PARALLELISM STRATEGIES FOR NEUROPHYSIOLOGICAL DELAYED TRANSFER ENTROPY

DATA PROCESSING: TOWARDS CAUSAL INFERENCE IN BIG DATA

[TONAS ROSST DOURADOIMICHEL BESSANIJDANIEL RODRIGUES DE LIMA JOSE ROBERTO B. DE A.

MONTEIROTJRAFAEL RODRIGUES MENDES RIBEIROJCARLOS DIAS MACIEL'|

| *Department of Electrical and Computational Engineering,

University of Sdo Paulo,

Sdo Carlos, Sdo Paulo, Brazil|

Emails: jonas.dourado@usp.br, michel.bessani@gmail.com, drodriguesdelima@gmail.com,
jrm@sc.usp.br, rafael.mendes.ribeirol@usp.br, maciel@sc.usp.br

Abstract— Nowadays, the amount of data being generated and collected has been rising with the popularization of technologies
such as Internet of Things, social media, and smartphone. The increasing amount of data led the creation of the term big data. One
class of Big Data hidden information is causality. Among the tools to infer causal relationships there is Delayed Transfer Entropy
(DTE); however, it has a high demanding processing power. Many approaches were proposed to overcome DTE performance
issues such as GPU and FPGA implementations. Our approach is to compare different parallel strategies to calculate DTE from

neurophysiological time series using a heterogeneous Beowulf cluster aiming to increase DTE performance.

Keywords— Delayed Transfer Entropy. Neurophysiological Data. Causality. Parallelism Strategies. Big Data Analysis. Task

Parallelism. Data Parallelism, Data Analysis Performance.

1 Introduction

Nowadays, the amount of data being generated and
collected has been rising with the popularization of
technologies such as Internet of Things, social media,
and smartphone (Hashem et al., 2015). The increasing
amount of data led the creation of the term big data,
with one definition given by (Hashem et al., 2015), as
a set of technologies and techniques to discover hidden
information from diverse, complex and massive scale
datasets. One class of hidden information is causality,
which (Bareinboim and Pearl, 2016) discuss and pro-
pose a framework to deal with common found big data
biases such as confounding and sampling selection.

Among the tools to infer causal relationships
there are Mutual Information used by (Endo et al.,
2015) to infer neuron connectivity and Granger
causality used by (Strohsal et al., 2015) to model
causality between US and UK economies. Addi-
tionally, exist Transfer Entropy (TE), which allows
identification of cause-effect relationship by not ac-
counting for simple and uniquely shared information
(Schreiber, 2000). TE has been applied to many prob-
lems from diverse research fields e.g. finance (Yook
et al., 2016); biosignals (Marzbanrad et al., 2015),
complex networks (Haruna and Fujiki, 2016) and cli-
matology (Hirata et al., 2016).

A derivation of TE metric called Delayed TE
(DTE) is useful for neurophysiological causality as
used by (Ito et al., 2011) to identify active connec-
tions between neurons and by (Wollstadt et al., 2014)
to calculate information transfer and delays from mag-
netoencephalography signals. Despite TE and DTE
wide applicability, they have a high demanding pro-
cessing power (Shao et al., 2015), which is aggravated
with large datasets as those found in big data. Many
approaches were proposed to overcome performance
issues such as an implementation using a GPU made

by (Wollstadt et al., 2014) and an implementation us-
ing an FPGA made by (Shao et al., 2015). Another
approach to speedup data analysis is using a computer
cluster.

Parallel programs should be optimized to extract
maximum performance from hardware on architecture
case by case, which is far from trivial according to
(Booth et al., 2016). There exist different and com-
bined manners to explore parallelism such as data par-
allelism and task parallelism (Gordon et al., 2006).
(Choudhury et al., 2015) stated that choosing the con-
figuration of parallel programs is a "mysterious art" in
a study which they created a model aiming maximum
speedup by balancing different parallelism strategies
for both cluster and cloud computer environments.

