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Abstract— In this paper, based on Poincaré map, it is analysed the stability of a relay feedback structure that provides a stable
and symmetrical oscillation for process under large static disturbances or drift. The relay feedback structure consists of a block
which removes static disturbance or drift followed by a relay. The block is composed of a simple high-pass filter followed by a relay
plus an integrator. In order to simplify the analysis, an equivalent relay structure is obtained. Thus, for this relay feedback structure,
the conditions of existence and local stability of the limit cycle obtained by the relay feedback structure for linear time-invariant
(LTI) systems with no delay time are obtained. Simulation studies illustrate the results.
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1 INTRODUCTION

The relay feedback method proposed by (Åström and
Hägglund, 1984) have been used to estimate the ul-
timate data of the process (phase angle equals to
−180◦). For processes under the effect of static dis-
turbances or drift, the standard relay feedback method
results in errors in the ultimate data estimate. Many
relay feedback methods have been proposed in order
to overcome these errors (Park et al., 1997; Sung and
Lee, 2006; Sung et al., 2006; Lee et al., 2011). Among
the several methods proposed, of particular interest is
the relay feedback structure proposed by (da Silva and
Barros, 2017). In this approach, a stable and symmet-
rical oscillation under static disturbance or drift is ob-
tained, even for large static disturbance values.

In several cases, limit cycle oscillations (a non-
trivial periodic orbit that is isolated) occur in relay
feedback systems. The limit cycle is symmetric if the
periodic solution have equal time intervals between
the positive and negative switchings, and unimodal if
the relay switches two times per period.

Conditions for limit cycles in linear systems with
relay feedback have been obtained in (Åström, 1995)
by using a Poincaré map. In addition, conditions for
local stability of the limit cycles were obtained and the
results were extended to systems with time delays. In
(Johansson et al., 1999), the characterization of relay
feedback systems that have multiple fast switches is
investigated. Alternatively, in (Varigonda and Geor-
giou, 2001) the conditions for the existence and lo-
cal stability for a relay with hysteresis are provided.
Also for relay feedback systems, global stability re-
sults were presented in (Gonçalves et al., 2001) which
shows sufficient conditions in terms of a set of lin-
ear matrix inequalities. In contrast, in (Varigonda and
Georgiou, 2000) a sufficient condition is provided for
the global stability of a periodic orbit by applying the
contraction mapping theorem.

Limit cycle oscillations are an important phe-

nomenon in control design because it usually imposes
undesirable effects on the system. In addition, sev-
eral controller tuning techniques depend on a correct
theoretical prediction of the limit cycles for obtain-
ing their tuning formulas. Thus, the determination of
the existence and stability of the limit cycles of re-
lay feedback systems remain an important issues till
today (Bazanella and Parraga, 2016; Yoon and John-
son, 2018).

In this paper, the Poincaré map and a state-space
representation are used to analyse the relay feedback
structure for processes under static disturbances or
drift proposed in (da Silva and Barros, 2017). This
structure is composed of a block to remove static dis-
turbance or drift followed by a relay. The block con-
sists of a high-pass filter followed by a relay plus an
integrator. The integrator is used to compensate the
dynamics of the high-pass filter. In order to separate
the dynamics of the high-pass filter and the integrator,
a relay is used in between.

With the purpose of simplify the analysis of the
relay feedback structure under study, an equivalent re-
lay structure is obtained. For the equivalent structure
and LTI system with no time delay, the necessary and
sufficient conditions for the existence of limit cycle
are established. Furthermore, using the Jacobian of
the corresponding Poincaré map, the local stability of
limit cycle is investigated.

This paper is organized as follows: in Section
2, the relay feedback structure for processes under
static disturbance or drift is presented; in Section 3,
an equivalent relay structure is obtained in order to
simplify the analysis; in Section 4, the analysis of ex-
istence and the local stability of limit cycles for the
equivalent relay feedback structure are presented; in
Section 5, simulation study are shown; in Section 6
conclusions are discussed.



2 The Relay Feedback Structure

Figure 1: Schematic diagram of the relay feedback
structure.

