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Resumo— Este artigo revisa de forma comparativa os métodos de filtragem estocástica e zonotópica mais
usuais na literatura para estimação de estados de sistemas lineares incertos. A média e o ńıvel de confiança da
variável aleatória Gaussiana são comparados com o centro e a incerteza da variável zonotópica. Para isso, uma
notação unificada para estas abordagens é proposta. Por um lado, o filtro de Kalman é um algoritmo muito
utilizado por tratar estados como variáveis Gaussianas, cuja função distribuição de probabilidade é de simples
representação. Por outro lado, a estimação de estados zonotópicos tem ganhado relevância na literatura por
causa de propriedades intŕınsecas a conjuntos, que garantem inclusão dos estados exatos nos conjuntos estimados
e ganho computacional no cômputo de domı́nios.

Palavras-chave— Filtro de Kalman, filtro zonotópico, estimação de estados, sistemas lineares.

Abstract— This paper presents a comparative review on the most usual stochastic and zonotopic filtering
methods in the literature for state estimation of uncertain linear systems. The mean and the confidence level of
the Gaussian random variable are compared to the center and uncertainty of the zonotopic variable. To achieve
that, a unified notation for these approaches is proposed. On one hand, the Kalman filter is an algorithm often
used for treating states as Gaussian variables, whose probability density function is simple to represent. On other
hand, the estimation of zonotopic states has owned relevance in the literature due to intrinsic properties of sets,
which guarantee inclusion of the exact states into the estimated sets and improved computational burden on the
computation of domains.

Keywords— Kalman filter, zonotopic filter, state estimation, linear systems.

1 Introduction

Since 1960, based on the well-known Kalman fil-
ter (KF) (Kalman et al., 1960), state estimation
has reached important role in the literature. The
KF minimizes the variance of the state estimate of
a given linear process based on the Kalman gain.
Assuming Gaussian noise terms present in a linear
system, the KF is optimal in the perspectives of
mean, likelihood and mode (Gelb, 1974; Jazwin-
ski, 2007). However, assumptions of noise distri-
butions may be hard to verify in practice, mainly
due to the Gaussian variable unlimited support.

There are many ways to represent states of a
given process. The usual KF treats each state as
a random variable (RV) using statistical concepts
(Kay, 1993). States can also be represented by sets
using interval arithmetic (Moore et al., 2009) and
affine arithmetic (Le et al., 2013), which generate
convex sets by affine transformations of intervals.
Affine transformation is a more general way to
represent compact and convex sets.

Over the last two decades, the set membership
theory has owned relevance in the literature. The
main motivation to use sets in state estimation is
to consider that the noise terms in a given system
are unknown but bounded (Alamo et al., 2005).
In this case, uncertainty is represented by the set
approach rather than the stochastic one. Zono-
topes are special cases of convex polytopes, which
are compact and centrally symmetric sets (Le
et al., 2013). Many researches have been con-

ducted using zonotopes, due to the proprieties of
sum of two zonotopes and affine transformations,
which guarantee reduction of computational bur-
den when computing domains. Moreover, as all
set membership technique, zonotopes guarantee
true states belong to the estimated set under some
hypothesis.

In 2005, the zonotopic filter (ZF) was pro-
posed by Alamo et al. (2005). This algorithm is
based on zonotopes and presents similar steps to
the KF, namely: forecast and data-assimilation.
In this last step, an intersection is performed to
obtain a zonotope, which can be computed by two
different criteria: segment minimization and vol-
ume minimization. The first one is the fastest
computationally, while the other one leads to the
smallest intersection volume and spends much
more time due to an optimization algorithm be-
ing executed. In (Bravo et al., 2006), the volume
minimization approach is reformulated to let the
ZF be much faster.