In this study, we compare parallel strategies to
calculate DTE from neurophysiological time series
using a heterogeneous Beowulf cluster aiming to in-
crease DTE performance. We also analyze computing
node performance within task parallelism to gain some
insights to enrich parallel strategies discussion.

This paper is organized as follows: Until intro-
duction end, it will be presented concepts that might
help readers keep up with whole paper. In materials
and methods, will be described all steps needed to re-
produce the results. Results and discussion are self-
explanatory. In conclusion, additionally, is suggested
future works. Remaining information useful to repro-
ducibility is located in an appendix to avoid nonessen-
tial noise through the text.

1.1 Beowulf Cluster

A Beowulf cluster is made by connecting consumer
grade computers on a local network using Ethernet
or other suitable connection technology (Yao et al.,
2009). The term Beowulf cluster was coined by
(Sterling et al., 1995), which created the topology on

NASA facilities as an alternative to expensive com-
mercial vendor built High-Performance Clusters.

Beowulf cluster is widely used by di-
verse research fields such as Monte Carlo
simulations(Yamakov, 2016), drug design (Moretti
and Sartori, 2016), geographic data processing
(Qin et al., 2014) and Electroencephalogram data
processing (Yao et al., 2009).

1.2 Parallelism Strategies

According to (Booth et al., 2016), archiving parallel
performance on chosen hardware architecture depends
on factors such as scheduler overhead, data/task gran-
ularity, cache fitting and data synchronization. To do
so0, one can change the parallelism strategy to optimize
performance.

There exist different abstraction level of paral-
lelism strategies that can be combined (Choudhury
et al., 2015). In this paper, two parallelism levels are
independently explored, from the lower to higher: data
level parallelism and task level parallelism.

Data parallelism strategy idea as stated by
(Gordon et al., 2006), is when one processing data
slice does not have dependency with next one. Thus,
data is divided into several data slices and processing
them equally by different processors.

Task parallelism objective is to spawn tasks across
processors to speedup one scalable algorithm. Tasks
can be spawned by a central task system or by a dis-
tributed task system, both adding processing overhead,
with distributed task system achieving less overhead
(Booth et al., 2016).

Often, a systematic comparison between paral-
lelism strategies is necessary to verify which one has
better performance (Booth et al., 2016).

1.3 IPython

IPython was born as an interactive system for scien-
tific computing (Pérez and Granger, 2007), later re-
ceiving several improvements as parallel processing
capabilities (IPython developers, 2011). These par-
allel processing capabilities become an independent
package under IPython project and were renamed as
ipyparallel (IPython developers, 2016a).

With minor code modification, ipyparallel en-
ables a Python processing script to be distributed
across a cluster, with minor script modifications
(IPython developers, 2016b). Throughout the text,
ipyparallel is referenced as IPython, since its docu-
mentation also refers to itself as IPython.

[Python already had been used in studies similar
to our propose, as (Kershaw et al., 2015) used it for
big data analysis in a cloud environment and (Stevens
et al., 2013) authors were able to develop automated
and reproducible neuron simulation analysis.

1.4 Surrogate

The word surrogate stands for something that is used
instead of something else. In the case of surrogate sig-
nals (Dolan and Spano, 2001), the synthetic data used
is randomly generated, but it also presents some char-
acteristics of the original signal that it is taking place.

A surrogate signal has the same power spec-
trum that the original signal, but these two signals
are uncorrelated. Different computational packages
present several algorithms to generate surrogate sig-
nals (Magri et al., 2009), (Lindner et al., 2011). Surro-
gate data, represents, as best as possible, all the char-
acteristics of the real process, though without causal
interactions.

In the case of neurophysiological data, the causal
association happens in phase synchronization (Yang
et al., 2013). (Endo et al., 2015) used a surrogate data
with the ITAAFT (Iterative Amplitude Adjusted Fourier
Transform) algorithm (Schreiber and Schmitz, 1996),
which generates signals preserving the power density
spectrum and probability density functions, but with
the phase components randomly shuffled (Venema
et al., 2006).

