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Abstract— Nowadays, the amount of data being generated and collected has been rising with the popularization of technologies
such as Internet of Things, social media, and smartphone. The increasing amount of data led the creation of the term big data. One
class of Big Data hidden information is causality. Among the tools to infer causal relationships there is Delayed Transfer Entropy
(DTE); however, it has a high demanding processing power. Many approaches were proposed to overcome DTE performance
issues such as GPU and FPGA implementations. Our approach is to compare different parallel strategies to calculate DTE from
neurophysiological time series using a heterogeneous Beowulf cluster aiming to increase DTE performance.
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1 Introduction

Nowadays, the amount of data being generated and
collected has been rising with the popularization of
technologies such as Internet of Things, social media,
and smartphone (Hashem et al., 2015). The increasing
amount of data led the creation of the term big data,
with one definition given by (Hashem et al., 2015), as
a set of technologies and techniques to discover hidden
information from diverse, complex and massive scale
datasets. One class of hidden information is causality,
which (Bareinboim and Pearl, 2016) discuss and pro-
pose a framework to deal with common found big data
biases such as confounding and sampling selection.

Among the tools to infer causal relationships
there are Mutual Information used by (Endo et al.,
2015) to infer neuron connectivity and Granger
causality used by (Strohsal et al., 2015) to model
causality between US and UK economies. Addi-
tionally, exist Transfer Entropy (TE), which allows
identification of cause-effect relationship by not ac-
counting for simple and uniquely shared information
(Schreiber, 2000). TE has been applied to many prob-
lems from diverse research fields e.g. finance (Yook
et al., 2016); biosignals (Marzbanrad et al., 2015),
complex networks (Haruna and Fujiki, 2016) and cli-
matology (Hirata et al., 2016).

A derivation of TE metric called Delayed TE
(DTE) is useful for neurophysiological causality as
used by (Ito et al., 2011) to identify active connec-
tions between neurons and by (Wollstadt et al., 2014)
to calculate information transfer and delays from mag-
netoencephalography signals. Despite TE and DTE
wide applicability, they have a high demanding pro-
cessing power (Shao et al., 2015), which is aggravated
with large datasets as those found in big data. Many
approaches were proposed to overcome performance
issues such as an implementation using a GPU made

by (Wollstadt et al., 2014) and an implementation us-
ing an FPGA made by (Shao et al., 2015). Another
approach to speedup data analysis is using a computer
cluster.

Parallel programs should be optimized to extract
maximum performance from hardware on architecture
case by case, which is far from trivial according to
(Booth et al., 2016). There exist different and com-
bined manners to explore parallelism such as data par-
allelism and task parallelism (Gordon et al., 2006).
(Choudhury et al., 2015) stated that choosing the con-
figuration of parallel programs is a "mysterious art" in
a study which they created a model aiming maximum
speedup by balancing different parallelism strategies
for both cluster and cloud computer environments.

In this study, we compare parallel strategies to
calculate DTE from neurophysiological time series
using a heterogeneous Beowulf cluster aiming to in-
crease DTE performance. We also analyze computing
node performance within task parallelism to gain some
insights to enrich parallel strategies discussion.

This paper is organized as follows: Until intro-
duction end, it will be presented concepts that might
help readers keep up with whole paper. In materials
and methods, will be described all steps needed to re-
produce the results. Results and discussion are self-
explanatory. In conclusion, additionally, is suggested
future works. Remaining information useful to repro-
ducibility is located in an appendix to avoid nonessen-
tial noise through the text.

1.1 Beowulf Cluster

A Beowulf cluster is made by connecting consumer
grade computers on a local network using Ethernet
or other suitable connection technology (Yao et al.,
2009). The term Beowulf cluster was coined by
(Sterling et al., 1995), which created the topology on



NASA facilities as an alternative to expensive com-
mercial vendor built High-Performance Clusters.