In (de Almeida Neto et al., 2014), a compari-
son between the KF and the ZF is presented based
on numerical results for a specific case study. Ba-
sically, these filters are used as alternatives to esti-
mate the position of unmanned air vehicles while
the GPS does not yield new measurements. Ac-
cording to the numerical results, the used ZF with
the segment minimization, led to larger uncer-
tainty than the KF did.

In this paper, the stochastic and zonotopic
approaches are compared for the state estima-



tion of linear systems by means of KF (Kalman
et al., 1960) and ZF (Alamo et al., 2005). The-
ses filters are presented for the non-autonomous
case and they aim reducing uncertainty, since the
KF is a minimum-variance estimator and the ZF
is used with the volume minimization criterion.
This paper is a generalization of (de Almeida Neto
et al., 2014), since it presents: (i) a general way to
estimate states of any linear system; (ii) main ad-
vantages related to each approach; and (iii) the ZF
with two minimization approaches, namely, seg-
ment minimization (Alamo et al., 2005) and the
improved volume minimization criterion (Bravo
et al., 2006). Since the core of the methods is
in the transformations of uncertain variables, the
results of affine transformations related to each
approach are also presented. Furthermore, a uni-
fied notation is proposed to the filters, in order to
explicit their similarities.

This paper is organized as follows. Section 2
presents some concepts and results of the affine
transformation of a Gaussian random variable
(GRV) and a zonotopic variable (ZV). Section 3
formulates the problem under investigation. In
Section 4, the algorithms KF and ZF are pre-
sented. In the Section 5, these algorithms are
applied to an illustrative example. Finally, con-
clusions are presented in Section 6.

2 Background

Preliminary basic definitions and notations are in-
troduced to characterize both GRV, according to
statistical concepts, and ZV using interval arith-
metic.

2.1 Random Variables

RV is a function that maps a sample space S in
the set of real numbers Rn (Kay, 1993). A random
variable X is described by a probability density
function (PDF) p(x), where x is a realization of
X, such that x ∈ X. The mean x̂ of the RV X is
defined as

x̂ = E[X] ,


∫ +∞
−∞ x1p(x1)dx1∫ +∞
−∞ x2p(x2)dx2

...∫ +∞
−∞ xnp(xn)dxn

 =


x̂1
x̂2
...
x̂n

 ,

where E[•] is the expected value operator. The
covariance matrix P xx of a RV X is defined as

P xx = cov(X) ,
∫ +∞

−∞
(x− x̂)(x− x̂)Tp(x)dx.

For brevity, in the case of a GRV X, its PDF
is fully characterized by its mean x̂ and covariance

matrix P xx as (Kay, 1993)

p(x) =
exp

{
− 1

2 (x− x̂)T (P xx)
−1

(x− x̂)
}

(2π)n/2
√

det (P xx)
.

A GRV X is represented by X ∼ N (x̂, P xx).

2.2 Interval Arithmetic and Zonotopes

Set is a grouping of elements with similar charac-
teristics, like ellipsoids, polytopes, intervals and
zonotopes. The interval [x] , [x;x] is the set
{x ∈ R : x ≤ x ≤ x}. The unitary interval is de-
noted as [Φ] = [−1; 1]. A box is a n-dimensional
interval vector defined as

[x] , {x ∈ Rn : xi ≤ xi ≤ xi, i = 1, 2, ..., n} .

The unitary box composed by ng unitary in-
tervals is denoted as [Φ]ng . Given a box [x],

mid([x])i ,
xi + xi

2
is the i-th midpoint and

diam([x])i , xi− xi is the i-th diameter. The ab-
solute value of the interval [x] is given by |[x]| ,
max {|x|, |x|}. The ∞-norm of the box [x] is de-
fined as ||[x]||∞ , max

i
|[xi]|.

Consider two intervals [x] = [x;x] and [y] =[
y; y
]
. The four basic interval operations are given

by (Moore et al., 2009)

[x] + [y] ,
[
x+ y;x+ y

]
,

[x]− [y] ,
[
x− y;x− y

]
,

[x] · [y] , [min{S}; max{S}] ,

[x]/[y] , [x] ·
[

1

y
;

1

y

]
, if y ∈ R+,

where S =
{
xy, xy, xy, xy

}
.