Consider a single-input single-output (SISO) LTI
system satisfying the following linear dynamic equa-
tions

{

ẋp(t) = Axp(t)+Bup(t)
yp(t) =Cxp(t)

(1)

where xp ∈ R
n, A ∈ R

n×n, B ∈ R
n×1, C ∈ R

1×n and A

is Hurwitz. The system can also be described by the
transfer function

G(s) =C(sI −A)−1B. (2)

The relay feedback structure of interest is shown
in Figure 1. This structure is composed of two blocks.
The first block is used to remove static disturbance or
drift and consists of a high-pass filter F1(s), followed
by a relay (R1) and a low-pass filter F2(s). The second
block is a standard relay (R2).

In this paper, relays with input and output signals
m(t) and z(t), respectively, are defined as

z(t)=

{

1, if m(t)> ε , or m(t)≥−ε and z(t−) = 1
−1, if m(t)<−ε , or m(t)≤ ε and z(t+) =−1

(3)
where ε ≥ 0 is the hysteresis parameter.

The high-pass filter F1(s) is used to remove the
static disturbance or drift, and is chosen as

F1 (s) = 1− e−sτ f , (4)

where τd is the filter time constant and can be chosen
as the sampling time of the process.

Note that F1(s) is an approximate derivative, since
by using a first-order Taylor series approximation for
the term e−sτd of Eq. (4), the following equation is
obtained

F1(s)≈ 1− (1− sτd)≈ sτd . (5)

The frequency response for F1(s) is given by

|F1 ( jω)|=
[

(

1− cos(ωτ f )
)2

+
(

sin(ωτ f )
)2
]1/2

∠θ1(ω) = tan−1

(

sin(ωτ f )
(

1− cos(ωτ f )
)

)

.

Note that for low frequencies and small values of
τ f , the filter F1(s) has a phase angle of approximately
+π/2.

The low-pass filter F2(s) is chosen as an integra-
tor, i.e.

F2(s) =
1
s
. (6)

The integrator is used to compensate the high-
pass filter dynamics of F1(s). In order to separate
the dynamics of F1(s) and F2(s), the relay R1 is in-
troduced. The relay R2 is used as the standard relay to
generate a stable oscillation at the process output.

More details on the relay feedback structure for
processes under static disturbance or drift can be found
in (da Silva and Barros, 2017).

3 Equivalent Relay Feedback Structure

Figure 2: Schematic diagram of the equivalent relay
feedback structure.

Figure 3: Schematic diagram of the final equivalent
relay feedback structure.

In order to simplify the analysis of existence and
local stability of limit cycle for the relay feedback
structure shown in Figure 1, an equivalent structure
is introduced by the following lemma.

Lemma 1 Consider the relay feedback structure

shown in Figure 1. Assume the oscillation period for

this relay feedback structure equal to T seconds. The

transfer function F1(s) is given by (4), and F2(s) is

given by (6). Then, except for the initial transient,

the relay feedback structure shown in Figure 3 has the

same oscillation period T of the structure presented in

Figure 1, with θ equal to T/4.

Proof: The proof of the Lemma is divided into two
parts.

Part 1: Starting from the relay feedback struc-
ture shown in Figure 1, and assume the oscillation pe-
riod equal to T seconds. The frequency response for
F2(s) = 1/s, at the frequency ωu, is given by



F2( jωu) =
1

ωu

e− jπ/2.

For the input signal V (s), the output of F2(s) is

W ( jωu) =
V ( jωu)

ωu

e− jπ/2. (7)

Without loss of generality, consider equals ampli-
tudes for both relays. Also consider a square wave
(v(t)) introduced in the input of the block F2(s). From
Eq. (7), there is a 90◦ lag between v(t) and w(t) sig-
nals. Since the R2 relay is a symmetric nonlinearity,
without hysteresis, there is no lag between w(t) and
up(t). Thus, there is a 90◦ lag between v(t) and up(t)
signals.

Therefore, except for the initial transient, the re-
lay feedback structure shown in Figure 2, with θ equal
to T/4, has the same oscillation period T of the struc-
ture shown in Figure 1.

Part 2: Now from the relay feedback structure in
Figure 2, by a straightforward application of the super-
position principle, the transfer function F1(s) can be
displaced to the input of the LTI system, since F1(s)
and the system given by (2) are linear.