1.5 Transfer Entropy

Transfer Entropy (TE) measurement shown in
was introduced by (Schreiber, 2000) and is use-
ful to measure information transfer between two time
series. TE has an asymmetric nature, being possible to
determine information direction.

TEx .,y = Z
Yn+1-YnXn

1
POt) M

POt y)

kK (1
P(Yn+1,YSz),xgz)) log,

where y, and x,, denotes value of X and Y at time n;
Yn+1 the value of Y at time n+ 1; p is the probabil-
ity of parenthesis content; / and k are the number of
time slices used to calculate probability density func-
tion (PDF) using past values of X and Y, respectively;
chosen log, means that TE results are given in bits.

Assuming k = 1 and / = 1 to simplify analysis
(Also called as DITE by (Ito et al., 2011)), TE al-
gorithm is demanding regarding computational power
(Shao et al., 2015), with its computational complexity
being O(B?), where B is the chosen number of bins in
PDFE.

An extension to DITE proposed by (Ito et al.,
2011) is delayed transfer entropy (DTE - [Equation 2)),
which is a DITE with variable causal delay range.
This way, a parameter d represents a variable delay
between y and x. DTE is a useful metric to determine
where within d range, occurs the biggest transfer of
information from X to Y.

TEx-y(d)= Y,

Yn4-15YnXn+1—d
p()’n+1 |ymxn+lfd)
Pnt1yn)

2

P(Vn+1,Yn> Xnt1-a)logy

2 Material and Methods

This study emerged from recurrent cluster usage in
our lab, demanded by several applications as multi-
scenarios Monte Carlo simulations (Bessani et al.,
2016), optimization of large-scale systems reconfigu-
ration (Camillo et al., 2016), and in specific biosignals
analysis with DTE (de Lima et al., 2016). Studies with
DTE usage were negatively affected by high process-
ing power demands (Shao et al., 2015), therefore often
limiting data size scope or even number of surrogate
datasets for DTE analysis.

With an objective to clarify program flow, the
serial version is shown in Algorithm [2] The pro-
gram calculates Embedding parameters for each chan-
nel and calculate DTE for each two channel permu-
tation. Last, surrogate signals representing each per-
mutation are generated, and DTEs are calculated. The
most surrogate, the better, since it contributes to in-
creasing causality statistical evidence.

Embedding was calculated in order to find the tar-
get variable’s past, which can be found in the first lo-
cal minimum of auto correlation measures (Kantz and
Schreiber, 2004).

Algorithm 1 Execute DTE with surrogate

1: for experiment in experiment_list_file do

2: experiment_signal < load_signal_from_disk

(experiment)

for each channel in experiment_signal do
calculate embedding(channel)

end for

for each two-channel permutation in experi-

ment_signal do

7: calculate DTE(channell, channel2, chan-

nel2_embedding)
8: end for
9: for i = 0 to num_surrogates do

AR

10: surrogate <— generate_surrogate (experi-
ment_signal)

11: for each two-channel permutation in surro-
gate do

12: calculate DTE(channell, channel2, chan-

nel2_embedding)

13: end for

14: end for

15: end for

The previous existent code comes from several
years of development, is arbitrarily named as CODE
A and is shown as a flow chart in CODE
A is a Python (van Rossum and Drake, 2011) script
which uses libraries such as numpy (Walt et al., 2011),

[Python (Pérez and Granger, 2007) and Ipslib (devel-
oped in-house by LPS laboratory). It tackled perfor-
mance issues by using data parallelism, made possible
by IPython ipyparallel library.

On CODE A, for each experiment, signals are read
on host node, Embedding code is executed on host
node, Embedding pushes corresponding channel data
to all computing nodes, each computing node pro-
cess one part of data and results are gathered on the
host node. Note that Embedding is executed once for
each channel. After Embedding, DTE is executed on
host node for each two channel permutation, it pushes
channel data to all computing nodes, each node pro-
cess one part of data and result is gathered on the host
node.