Beowulf cluster is widely used by di-
verse research fields such as Monte Carlo
simulations(Yamakov, 2016), drug design (Moretti
and Sartori, 2016), geographic data processing
(Qin et al., 2014) and Electroencephalogram data
processing (Yao et al., 2009).

1.2 Parallelism Strategies

According to (Booth et al., 2016), archiving parallel
performance on chosen hardware architecture depends
on factors such as scheduler overhead, data/task gran-
ularity, cache fitting and data synchronization. To do
so, one can change the parallelism strategy to optimize
performance.

There exist different abstraction level of paral-
lelism strategies that can be combined (Choudhury
et al., 2015). In this paper, two parallelism levels are
independently explored, from the lower to higher: data
level parallelism and task level parallelism.

Data parallelism strategy idea as stated by
(Gordon et al., 2006), is when one processing data
slice does not have dependency with next one. Thus,
data is divided into several data slices and processing
them equally by different processors.

Task parallelism objective is to spawn tasks across
processors to speedup one scalable algorithm. Tasks
can be spawned by a central task system or by a dis-
tributed task system, both adding processing overhead,
with distributed task system achieving less overhead
(Booth et al., 2016).

Often, a systematic comparison between paral-
lelism strategies is necessary to verify which one has
better performance (Booth et al., 2016).

1.3 IPython

IPython was born as an interactive system for scien-
tific computing (Pérez and Granger, 2007), later re-
ceiving several improvements as parallel processing
capabilities (IPython developers, 2011). These par-
allel processing capabilities become an independent
package under IPython project and were renamed as
ipyparallel (IPython developers, 2016a).

With minor code modification, ipyparallel en-
ables a Python processing script to be distributed
across a cluster, with minor script modifications
(IPython developers, 2016b). Throughout the text,
ipyparallel is referenced as IPython, since its docu-
mentation also refers to itself as IPython.

IPython already had been used in studies similar
to our propose, as (Kershaw et al., 2015) used it for
big data analysis in a cloud environment and (Stevens
et al., 2013) authors were able to develop automated
and reproducible neuron simulation analysis.

1.4 Surrogate

The word surrogate stands for something that is used
instead of something else. In the case of surrogate sig-
nals (Dolan and Spano, 2001), the synthetic data used
is randomly generated, but it also presents some char-
acteristics of the original signal that it is taking place.

A surrogate signal has the same power spec-
trum that the original signal, but these two signals
are uncorrelated. Different computational packages
present several algorithms to generate surrogate sig-
nals (Magri et al., 2009), (Lindner et al., 2011). Surro-
gate data, represents, as best as possible, all the char-
acteristics of the real process, though without causal
interactions.

In the case of neurophysiological data, the causal
association happens in phase synchronization (Yang
et al., 2013). (Endo et al., 2015) used a surrogate data
with the IAAFT (Iterative Amplitude Adjusted Fourier
Transform) algorithm (Schreiber and Schmitz, 1996),
which generates signals preserving the power density
spectrum and probability density functions, but with
the phase components randomly shuffled (Venema
et al., 2006).

1.5 Transfer Entropy

Transfer Entropy (TE) measurement shown in Equa-
tion 1 was introduced by (Schreiber, 2000) and is use-
ful to measure information transfer between two time
series. TE has an asymmetric nature, being possible to
determine information direction.

T EX→Y = ∑
yn+1,yn,xn

p(yn+1,y
(k)
n ,x(l)n ) log2

p(yn+1|y
(k)
n ,x(l)n )

p(yn+1|y
(k)
n )

(1)

where yn and xn denotes value of X and Y at time n;
yn+1 the value of Y at time n+ 1; p is the probabil-
ity of parenthesis content; l and k are the number of
time slices used to calculate probability density func-
tion (PDF) using past values of X and Y , respectively;
chosen log2 means that TE results are given in bits.

