case, a generalized fuzzy rule is given
by:

Ri = IF z1k is F i1 and z2k is F i2 and z3k is F i3

THEN

{
xik+1 = Aixik + Biuk

yik = Cixik + Diuk
(45)

where i = 1, 2, 3, 4 (R = 4), z1k = [y1,k]T , z2k =
[y2,k]T and z3k = [y3,k]T .

Considering the same method of manual tun-
ing used in the first case study, the parameters
used in the consequent of fuzzy rules in this case
are: s = 1, α = 5, β = 5. Checking the singu-
lar values of the Hankel matrix for each fuzzy rule
shown in Fig. 8, it is seen that for each fuzzy rule
there are two significant values of Σ. Therefore,
the chosen order is n = 2. A comparison between
the output of the identified model and the actual
response of the system is shown in Fig. 9.

The proposed methodology obtained VAF =
86.26% for the roll angle ϕ, VAF = 82.81% for
the pitch angle ϑ and VAF = 99.98% for the yaw

Figure 8: Singular Values of Hankel matrix for
each local model of the UAV in state-space.

Figure 9: Validation and comparison between (a)
real and estimated roll angle, (b) real and esti-
mated pitch angle, (c) and real and estimated yaw
angle.

angle ψ. These results validate the efficiency of the
proposed model in real systems, which presented
a good approximation of the Quadrotor UAV.

4 Conclusions

In this article, a multivariable fuzzy identifi-
cation methodology for Unmanned Aerial Vehicles
(UAVs) based on Observer/Kalman Filter Identi-
fication (OKID) and the Eigensystem Realization
Algorithm (ERA) was presented. The compara-
tive analysis for identification of a traditional mul-
tivariable nonlinear benchmark demonstrate the
efficiency of the methodology presented in this pa-
per in relation with others accepted methodolo-
gies of the literature. The experimental results
shown the applicability of this methodology for
identification of an UAV mechanical coupled sys-
tems, without having to decorrelate the multiple-
input multiple-output data. In addition, the fuzzy



model obtained is of minimum-order (smallest or-
der possible) and can be seen as the decompo-
sition of a nonlinear system into a collection of
local linear state-space submodels. So, it has a
wide range of aplications and future works, such as
gain-schedulling, optimal, robust and intelligent
control of UAVs.
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