Host

Has next
experiment2

Yes No

Read Experiment

\
Read Signal
v Nodes
Embedding
— | i

DTE Sur

Figure 1: CODE A- Data parallelism program. Note
that each dashed line means data transfer to every clus-
ter node and every dotted line means synchronization
to host program flow.

The decision to try another parallelism strategy
come from analyzing CPU load during CODE A exe-
cution and observing a processor sub-utilization. This
observation was done by executing htop (Bartosz Fen-
ski et al., 2016) program on a computing node and
checking that system load average was significantly
smaller than the number of processors. By reading
Linux proc manual (Linux Developers, 2016), DTE
calculation clearly wasn’t in run queue or waiting for
disk I/O to fully load (meaning the load average is
equal the number of processors) each node.

Further investigation by adding extensive logging
facilities to CODE A confirmed that the low load av-
erage was caused by network communication bottle-

neck.

Host

Read all Experiments

Y

Prepare Embedding tasks

Prepare DTE tasks

| A

Nodes

— >

Read Signal

Read Signal

ware configuration is listed in and software
configuration is listed in and are presented in
an appendix.

Logs were processed to calculate duration for
each execution. Linear least square method was used
to fit a line for data and task parallelism duration. Sup-
posing surrogate creation duration is insignificantly in
comparison with DTE duration; each line slope repre-
sents Minutes/surrogate.

With line slopes, speedup was calculated to mea-
sure performance gain from task parallelism over data
parallelism.

3 Results and Discussion

Analyzing logs gave results shown by point marks and
fitted line using linear least square method in[Figure 3]

Figure 2: CODE B - Task parallelism program. Note
that each dashed line means task parameters transfer
to individual cluster node and every dotted line means
synchronization to host program flow.

Aiming to mitigate network communication over-
head, code were refactored to use task-based paral-
lelism. The idea is to load signal data from main stor-
age instead network transfer from host node. Refac-
tored code were named as CODE B and is shown in
Figure 2

Before executing CODE B, every signal data must
be copied to each computing node. The main differ-
ence from CODE A is that every experiment is read
once, every Embedding tasks are executed, and finally,
one task is created for each two channel permutation
for every experiment. Tasks are asynchronously exe-
cuted and scheduled by IPython.

Both CODE A and CODE B were executed with
a different number of surrogates (1, 5, 10 and 20) to
compare performance between them, except 20 surro-
gates for CODE A due excessively long execution time
(estimated in more than 6000 minutes by extrapolating
results from CODE A with a smaller number of surro-
gates). The long execution time of each experiment
made nonviable repeating it to calculate standard de-
viation, but it was checked for 1 surrogate case that
time variance between executions was minimal.

The system used to analyze performance dif-
ference was a heterogeneous Beowulf cluster com-
posed of 10 nodes connected through Gigabit Ethernet
Switch model HP Procurve 1910-24G. Nodes hard-

@ ® Data parallelism
Fitted data parallelism

B B Task parallelism

Fitted task parallelism

3500 T

T T
3000_,..
0 .
4] .
5 2500 []
£
£ .
S 2000
£ o
‘;:‘1500_' R
L : : : -7
E1000 a : : S
% - (....’ ;i.’./..’..ﬁ L
500_.......’..l.—..’f.....‘...........‘...........
0 L L L
0 5 10 15 20

Number of surrogates

Figure 3: Data and task parallelism execution time
versus number of surrogate signals. Point marks
shows numerical results. Lines show data fitted by lin-
ear square method

Lines slope for each parallelism strategy are
280.385 minutes/surrogate (data parallelism) and
65.257 minutes/surrogate (task parallelism). There-

fore, speedup can be determined in

data parallelism

Sooodum — ~280.385
P P= Trask parallelism B 65.257

—4297 (3)

Achieved speedup ~ 4.3 shows that task paral-
lelism is significantly faster than data parallelism. Af-
ter analyzing logs, positive speedup can be explained
by three main factors and negatively impacted by an-
other.