Thus, the final equivalent relay feedback structure
shown in Figure 3 will oscillate with the same period
T of the system shown in Figure 1.

✷

In order to illustrate the first part of Lemma 1,
consider the following process

G(s) =
1

(s+ 1)4 . (8)

This process is simulated for the relay feedback
structure, shown in Figure 1, with filter time constant
(τ f ) equals to sampling time (0.01s), amplitude of the
relay M = 1 and hysteresis ε = 0. The oscillation pe-
riod of the process is T = 6.2s. A periodic solution
to this system is shown in Figure 4. As it can be
seen, there exists a 90◦ lag between the signals v(t)
and up(t).
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Figure 4: Periodic solution of the relay feedback struc-
ture for the system (8).

The second part of Lemma 1 is also illustrated for
the process given by (8). A periodic solution to this
system is shown in Figure 5, where h∗ = T/2 and θ =
T/4 = 1.55.
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Figure 5: Periodic solution of the final equivalent relay
feedback structure for the system (8).

Note that the signal v2(t) is a delayed version of
the relay output signal v1(t). The signal at the input
of the linear system (v3(t)) is similar a derivative of
signal v2(t), and assumes the values of ±2.

The aim of the equivalent structure is to obtain, in
steady state, the same periodic solution of the original
structure of the relay (Note that the oscillation period
of yp in Figure 4 is the same as the output signal y in
Figure 5). Thus, the difference of the initial transient
between the equivalent and original structures does not
invalidate the analysis performed in the following sec-
tions.

4 Existence and Stability Analysis

In this Section, the conditions for existence of uni-
modal and symmetrical limit cycles of the relay feed-
back structure under analysis is presented.

The equivalent system shown in Figure 3 is used
in the analysis of existence and local stability of the
limit cycle. This system can be represented by the fol-
lowing LTI system

{

ẋ(t) = Ax(t)+Bv3(t)
y(t) =Cx(t)

(9)

in which A, B and C are the same as the original system
represented in Eq. (2).

The system represented in Eq. (9) is the same as

{

ẋ(t) = Ax(t)+B [v2(t −θ )− v2(t −θ − τd)]
y(t) =Cx(t)

(10)

For the simplified system the analysis of existence
of the limit cycle is equivalent to the analysis pre-
sented in Varigonda and Georgiou (2001). Thus, the



switching surface, composed of an hyperplane of di-
mension n− 1, is defined as

S = {x ∈ R
n : Cx = ε}.

Note that the switching surface it is a hyperplane
that contains the origin and divides the state space into
two distinct regions. In one of them

R− = {x ∈ R
n : Cx > ε},

in which the system is given by ẋ = Ax− 2B. In the
other region

R+ = {x ∈ R
n : Cx < ε},

where the system is given by ẋ = Ax+ 2B.
In order to investigate the conditions for exis-

tence and local stability of the equivalent relay feed-
back structure, consider again the process given by Eq.
(8) and the periodic solution shown in Figure 5, with
h∗ = T/2 and θ = T/4. Note that the switching occurs
at t = θ +τd , and according to Eq. (10), v3(t) assumes
the values of ±2.

Remarks

1. In order to analyze using the equivalent structure,
it is necessary to know in advance the oscilla-
tion period of the original relay structure shown
in Figure 1. In this paper, the oscillation period is
assumed to be known. How to obtain this period
directly from the original relay structure is under
study.

2. Note that for the LTI system under analysis it is
correct to consider only the cases h∗ > θ , because
the θ value limits the period of oscillation of the
system (the oscillation period is never less than
the θ delay time). Thus, the periodic solution ob-
tained by the equivalent structure is the same of
the original structure.

3. For the simulation of the limit cycle, it is neces-
sary to know only the value of x(0) = x∗ at the
instant of intersection with the switching surface.

The next theorem makes possible to identify limit
cycles of the relay feedback structure under study.