Therewith, it is possible to present the funda-
mental theorem of the interval arithmetic.

Theorem 2.1 Natural interval extension (Alamo
et al., 2005). Let y = h(x) be a general non-
linear transformation, where h : Rn → Rm is
a standard continuous function. Given an inter-
val [x] ∈ Rn, the natural interval extension 4{h}
is obtained substituting x by [x] and all standard
operations by corresponding interval operations,
such that h([x]) ⊆ 4{h}([x]), where h([x]) is the
exact transformation of the interval [x].

Definition 2.1 Minkowski sum (Alamo et al.,
2005). The Minkowski sum of two sets is defined
by

X ⊕ Y , {x+ y : x ∈ X , y ∈ Y} ,

which corresponds to the point-to-point sum.



Definition 2.2 Zonotope (Alamo et al., 2005).
Given a vector x̂ ∈ Rn and a matrix Gx ∈ Rn×ng ,
a zonotope X of order ng is defined as

x̂⊕Gx[Φ]ng = {x̂+Gxξ : ξ ∈ [Φ]ng , ||ξ||∞ ≤ 1} ,

where x̂ and Gx are the center and generator ma-
trix of the zonotope X , respectively, and || • ||∞ is
the ∞-norm of a vector.

Thus, a ZV X is a variable whose values sat-
isfy x ∈ X . Furthermore, note that zonotope is a
affine transformation of the unitary box [Φ]ng .

A width measure of zonotope can be given by
the Frobenius norm, which is based on the 2-norm
of each generator segment, that is, the column of
the generator matrix Gx.

Definition 2.3 Let Gx be the generator matrix
of a zonotope such that Gx =

[
gx1 gx2 . . . gxng

.
]

The Frobenius norm of the generator matrix is de-
fined as

||Gx||F ,

√√√√ ng∑
j=1

∣∣∣∣gxj ∣∣∣∣22, (1)

where || • ||2 is the 2-norm of a matrix.

2.3 Affine Transformations

This section presents the results of affine transfor-
mations of both GRV and ZV. Let

Y = AX + b (2)

be an affine transformation of the prior variableX.
The two following results show how a GRV and a
ZV propagate through an affine transformation.

Fact 2.1 Let X ∼ N (x̂, P xx) be a GRV. Apply-
ing the affine transformation Y = AX + b gener-
ates another GRV Y ∼ N (ŷ, P yy), where

ŷ = Ax̂+ b, (3)

P yy = AP xxAT. (4)

Fact 2.2 Let X = x̂ ⊕ Gx[Φ]ng be a ZV, where
x̂ and Gx are the center and generator matrix,
respectively. Applying the affine transformation
Y = AX ⊕ b generates another ZV Y = ŷ ⊕
Gy[Φ]ng , where

ŷ = Ax̂+ b, (5)

Gy = AGx. (6)

Note that the uncertainties of the variables X
and X are related to the covariance matrix P xx

and the generator matrix Gx. According to Facts
2.1 and 2.2, the transformed variables Y and Y
can be more uncertain or less uncertain than the
input variables, X and X , according to the matrix
A.

2.4 Order Reduction

It is common to reduce the order ng of a zonotope
X in order ϕ to obtain other one ↓ϕ X , but with
the same center x̂. This new zonotope is more
conservative than the former, but it reduces the
computational burden over operations. Given the
desired order ϕ, the order reduction algorithm of
a zonotope X is presented next.

Algorithm 2.1 Zonotope order reduction
(Combastel, 2005).
1: Procedure ↓ϕ Gx = red order(Gx, ϕ).
2: Calculate the 2-norm of each generator
gxj = colj (Gx) ∈ Rn of the matrix Gx and sort
them in descending order:

Gxs =
[
gx1 ... gxj ... gxng

]
, (7)

where
∣∣∣∣gxj ∣∣∣∣2 ≥ ∣∣∣∣gxj+1

∣∣∣∣
2
.