First speedup explanation is data locality since
data is stored on local disk in task parallelism versus
being transferred by the network in data parallelism.
Also, former has to transfer channel data for every sur-
rogate, while later, locally read signal data only once
for each two channel permutation surrogates.

Second factor is sub-optimum node utilization
caused by cluster heterogeneity illustrated in [Fig]
This happens in data parallelism because data

is equally divided across computing nodes with differ-
ent performance, causing faster nodes, which finished
data processing, to wait for slower nodes.

1.00 1.100.37 0.85 0.92 090

0.52 1.00 1.00 1.04 0.49 1.16 0.40 0.40 0.42 0.44
0.59 1.00 1.00 1.05 0.60 1.20 0.45 0.45 0.47 0.48
0.47 0.97 0.96 1.00 0.55 1.19 0.38 0.40 0.44 0.44
0.94 1.00 0.90 0.86 0.95 0.88

0.50 0.89 0.87 0.85 0.47 1.00 0.37 0.35 0.35 0.37 15
1.21 1.00 1.00 1.08 1.07
1.20 1.02 1.00 1.06 1.05 1.0
1.14 0.94 0.96 1.00 1.02

1.13 0.96 0.97 1.00 1.00 05

Ips12 Ips1l Ips10 Ips09 Ips08 Ips06 Ips05 Ips04 Ips02 IpsO1

Ips01 Ips02 Ips04 Ips05 Ips06 Ips08 Ips09 Ips10 Ipsll Ips12

Figure 4: DTE task performance comparison between
different computing nodes to highlight cluster hetero-
geneity. In task parallelism, each experiment spawned
number of channelsx (number of channels — 1) DTE
tasks of the same size across computing nodes, their
execution times were used to calculate speedup of Y
axis computing node over X axis computing node and
finally was made an average of calculated speedups
for each cell. Execution log used to generate this plot
was from 20 surrogates. Values are given in relative
speedup

The third factor is caused by the fact of data par-
allelism surrogate datasets are generated only by host
node, forcing all computing nodes to wait for surro-
gate dataset generation. Task parallelism does not suf-
fer from the same problem, as while one surrogate
dataset is generated by one computing nodes, it does
not block another computing node.

Negatively affecting task parallelism speedup is
caused by asynchronous nature of tasks, when task
pool is exhausted, some computing nodes are left
without any task.

4 Conclusion

Using task parallelism strategy to increase DTE al-
gorithm performance in a heterogeneous cluster was
shown as a faster alternative in comparison with data
parallelism. Having in sight big data trend, it is a sig-
nificant result, since it will enable causal inference for
bigger datasets or with better causality statistical evi-
dence.

Having verified task parallelism as a better ap-
proach to DTE in a Beowulf cluster, it remains open
how the number of computing nodes affects perfor-
mance. Thus, future research should investigate how
scalable task parallelism is after increased number of
computing nodes, with a nice addition of using smaller
artificial data feasible to execute multiple times each
experiment. Another further investigation might also

check if the amount of RAM has a correlation with
performance in computing nodes when executing task
parallelism. Moreover, different parallelism strategies
can be tested on a case by case aiming to speedup pro-
cessing of the ever increasing data size.

Acknowledgments

The authors would like to thank CAPES — Brazilian
Federal Agency for Support and Evaluation of Grad-
uate Education within the Ministry of Education of
Brazil, CNPq — National Council of Technological
and Scientific Development — Project 475064/2013-5
for supporting this work, FAPESP — Sdo Paulo Re-
search Foundation for supporting this work and pre-
vious people who worked on program source code:
Carlos Dias Maciel, Wagner Endo, Fernando Pasquini
Santos and Daniel Rodrigues de Lima.