Theorem 1 Consider the linear system given by (9)

connected in feedback with the relay given by (3), as

shown in Figure 3. There is a symmetrical and uni-

modal limit cycle with period T = 2h∗ if and only if

the following conditions are satisfied:

(i) gθ (h
∗), 2C(eAh∗ + I)−1

(

∫

θ+τd

θ

eA(h∗−τ)Bdτ

)

= ε,

(11)

(ii) y(t) =Cx(t)> ε,∀t ∈ (0,h∗), (12)

where

x∗ = 2(eAh∗ + I)−1
(

∫

θ+τd

θ

eA(h∗−τ)Bdτ

)

, (13)

is the initial condition x(0) = x∗ which leads to the

periodic solution.

Proof: Since the linear systems in relay feedback is
symmetric around the origin, the limit cycle only
needs to be analyzed over half of its period. The proof
is divided into two parts.

Necessity: Assume that there exists a symmetrical
limit cycle in the system of Figure 3. Based on Figure
5 of the above example, the solution of the LTI system
(Eq. (9)), to x ∈ R− is given by

x(h∗) = eAh∗x(0)+
∫ h∗

0
eA(h∗−τ)Bv3(τ)dτ

= eAh∗x(0)− 2
∫ θ+τd

θ

eA(h∗−τ)Bdτ.

Assume x(0) = x∗ ∈ S the point at which the orbit in-
tercepts S. By symmetry, at t = h∗ the state of the
system is

x(h∗) =−x∗.

−x∗ = eAh∗x∗− 2
∫ θ+τd

θ

eA(h∗−τ)Bdτ

x∗ = 2(eAh∗ + I)−1
(

∫ θ+τd

θ

eA(h∗−τ)Bdτ

)

.

The initial state is thus given by (13). Hence, since
x∗ ∈ S, Cx∗ = ε , which is equivalent to condition (i):

gθ (h
∗), 2C(eAh∗ + I)−1

(

∫

θ+τd

θ

eA(h∗−τ)Bdτ

)

.

To ensure that there is no other switch at 0 < t < h∗,
the relay input must satisfy y(t) =Cx(t) > ε , for 0 <
t < h∗, which gives condition (ii).

Sufficiency: Assume that g(h∗) = ε , thus x∗ ∈ S.
Also assume y(t)> ε for t ∈ (0;h∗), thus v3(t) = −2,
t ∈ (0;h∗). Therefore, the trajectory from x∗ will not
reach S again before h∗. It is possible to show that x(t)
reaches S after h∗ seconds on −x∗, which causes v3(t)
to switch to 2. With a similar argument, it is shown
that x(t) returns to S after h∗ in x∗, so that there exists
a periodic orbit through x∗. ✷

In order to investigate the local stability of the
limit cycle, one must calculate the Jacobian of the
Poincaré map. This result is presented in the following
theorem.

Theorem 2 Consider the linear system given by (9)

connected in feedback with the relay given by (3), as

shown in Figure 3. Assume that there is a symmetric

periodic solution with h∗ > θ . The Jacobian of the

Poincaé map is given by

Wθ =

(

I−
ωθC

Cωθ

)

eAh∗ , (14)

where

ωθ = eAh∗Ax∗+ 2
[

eA(h∗−θ−τd)− eA(h∗−θ)
]

B. (15)



The limit cycle is locally stable if and only if Wθ

has all its eigenvalues inside the unit disk. It will be

unstable if Wθ has at least one eigenvalue outside the

unit disk.

Proof: The analysis is performed considering a new
origin in h∗+ δ t, with x(0) = x∗+ δx. With the new
time base, it follows that

x(h∗+ δh) = eA(h∗+δh)x(0)

+

∫ h∗+δh

0
eA(h∗+δh−τ)Bv3(τ)dτ

= eA(h∗+δh)(x∗+ δx)

+

∫

θ+τd

θ

eA(h∗+δh−τ)B(−2)dτ

= eA(h∗+δh)(x∗+ δx)

+ 2A−1
[

eA(h∗+δh−θ−τd)− eA(h∗+δh−θ)
]

B

= eAh∗ (I +Aδh)(x∗+ δx)

+ 2A−1[eA(h∗−θ−τd) (I+Aδh)

− eA(h∗−θ) (I+Aδh)
]

B+O(δ 2)

=−x∗+ eAh∗
δx+

[

eAh∗Ax∗

+ 2B
(

eA(h∗−θ−τd)− eA(h∗−θ)
)]

δh+O(δ 2)

=−x∗+ eAh∗
δx+ωθ δh+O(δ 2), (16)

where

ωθ = eAh∗Ax∗+ 2
[

eA(h∗−θ−τd)− eA(h∗−θ)
]

B.