3: If ng ≤ ϕ, then ↓ϕ Gx = Gxs. Otherwise, given
the sorted matrix Gxs, determine the matrices

Gx
> =

[
gx1 ... gxϕ−n

]
, (8)

which are the first ϕ− n columns of Gxs, and

Gx
< =

[
gxϕ−n+1 ... gxng

]
, (9)

which are the remaining columns of Gxs.
4: Calculate the matrix

Gb = diag
(
|Gx

<| 1ng<×1

)
, (10)

where |Gx
<| is the absolute value of each element

of the matrix Gx
<, 1ng<×1 is the vector of unitary

elements, and diag(•) is the returned diagonal ma-
trix.
5: Finally, calculate the reduced generator matrix
↓ϕ Gx given by

↓ϕ Gx =
[
Gx
> Gb

]
. (11)

2

The following example is proposed to illus-
trate the affine transformations of a GRV and a
ZV, as well as the operation of zonotope order re-
duction.

Example 2.1 Consider the transformation y =

Ax + b, with A = 1.5I2×2, b =
[
0.5 0.5

]T
and I2×2 ∈ R2 the identity matrix, the GRV

X ∼ N (12×1, I2×2) and the ZV X =

[
1
1

]
⊕[

1 2 3 4
4 3 2 1

]
[Φ]4. In Figure 1, the PDF of X,

the zonotopic set of X and the corresponding
transformations are presented. Moreover, the or-
der reduction of the zonotope X to ↓3 X , ϕ = 3,
is illustrated.

2



(a)

(b)

Figure 1: Graphic example of the affine transfor-
mation y = Ax + b, in blue dashed line, of: (a) a
GRV X and (b) a ZV X in red solid line. In (b),
the zonotope X is presented after its reduction
(black dash-dotted line) using ϕ = 3.

3 Problem Formulation

Consider the discrete-time linear dynamical sys-
tem

xk = Ak−1xk−1 +Bk−1uk−1 +Bw
k−1wk−1, (12)

yk = Ckxk +Dv
kvk, (13)

where Ak−1, Bk−1, Bw
k−1, Ck and Dv

k are time-
varying matrices, xk ∈ Rn is the state vector to
be estimated, uk−1 is the input vector, yk is the
output vector, wk ∈ Rq and vk ∈ Rr are the pro-
cess and measurement noise terms, respectively.
The input vector uk, the measurements yk and
the matrices Ak−1, Bk−1, Bw

k−1, Ck and Dv
k are

assumed to be known for ∀k ≥ 1. Two different
assumptions can be made on the noise terms.

In the stochastic approach, the noise terms
are white, Gaussian and uncorrelated, with zero
mean and covariance matrices E

[
wkw

T
k

]
= Qk

and E
[
vkv

T
k

]
= Rk. The estimates of the initial

state x̂0 with covariance P xx
0 and the covariance

matrices Qk−1 and Rk are assumed to be known.
In the zonotopic approach, the noise terms

are unknown but bounded by the corresponding

zonotopes wk−1 ∈ Wk−1 and vk ∈ Vk. The ini-
tial states must satisfy the zonotopic set x0 ∈ X0.
The sets Wk−1 = ŵk−1 ⊕ Gw

k−1[Φ]n
w
g , Vk = v̂k ⊕

Gv
k[Φ]n

v
g and X0 = x̂0 ⊕ Gx

0[Φ]n
x
g are assumed to

be known.

4 Linear State Estimators

The KF and the ZF basically propagate the ini-
tial GRV Xk−1 and ZV Xk−1 by the process model
(12) to obtain the a priori estimates Xk|k−1 and
Xk|k−1, respectively. After, their estimates are
used to calculate the transformed variables Yk|k−1
and Yk|k−1 using the measurement model (13).
Finally, the information related to these two steps
are weighted to obtain the a posteriori estimates
Xk and Xk. The algorithms for each filter are pre-
sented in the following subsections based on two
steps, namely: forecast and data-assimilation.