Assuming k = 1 and l = 1 to simplify analysis
(Also called as D1TE by (Ito et al., 2011) ), TE al-
gorithm is demanding regarding computational power
(Shao et al., 2015), with its computational complexity
being O(B3), where B is the chosen number of bins in
PDF.

An extension to D1TE proposed by (Ito et al.,
2011) is delayed transfer entropy (DTE - Equation 2),
which is a D1TE with variable causal delay range.
This way, a parameter d represents a variable delay
between y and x. DTE is a useful metric to determine
where within d range, occurs the biggest transfer of
information from X to Y .



T EX→Y (d) = ∑
yn+1,yn,xn+1−d

p(yn+1,yn,xn+1−d) log2
p(yn+1|yn,xn+1−d)

p(yn+1|yn)

(2)

2 Material and Methods

This study emerged from recurrent cluster usage in
our lab, demanded by several applications as multi-
scenarios Monte Carlo simulations (Bessani et al.,
2016), optimization of large-scale systems reconfigu-
ration (Camillo et al., 2016), and in specific biosignals
analysis with DTE (de Lima et al., 2016). Studies with
DTE usage were negatively affected by high process-
ing power demands (Shao et al., 2015), therefore often
limiting data size scope or even number of surrogate
datasets for DTE analysis.

With an objective to clarify program flow, the
serial version is shown in Algorithm 2. The pro-
gram calculates Embedding parameters for each chan-
nel and calculate DTE for each two channel permu-
tation. Last, surrogate signals representing each per-
mutation are generated, and DTEs are calculated. The
most surrogate, the better, since it contributes to in-
creasing causality statistical evidence.

Embedding was calculated in order to find the tar-
get variable’s past, which can be found in the first lo-
cal minimum of auto correlation measures (Kantz and
Schreiber, 2004).

Algorithm 1 Execute DTE with surrogate
1: for experiment in experiment_list_file do
2: experiment_signal ← load_signal_from_disk

(experiment)
3: for each channel in experiment_signal do
4: calculate embedding(channel)
5: end for
6: for each two-channel permutation in experi-

ment_signal do
7: calculate DTE(channel1, channel2, chan-

nel2_embedding)
8: end for
9: for i = 0 to num_surrogates do

10: surrogate ← generate_surrogate (experi-
ment_signal)

11: for each two-channel permutation in surro-
gate do

12: calculate DTE(channel1, channel2, chan-
nel2_embedding)

13: end for
14: end for
15: end for

The previous existent code comes from several
years of development, is arbitrarily named as CODE
A and is shown as a flow chart in Figure 1. CODE
A is a Python (van Rossum and Drake, 2011) script
which uses libraries such as numpy (Walt et al., 2011),

IPython (Pérez and Granger, 2007) and lpslib (devel-
oped in-house by LPS laboratory). It tackled perfor-
mance issues by using data parallelism, made possible
by IPython ipyparallel library.

On CODE A, for each experiment, signals are read
on host node, Embedding code is executed on host
node, Embedding pushes corresponding channel data
to all computing nodes, each computing node pro-
cess one part of data and results are gathered on the
host node. Note that Embedding is executed once for
each channel. After Embedding, DTE is executed on
host node for each two channel permutation, it pushes
channel data to all computing nodes, each node pro-
cess one part of data and result is gathered on the host
node.

Figure 1: CODE A- Data parallelism program. Note
that each dashed line means data transfer to every clus-
ter node and every dotted line means synchronization
to host program flow.

The decision to try another parallelism strategy
come from analyzing CPU load during CODE A exe-
cution and observing a processor sub-utilization. This
observation was done by executing htop (Bartosz Fen-
ski et al., 2016) program on a computing node and
checking that system load average was significantly
smaller than the number of processors. By reading
Linux proc manual (Linux Developers, 2016), DTE
calculation clearly wasn’t in run queue or waiting for
disk I/O to fully load (meaning the load average is
equal the number of processors) each node.

Further investigation by adding extensive logging
facilities to CODE A confirmed that the low load av-
erage was caused by network communication bottle-



neck.