Since x(h∗+ δh) ∈ S and by symmetry of limit cycle,
x(h∗) =−x∗:

Cx(h∗+ δh) =−Cx∗+CeAh∗
δx+Cωθ δh+O(δ 2)

= − ε.

Since Cx∗ = ε , then

CeAh∗
δx+Cωθ δh+O(δ 2) = 0. (17)

Neglecting terms of order δ 2 this gives

δh =−
CeAh∗

Cωθ

δx. (18)

Substituting (18) in (16), it follows that

x(h∗+ δh) =−x∗+ eAh∗
δx−

ωθCeAh∗

Cωθ

δx+O(δ 2)

=−x∗+

(

I−
ωθC

Cωθ

)

eAh∗
δx+O(δ 2)

which proves the theorem. ✷

5 Examples

In this Section, using simulated examples, the exis-
tence and local stability of the limit cycle is evaluated
for the relay feedback structure for processes under

disturbance. In all cases, the amplitude of the relay
is M = 1, the hysteresis is ε = 0 and the filter time
constant (τ f ) is equal to the sampling time (0.01s).

Example 1: Consider a process given by

G(s) =
1

(s+ 1)3 . (19)

The oscillation period obtained using the relay feed-
back structure of Figure 1 is T = 3.58s. Thus, θ =
T/4 = 0.895s.
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Figure 6: Process input (Dashed line) and output
(Solid line) signals of the relay structure of Figure 1.

In Figure 7, the solution of gθ (h
∗), Eq. (11), is

showed. Numerical calculations with Theorem 1 gives
two zero for positive h, i.e. h∗ = 0.7825 and h∗ =
1.7825.
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Figure 7: Solution of gθ (h
∗) for Example 1.

For h∗ = 0,7825 the analysis is not feasible, since
that h∗ < θ . For h∗ = 1.7825, the initial condition
which leads to the periodic solution is

x(0) =





0.0080
0.0018
−0.0044



 .

The Jacobian of the Poincaré map can be computed
from Theorem 2 as

Wθ =





0.3152 1.1316 1.2864
0.1401 0.2690 0.0284
0 0 0



 .

The eigenvalues of Wθ are 0, −0.1067 and 0.6909. It
can be concluded that the limit cycle is locally stable
according to Theorem 2.



Example 2: Consider the non-minimum-phase
system

G(s) =
−0.5s+ 1
(s+ 1)3 . (20)

The oscillation period obtained from the relay feed-
back experiment of Figure 1 is T = 5.08s. Thus,
θ = T/4 = 1.27s.

In Figure 8, the solution of gθ (h
∗) is showed.

From Theorem 1, numerical calculations gives two
zero for positive h, i.e. h∗ = 1.2655 and h∗ = 2.5350.
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Figure 8: Solution of gθ (h
∗) for Example 2.

For h∗ = 1.2655 the analysis is not feasible, since
that h∗ < θ . For h∗ = 2.5350, the initial condition to
obtain a periodic solution is

x(0) =





0.0007
0.0042
−0.0038



 .

From Theorem 2, the Jacobian of the Poincaré map
can be computed as

Wθ =





−0.0334 0.0078 0.1350
0.1464 0.3573 0.2161
0.0732 0.1787 0.1081



 .

The eigenvalues of Wθ are −0.0544, 0.4866 and 0.
Thus, the limit cycle is locally stable according to The-
orem 2.

6 Conclusion

The analysis, based on Poincaré map, of existence
and local stability of limit cycle for the relay feed-
back structure for process under large static distur-
bances or drift, and LTI system with no time delay
was performed. In order to simplify the analysis, an
equivalent structure was obtained and the conditions
for existence of limit cycles for the relay feedback
structure were established. In addition, the local sta-
bility of limit cycles was assessed using the Jacobian
of Poincaré map. Examples are used to illustrate the
analysis.
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