4.1 Kalman Filter

The forecast step is executed using the process
model (12), and calculating the a priori estimates

as Xk|k−1 ∼ N
(
x̂k|k−1, P

xx
k|k−1

)
, where

x̂k|k−1 = Ak−1x̂k−1 +Bk−1uk−1, (14)

P xx
k|k−1 = Ak−1P

xx
k−1A

T
k−1 +Bw

k−1Qk−1
(
Bw
k−1
)T
.

(15)

Using the measurement model (13) and the
prior estimates, calculate the estimates related to

the transformed variable Yk ∼ N
(
ŷk|k−1, P

yy
k|k−1

)
as

ŷk|k−1 = Ckx̂k|k−1, (16)

P xy
k|k−1 = P xx

k|k−1C
T
k , (17)

P yy
k|k−1 = CkP

xx
k|k−1C

T
k +Dv

kRk (Dv
k)

T
. (18)

(19)

The data-assimilation step is performed by
calculating the Kalman gain as

Kk = P xy
k|k−1

(
P yy
k|k−1

)−1
, (20)

and after, computing the properties of the a pos-
teriori variable Xk ∼ N (x̂k, P

xx
k ), where

x̂k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
, (21)

P xx
k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k . (22)

4.2 Zonotopic Filter

This algorithm is presented for the non-
autonomous case (Rego and Raffo, 2016) with two
types of intersection, namely: segment minimiza-
tion, proposed by Alamo et al. (2005), and im-
proved volume minimization, proposed by Bravo



et al. (2006). The ZF algorithm presents four
steps: (i) prediction, (ii) measurement, (iii) in-
tersection and (iv) order reduction, where (i) can
be considered the forecast step while (ii)-(iv) con-
stitute the data-assimilation step. In the first
one, the ZF uses information related to the pro-
cess model (12) to determine a predicted zono-
tope Xk|k−1. After, this predicted zonotope, the
measurement model (13) and the measurements
yk are used to determine a strip Yk|k−1. In the
intersection step, the final zonotope Xk incorpo-
rates information related to both system model
and measurements through any minimization cri-
terion. Finally, the latter zonotope is reduced
based on the order ϕ.

At first, given the process model (12), the

zonotope Xk−1 = x̂k−1 ⊕ Gx
k−1[Φ]

nx
g

k−1, and the

zonotope Wk−1 = ŵk−1 ⊕ Gw
k−1[Φ]n

w
g , deter-

mine the predicted zonotope Xk|k−1 = x̂k|k−1 ⊕
Gx
k|k−1[Φ]

nx
g

k|k−1, where

x̂k|k−1 = Ak−1x̂k−1 +Bk−1uk−1 +Bw
k−1ŵk−1,

(23)

Gx
k|k−1 =

[
Bw
k−1G

w
k−1 Ak−1G

x
k−1
]
. (24)

Next, given the zonotope Vk = v̂k ⊕ Gv
k[Φ]n

v
g

and the measurement model (13), use interval
arithmetic to obtain the box

[Λ] = 4{Dv
kVk} (25)

and the scalars

si = mid([Λ]) ∈ R, (26)

ρi =
1

2
diam([Λ]) ∈ R. (27)

Let ci ∈ Rn be a vector defined by the i-th
row of the matrix Ck, ci = rowi (Ck)

T
. Then,

based on ci, the i-th measurement yi,k ∈ R
and the scalars si and ρi, a strip Yi,k|k−1 ={
x ∈ Rn :

∣∣cTi x− di∣∣ ≤ ρi} is defined, where di =
yi,k + si.