We also would like to thank Sinal Processing Lab-
oratory (LPS) and the University of Sdo Paulo (USP)
for providing the infrastructure, in special the Beowulf
cluster used in this study.

References

BAKER, M. (2016). Is there a reproducibility crisis?,
Nature 533: 452-454.

Bareinboim, E. and Pearl, J. (2016). Causal inference
and the data-fusion problem, Proceedings of the
National Academy of Sciences 113(27): 7345-
7352.

Bartosz Fenski et al. (2016). htop(1) Linux User’s
Manual.

Bessani, M., Fanucchi, R. Z., Delbem, A. C. C.
and Maciel, C. D. (2016). Impact of oper-
ators’ performance in the reliability of cyber-
physical power distribution systems, IET Gen-
eration, Transmission & Distribution 10: 2640—
1646.

Booth, J. D., Kim, K. and Rajamanickam, S. (2016). A
comparison of high-level programming choices
for incomplete sparse factorization across differ-
ent architectures, Parallel and Distributed Pro-
cessing Symposium Workshops, 2016 IEEE In-
ternational, IEEE, pp. 397-406.

Camillo, M. H., Fanucchi, R. Z., Romero, M. E.,
de Lima, T. W., da Silva Soares, A., Delbem, A.
C. B., Marques, L. T., Maciel, C. D. and London,
J. B. A. (2016). Combining exhaustive search
and multi-objective evolutionary algorithm for
service restoration in large-scale distribution sys-
tems, Electric Power Systems Research 134: 1-8.

Choudhury, O., Rajan, D., Hazekamp, N., Gesing,
S., Thain, D. and Emrich, S. (2015). Balancing
thread-level and task-level parallelism for data-
intensive workloads on clusters and clouds, 2015

IEEE International Conference on Cluster Com-
puting, IEEE, pp. 390-393.

de Lima, D. R., Santos, F. P. and Maciel, C. D. (2016).
Network structural reconstruction base on de-
layed transfer entropy and synthetic data., CBA
2016, pp. 1-6.

Dolan, K. T. and Spano, M. L. (2001). Surrogate for
nonlinear time series analysis, Physical Review
E 64(4): 046128.

Editorial, N. (2016). Reality check on reproducibility,
Nature 533: 437.

Endo, W., Santos, F. P, Simpson, D., Maciel, C. D.
and Newland, P. L. (2015). Delayed mutual in-
formation infers patterns of synaptic connectiv-
ity in a proprioceptive neural network, Journal
of Computational Neuroscience 38(2): 427-438.

Gordon, M. 1., Thies, W. and Amarasinghe, S.
(2006). Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs,
SIGARCH Comput. Archit. News 34(5): 151-
162.

Haruna, T. and Fujiki, Y. (2016). Hodge decompo-
sition of information flow on small-world net-
works, Frontiers in Neural Circuits 10.

Hashem, I. A. T., Yaqoob, 1., Anuar, N. B., Mokhtar,
S., Gani, A. and Khan, S. U. (2015). The
rise of “big data” on cloud computing: Review

and open research issues, Information Systems
47: 98-115.

Hirata, Y., Amig6, J. M., Matsuzaka, Y., Yokota, R.,
Mushiake, H. and Aihara, K. (2016). Detect-
ing causality by combined use of multiple meth-
ods: Climate and brain examples, PLoS ONE
11(7): 1-15.

IPython developers (2011). Ipython 3.2.1 documenta-
tion - 0.11 series.

IPython developers (2016a). ipyparallel 5.2.0 docu-
mentation - changes in ipython parallel.

IPython developers (2016b). ipyparallel 5.2.0 docu-
mentation - ipython parallel overview and getting
started.

Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A.,
Litke, A. M. and Beggs, J. M. (2011). Extending
transfer entropy improves identification of effec-
tive connectivity in a spiking cortical network
model, PLoS ONE 6(11).