Figure 2: CODE B - Task parallelism program. Note
that each dashed line means task parameters transfer
to individual cluster node and every dotted line means
synchronization to host program flow.

Aiming to mitigate network communication over-
head, code were refactored to use task-based paral-
lelism. The idea is to load signal data from main stor-
age instead network transfer from host node. Refac-
tored code were named as CODE B and is shown in
Figure 2.

Before executing CODE B, every signal data must
be copied to each computing node. The main differ-
ence from CODE A is that every experiment is read
once, every Embedding tasks are executed, and finally,
one task is created for each two channel permutation
for every experiment. Tasks are asynchronously exe-
cuted and scheduled by IPython.

Both CODE A and CODE B were executed with
a different number of surrogates (1, 5, 10 and 20) to
compare performance between them, except 20 surro-
gates for CODE A due excessively long execution time
(estimated in more than 6000 minutes by extrapolating
results from CODE A with a smaller number of surro-
gates). The long execution time of each experiment
made nonviable repeating it to calculate standard de-
viation, but it was checked for 1 surrogate case that
time variance between executions was minimal.

The system used to analyze performance dif-
ference was a heterogeneous Beowulf cluster com-
posed of 10 nodes connected through Gigabit Ethernet
Switch model HP Procurve 1910-24G. Nodes hard-

ware configuration is listed in Table 2 and software
configuration is listed in Table 3 and are presented in
an appendix.

Logs were processed to calculate duration for
each execution. Linear least square method was used
to fit a line for data and task parallelism duration. Sup-
posing surrogate creation duration is insignificantly in
comparison with DTE duration; each line slope repre-
sents Minutes/surrogate.

With line slopes, speedup was calculated to mea-
sure performance gain from task parallelism over data
parallelism.

3 Results and Discussion

Analyzing logs gave results shown by point marks and
fitted line using linear least square method in Figure 3.
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Figure 3: Data and task parallelism execution time
versus number of surrogate signals. Point marks
shows numerical results. Lines show data fitted by lin-
ear square method

Lines slope for each parallelism strategy are
280.385 minutes/surrogate (data parallelism) and
65.257 minutes/surrogate (task parallelism). There-
fore, speedup can be determined in Equation 3.

Speedup =
tdata parallelism

ttask parallelism
=

280.385
65.257

= 4.297 (3)

Achieved speedup ∼ 4.3 shows that task paral-
lelism is significantly faster than data parallelism. Af-
ter analyzing logs, positive speedup can be explained
by three main factors and negatively impacted by an-
other.

First speedup explanation is data locality since
data is stored on local disk in task parallelism versus
being transferred by the network in data parallelism.
Also, former has to transfer channel data for every sur-
rogate, while later, locally read signal data only once
for each two channel permutation surrogates.

Second factor is sub-optimum node utilization
caused by cluster heterogeneity illustrated in Fig-
ure 4. This happens in data parallelism because data



is equally divided across computing nodes with differ-
ent performance, causing faster nodes, which finished
data processing, to wait for slower nodes.
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Figure 4: DTE task performance comparison between
different computing nodes to highlight cluster hetero-
geneity. In task parallelism, each experiment spawned
number o f channels∗(number o f channels−1) DTE
tasks of the same size across computing nodes, their
execution times were used to calculate speedup of Y
axis computing node over X axis computing node and
finally was made an average of calculated speedups
for each cell. Execution log used to generate this plot
was from 20 surrogates. Values are given in relative
speedup

The third factor is caused by the fact of data par-
allelism surrogate datasets are generated only by host
node, forcing all computing nodes to wait for surro-
gate dataset generation. Task parallelism does not suf-
fer from the same problem, as while one surrogate
dataset is generated by one computing nodes, it does
not block another computing node.

Negatively affecting task parallelism speedup is
caused by asynchronous nature of tasks, when task
pool is exhausted, some computing nodes are left
without any task.