After, calculate the intersection Xk between
the predicted zonotope Xk|k−1 = x̂k|k−1 ⊕[
gx1 gx2 . . . gxng

]
[Φ]ng and the strip Yk|k−1 ={

x ∈ Rn :
∣∣cTx− d∣∣ ≤ ρ}. Two different criteria

are presented, namely: segment minimization and
volume minimization. The first one minimizes the
Frobenius norm of the generator matrix of the in-
tersection Xk. This criterion is used when it is
necessary to reduce computational burden, mainly
due to great order reduction ϕ. According to the
predicted zonotope Xk|k−1 and the strip Yk|k−1,
compute the vector λ ∈ Rn

λ =
Gx
k|k−1

(
Gx
k|k−1

)T
c

cTGx
k|k−1

(
Gx
k|k−1

)T
c+ ρ2

. (28)

Thus, the intersection Xk is given by

x̂k = x̂k|k−1 + λ
(
d− cTx̂k|k−1

)
, (29)

Gx
k =

[(
In×n − λcT

)
Gx
k|k−1 ρλ

]
. (30)

If there are more than one measurement, this
zonotope is used to define another strip and a new
intersection is performed with all of them, until all
measurements yi,k, i = 1, ...,m, are used.

Finally, given the desired order ϕ, use Algo-
rithm 2.1 on the zonotope Xk to obtain ↓ϕ Gx

k =
red order(Gx

k, ϕ).
Alternatively, another criterion to compute

the intersection Xk is to reduce its volume for
j = 0, 1, ..., ng. Then, (ng + 1) zonotopes X̄ (j) =
x̄(j) ⊕ Ḡ(j)[Φ]ng are defined as the intersection
between Xk|k−1 and Yk|k−1, where

x̄(j) =


x̂k|k−1 +

(d−cTx̂k|k−1)
cTgxj

gxj , if 1 ≤ j ≤ ng
and cTgxj 6= 0

x̂k|k−1, otherwise,

(31)

ḡji =

 gxi −
cTgxi
cTgxj

gxj , if i 6= j
ρ

cTgxj
gxj , if i = j,

(32)

Ḡ(j) =


[
ḡj1 ḡj2 ... ḡjng

]
, if 1 ≤ j ≤ ng

and cTgxj 6= 0
Gx, otherwise.

(33)

The chosen zonotope is the one with the
smallest volume based on the zonotope volume
equation

Vol
(
X̄
)

= 2n
N(ng,n)∑
i=1

|det(Ti)| , (34)

where N (ng, n) is the mathematical combination
that returns all possible ways to choose n elements
of a set ng, and Ti ∈ Rn×n denotes all the matri-
ces that can be obtained taking n columns of the
matrix Ḡ.

5 Numerical Example

5.1 Process Description

Consider the discrete-time linear dynamical sys-
tem defined as (Alamo et al., 2005)

xk =

[
0 −0.5
1 1 + 0.3ζk−1

]
xk−1 + 0.02

[
−6
1

]
wk−1,

(35)

yk =
[
−2 1

]
xk + 0.2vk, (36)

with |ζk−1| ≤ 1, wk−1 ∈ Wk−1 ⊂ R, vk ∈ Vk ⊂ R.
Moreover, the initial state x0 satisfies x0 ∈ X0.

The system is simulated with x0 =
[
0 0

]T
,

the Gaussian noise realizations are generated by



white, uncorrelated and mean normalized GRVs
N (0, 1), and ζk−1 takes values under the uniform
PDF in the borders [−1; 1].

In order to compare the performance of the
KF and the ZF, the state estimation is realized
on six different scenarios, namely: (i) reference,
(ii)-(vi) poorly tuned. In scenario (i), the pa-

rameters of the KF are set as x̂0 =
[
0.5 0.5

]T
,

P xx
0 = I2×2, Qk−1 = Rk = 1 and ζk = 0, which is

its mean. The parameters of the ZF are set as the
boxes X0 = x̂0⊕3I2×2[Φ]2,Wk−1 = Vk = 0⊕3[Φ]
and the order reduction ϕ = 14, such that
each box represents the minimal interval that
contain the corresponding noise term with confi-
dence level 99.73%. Moreover, X ζk−1 = 0 ⊕ 1[Φ]
is a box that represents all possible values of ζk−1.