Kantz, H. and Schreiber, T. (2004). Nonlinear time se-
ries analysis, Vol. 7, Cambridge university press.

Kershaw, P., Lawrence, B., Gomez-Dans, J. and Holt,
J. (2015). Cloud hosting of the ipython note-
book to provide collaborative research environ-
ments for big data analysis, EGU General As-
sembly Conference Abstracts, Vol. 17, p. 13090.

Lindner, M., Vicente, R., Priesemann, V. and Wibral,
M. (2011). Trentool: A matlab open source tool-
box to analyse information flow in time series
data with transfer entropy, BMC neuroscience
12(1): 1.

Linux Developers (2016). proc(5) Linux User’s Man-
ual.

Magri, C., Whittingstall, K., Singh, V., Logothetis,
N. K. and Panzeri, S. (2009). A toolbox for the
fast information analysis of multiple-site Ifp, eeg
and spike train recordings, BMC neuroscience
10(1): 1.

Marzbanrad, F., Kimura, Y., Palaniswami, M. and
Khandoker, A. H. (2015). Quantifying the in-
teractions between maternal and fetal heart rates
by transfer entropy, PloS one 10(12): e0145672.

Moretti, L. and Sartori, L. (2016). A simple and
resource-efficient setup for the computer-aided
drug design laboratory, Molecular Informatics
pp. n/a—n/a.

Pérez, F. and Granger, B. E. (2007). IPython: a system
for interactive scientific computing, Computing
in Science and Engineering 9(3): 21-29.

Qin, C.-Z., Zhan, L.-J., Zhu, A.-X. and Zhou, C.-
H. (2014). A strategy for raster-based geocom-
putation under different parallel computing plat-
forms, International Journal of Geographical In-
formation Science 28(11): 2127-2144.

Schreiber, T. (2000). Measuring Information Transfer,
Physical Review Letters 85(2): 19.

Schreiber, T. and Schmitz, A. (1996). Improved sur-
rogate data for nonlinearity tests, Phys. Rev. Lett.
77: 635-638.

Shao, S., Guo, C., Luk, W. and Weston, S. (2015).
Accelerating transfer entropy computation, Pro-
ceedings of the 2014 International Conference
on Field-Programmable Technology, FPT 2014
pp. 60-67.

Sterling, T., Becker, D. J., Savarese, D., Dorband,
J. E., Ranawake, U. A. and Packer, C. V. (1995).
Beowulf: A parallel workstation for scientific
computation, In Proceedings of the 24th Interna-
tional Conference on Parallel Processing, CRC
Press, pp. 11-14.

Stevens, J.-L. R., Elver, M. and Bednar, J. A. (2013).
An automated and reproducible workflow for
running and analyzing neural simulations using
lancet and ipython notebook, Frontiers in neu-
roinformatics 7. 44.

Strohsal, T., Proafio, C. R., Wolters, J. et al. (2015).
How do financial cycles interact? evidence
from the us and the uk, Technical report, Son-
derforschungsbereich 649, Humboldt University,
Berlin, Germany.

van Rossum, G. and Drake, F. L. (2011). The Python
Language Reference Manual, Network Theory
Ltd.

Venema, V., Ament, F. and Simmer, C. (2006). A
stochastic iterative amplitude adjusted fourier
transform algorithm with improved accuracy,
Nonlinear Processes in Geophysics 13(3): 321—
328.

Walt, S. v. d., Colbert, S. C. and Varoquaux, G. (2011).
The numpy array: A structure for efficient nu-
merical computation, Computing in Science and
Engg. 13(2): 22-30.

Wollstadt, P., Martinez-Zarzuela, M., Vicente, R.,
Diaz-Pernas, F. J. and Wibral, M. (2014). Effi-
cient transfer entropy analysis of non-stationary
neural time series, PLoS ONE 9(7): 1-21.