4 Conclusion

Using task parallelism strategy to increase DTE al-
gorithm performance in a heterogeneous cluster was
shown as a faster alternative in comparison with data
parallelism. Having in sight big data trend, it is a sig-
nificant result, since it will enable causal inference for
bigger datasets or with better causality statistical evi-
dence.

Having verified task parallelism as a better ap-
proach to DTE in a Beowulf cluster, it remains open
how the number of computing nodes affects perfor-
mance. Thus, future research should investigate how
scalable task parallelism is after increased number of
computing nodes, with a nice addition of using smaller
artificial data feasible to execute multiple times each
experiment. Another further investigation might also

check if the amount of RAM has a correlation with
performance in computing nodes when executing task
parallelism. Moreover, different parallelism strategies
can be tested on a case by case aiming to speedup pro-
cessing of the ever increasing data size.
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Appendix

Observing recent concerns about experiment repro-
ducibility across every science field (Editorial, 2016)
(BAKER, 2016), this paper aims to achieve complete
reproduction. Therefore in this appendix is shown ad-
ditional information useful to reproduce it.

Source code

All code was managed using Git version control soft-
ware within a private repository. Exact code revisions
used by this study is shown in Table 1.

Cluster configuration

Cluster hardware configuration is listed is Table 2 and
software configuration is listed in Table 3

Dataset

The dataset is composed of 35 neurophysiological sig-
nals each with four simultaneous captured channels.
The average number of signal samples is about 1 mil-
lion samples with standard deviation about 500 thou-
sand samples.



Table 1: Code Git revisions hash
Parallel strategy Revision hash
Data parallelism f85aac7e8ff46c74b8e758211197dfc8b069571d
Task parallelism e97a687c51cfad61ac097fb5fc26b029967615da

Table 2: Cluster hardware configuration. RAM modules were list separately since some nodes has multiple
memory modules to explore dual channel. Main storage describe storage media used during script execution,
some nodes might have other unused storage media.

Node Processor (cores) RAM (speed) Main Storage size (model) Ethernet
host i5-2500 CPU @ 3.30GHz 4 + 4 GiB (1333MHz) 2TB WDC WD20EARX-00P Gigabit

lps01 i7-4770 CPU @ 3.40GHz (8) 8 + 8 GiB (1333MHz) 1TB ST1000DM003-1CH1 Gigabit
lps02 i7-3770 CPU @ 3.40GHz (8) 8 GiB (1333MHz) 60GB KINGSTON SV300S3 Gigabit
lps04 i7-4820K CPU @ 3.70GHz (8) 8 GiB (1333MHz) 2TB ST2000DM001-1CH1 Gigabit
lps05 i7-4820K CPU @ 3.70GHz (8) 8 GiB (1333MHz) 1863GiB ST2000DM001-1CH1 Gigabit
lps06 i7-4820K CPU @ 3.70GHz (8) 8 + 8 GiB (1333MHz) 60GB KINGSTON SV300S3 Gigabit
lps08 i7 950 CPU @ 3.07GHz (8) 4 + 4 + 4 GiB (1066MHz) 2TB ST32000542AS Gigabit
lps09 i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE Gigabit
lps10 i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE Gigabit
lps11 i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE Gigabit
lps12 i7-4790 CPU @ 3.60GHz (8) 8 + 8 GiB (1600MHz) 256GB SMART SSD SZ9STE Gigabit

Table 3: Cluster software configuration. Updated at shows when each cluster node was last fully updated.
Node Operating System (updated at) numpy IPython pyfftw Linux kernel
host Fedora 24 Workstation (2016-08-17) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64

lps01 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps02 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps04 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps05 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps06 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps08 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps09 Fedora 24 Workstation (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps10 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps11 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
lps12 Fedora 24 Server (2016-08-16) 1.11.0 3.2.1 0.10.3.dev0+e827cb5 4.6.6-300.fc24.x86_64
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