In scenarios (ii)-(iv), the tuning of the stan-
dard deviation of initial states σx, process noise
σw and measurement noise σv is increased 100
times, that is, 100σx, 100σw and 100σv respec-
tively. In scenarios (v)-(vi), the tuning of the stan-
dard deviation of process noise and measurement
noise is reduced 100 times, that is, 0.01σw and
0.01σv respectively.

The estimated means and centers are com-
pared through the root-mean-square error of the
j-th state (RMSEj)

RMSEj =
1

100

100∑
m=1

√√√√ 1

N

N∑
k=1

(xj,k − x̂j,k,m)
2
,

(37)

where j = 1, ..., n, is the j-th element of the state
vector, N is the final time step, and m is the m-th
Monte Carlo realization.
Moreover, the mean processing time of CPU
(TCPU) is used to compare the algorithms. The
used computer configuration is: HD 160Gb, RAM
memory 3.25Gb, Windows 7 Ultimate, Intel core
2 Quad CPU Q6700 2.66GHz and off-board video
card Geforce 9600Gt 512Mb.

5.2 State Estimation

Simulated results of KF, ZF with segment min-
imization (ZFmin.seg) and volume minimization
(ZFmin.vol) are presented in Figures 2-4 for one
Monte Carlo realization. For the zonotope algo-
rithms, ZFmin.seg and ZFmin.vol, the order reduc-
tion ϕ is such that similar results are obtained us-
ing ϕ > 14. In Figure 2, where the tuning for each
filter is the reference, the usual confidence level
3σx (99.73%) of the KF is more accurate than the
interval 4{Xk} of ZFs due to the PDF of noise
terms being known exactly.

In Table 1, the mean and center estimates for
scenario (i) are compared after 100 Monte Carlo
realizations. As this scenario consists of exactly
known Gaussian uncertainties, the KF is optimal.

Therefore, the estimated means are more accu-
rate than the estimated centers. As the segment
approach minimizes the Frobenius norm, its cen-
ters are more accurate than the volume approach.
The index TCPU for KF, ZFmin.seg and ZFmin.vol

is 0.069ms, 3.92ms and 20.1ms, respectively. The
index TCPU for ZFs is the largest due to the zono-
tope order increasing over time. Furthermore, the
segment minimization is much faster than the vol-
ume minimization, since this last approach gener-
ates one more time candidate zonotope and com-
putes its volume, in order to choose that with the
smallest volume.
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Figure 2: State estimation of the linear system
for the scenario (i), reference. (a) and (b) present
results of the true states in black points, the confi-
dence level 3σx for the KF in red dotted lines, such

that σxi,k
,
√
P xx
(i,i),k for i = 1, 2, and the inter-

val 4{Xk} for the zonotope algorithms in cyan
(ZFmin.seg) and blue (ZFmin.vol) dotted lines, for
one Monte Carlo realization.

In other scenarios, the index TCPU does not
change in relation to scenario (i). In scenario (ii),
the obtained results (not shown) converge to sce-
nario (i) after a few iterations. It occurs in the
ZF due to the prediction step being computed ex-
actly. Therefore, KF and ZF are not sensitive to
initial conditions for linear cases.



Table 1: RMSE of estimated means and centers
with segment minimization (ZFmin.seg) and vol-
ume minimization (ZFmin.vol), for scenarios (i),
(iii)-(vi) after 100 Monte Carlo realizations.