Yamakov, V. 1. (2016). Parallel grand canonical monte
carlo (paragrandmc) simulation code, Technical
report, NASA.

Yang, C., Jeannes, R. L. B., Faucon, G. and Shu, H.
(2013). Detecting information flow direction in
multivariate linear and nonlinear models, Signal
Processing 93(1): 304-312.

Yao, Y., Chang, J. and Xia, K. (2009). A case of par-
allel eeg data processing upon a beowulf clus-
ter, Parallel and Distributed Systems (ICPADS),
2009 15th International Conference on, 1EEE,
pp- 799-803.

Yook, S.-H., Chae, H., Kim, J. and Kim, Y. (2016).
Finding modules and hierarchy in weighted fi-
nancial network using transfer entropy, Phys-
ica A: Statistical Mechanics and its Applications
447: 493-501.

Appendix

Observing recent concerns about experiment repro-
ducibility across every science field (Editorial, 2016)
(BAKER, 2016), this paper aims to achieve complete
reproduction. Therefore in this appendix is shown ad-
ditional information useful to reproduce it.

Source code

All code was managed using Git version control soft-
ware within a private repository. Exact code revisions

used by this study is shown in

Cluster configuration

Cluster hardware configuration is listed is and
software configuration is listed in

Dataset

The dataset is composed of 35 neurophysiological sig-
nals each with four simultaneous captured channels.
The average number of signal samples is about 1 mil-
lion samples with standard deviation about 500 thou-
sand samples.

Table 1: Code Git revisions hash

Parallel strategy

Revision hash

Data parallelism

f85aac7e8ff46c74b8e758211197dfc8b069571d

Task parallelism

€97a687c51cfad61ac097fb5fc26b029967615da

Table 2: Cluster hardware configuration. RAM modules were list separately since some nodes has multiple
memory modules to explore dual channel. Main storage describe storage media used during script execution,
some nodes might have other unused storage media.

Node Processor (cores) RAM (speed) Main Storage size (model) Ethernet
host i5-2500 CPU @ 3.30GHz 4 + 4 GiB (1333MHz) 2TB WDC WD20EARX-00P Gigabit
IpsO1 | i7-4770 CPU @ 3.40GHz (8) 8 + 8 GiB (1333MHz) 1TB ST1000DMO003-1CH1 Gigabit
Ips02 | i7-3770 CPU @ 3.40GHz (8) 8 GiB (1333MHz) 60GB KINGSTON SV300S3 Gigabit
IpsO4 | 17-4820K CPU @ 3.70GHz (8) 8 GiB (1333MHz) 2TB ST2000DMO001-1CH1 Gigabit
Ips05 | i7-4820K CPU @ 3.70GHz (8) 8 GiB (1333MHz) 1863GiB ST2000DMO001-1CH1 | Gigabit
Ips06 | 17-4820K CPU @ 3.70GHz (8) 8 + 8 GiB (1333MHz) 60GB KINGSTON SV300S3 Gigabit
1ps08 i7 950 CPU @ 3.07GHz (8) 4 +4 + 4 GiB (1066MHz) 2TB ST32000542AS Gigabit
Ips09 | i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE | Gigabit
Ips10 | i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE | Gigabit
Ips1l | i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE | Gigabit
Ips12 | i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE | Gigabit

Table 3: Cluster software configuration. Updated at shows when each cluster node was last fully updated.

Node Operating System (updated at) numpy | [Python pyfftw Linux kernel

host | Fedora 24 Workstation (2016-08-17) | 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
IpsO1 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
1ps02 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
1ps04 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
Ips05 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
1ps06 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
1ps08 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
Ips09 | Fedora 24 Workstation (2016-08-16) | 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
Ips10 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
Ips11 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64
Ips12 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 | 4.6.6-300.fc24.x86_64

	Introduction
	Beowulf Cluster
	Parallelism Strategies
	IPython
	Surrogate
	Transfer Entropy

	Material and Methods
	Results and Discussion
	Conclusion