(i) (iii) (iv) (v) (vi)

x̂KF
1 (10−2) 7.73 67.1 15.9 14.4 8.72

x̂
ZFmin.seg

1 (10−2) 7.78 8.53 12.4 10.7 7.86

x̂
ZFmin.vol
1 (10−2) 8.17 8.60 14.2 8.11 8.18

x̂KF
2 (10−2) 11.2 134 18.2 17.0 11.7

x̂
ZFmin.seg

2 (10−2) 12.6 13.3 14.4 12.9 12.9

x̂
ZFmin.vol
2 (10−2) 18.8 18.6 16.7 18.4 18.6
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Figure 3: State estimation of the linear system in
scenarios (iii), 100σw, and (iv), 100σv, related to
(a) and (b) respectively, for one Monte Carlo real-
ization. Results of the true states in black points,
the confidence level 3σx for the KF in red dotted
lines and the interval 4{Xk} for the zonotope al-
gorithms in cyan (ZFmin.seg) and blue (ZFmin.vol)
dotted lines are presented for one Monte Carlo re-
alization.

Figures 3-4 present the state estimation x2 for
the scenarios (iii)-(vi). In scenarios (iii) and (v),
where only the process noise tuning is modified,
the KF demonstrates to be more sensitive than
the ZFs, since the a posteriori covariance P xx

k is
proportional to a priori covariance P xx

k|k−1. On

other hand, in scenarios (iv) and (vi), where only
the measurement noise tuning is modified, ZFs
demonstrate to be more sensitive than the KF,
since the width modification of the strip Yk|k−1
influences the intersection Xk more than the pre-
diction Xk|k−1 does. Due to these sensitivities, the
KF fails to include the true states in scenario (v)
while the intervals of the ZFs does not, since they
are more conservative.
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Figure 4: State estimation of the linear system in
scenarios (v), 0.01σw, and (vi), 0.01σv, related to
(a) and (b) respectively, for one Monte Carlo real-
ization. Results of the true states in black points,
the confidence level 3σx for the KF in red dotted
lines and the interval 4{Xk} for the zonotope al-
gorithms in cyan (ZFmin.seg) and blue (ZFmin.vol)
dotted lines are presented for one Monte Carlo re-
alization.

6 Conclusions

This paper presented a comparative analysis be-
tween two methods to estimate states of a given
uncertain linear system, namely: stochastic ap-
proach, represented by the KF, and zonotopic ap-
proach, represented by the ZF. According to the
KF, the a posteriori mean and covariance seek to
characterize the true states by means of a Gaus-
sian PDF. This algorithm provides an analytically
closed solution and a region to include the true



states, which is represented by a quantity of the
standard deviation. Since the noise terms are well
represented by GRVs, accurate results are gen-
erated around the true states. On other hand,
the ZF works on the set membership approach to
characterize uncertainties. This method is called
guaranteed estimation, since the true states are in-
cluded into the estimated sets under the design hy-
pothesis. In order to achieve that, it is necessary
to guarantee that initial states and noise terms
are included into their sets, which are determinis-
tically chosen. Thus, set membership estimators
work on the worst case of noise, leading to more
conservative results at the same time. This filter is
not optimal and it provides an approximated nu-
merical solution, since the data-assimilation step
is overestimated. The ZF can be used with the
segment minimization or volume minimization ap-
proaches. The first one is the fastest while the
second one is the most accurate. Although pro-
cessing time of the volume minimization has been
improved in (Bravo et al., 2006), the zonotope or-
der increase can lead the ZF to be much slow.
This is the main reason to apply an order reduc-
tion on zonotopes, but it leads to more conser-
vative sets, which can become so large when the
order is close to the dimension of the Euclidean
space. By means of numerical results, the sen-
sitivity to noise tuning of both KF and ZF was
made explicit. In general, when the tuning is ac-
curate, the KF highlights due to its optimality.
In other tuning cases, the ZF calculates more ac-
curate centers with larger uncertainty. Moreover,
the segment minimization generates better center
than the volume minimization, due to the Frobe-
nius norm being related to the 2-norm.
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