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Abstract¾  In the aerospace industry, it is important to understand the behavior of turbojet engines, which is considered a complex 
system and, in many cases, engine’s performance data is not available, causing lack of knowledge about the system performance. 
In order to meet this requirement, black-box system identification strategies are been successfully applied complex engineering 
problems. Based on the previous assumptions, this paper presents a parametric black-box system identification approach based on 
data collected from a turbojet engine through an experimental investigation. In order to model the jet engine, Extreme Gradient 
Boosting (XGBoost) technique, which combines a series of regression trees, was associated to a nonlinear autoregressive exoge-
nous (NARX) model structure. In order to evaluate the number of regressors associated to the model, the relative importance of 
each parameter was evaluated. Finally, the model was validated considering the coefficient of determination (𝑅") and on a statis-
tical test based on the statistical correlation of the residuals of the model.  

Keywords¾ turbojet engine, system identification, parametric model, XGBoost technique. 

Resumo¾ Na indústria aeroespacial, compreender o comportamento dos motores a jato, os quais são considerados sistemas de 
grande complexidade, não é uma tarefa simples, já que, em muitos casos, existem incertezas sobre o desempenho desses sistemas 
quando submetidos a diferentes condições de teste. Levando-se em conta o objetivo de entender o correto funcionamento das 
turbinas de aeronaves e projetar equipamentos mais eficientes, este trabalho propõe uma técnica de identificação paramétrica de 
sistemas baseada em uma abordagem caixa preta. Levando-se em conta um estudo prévio onde foram coletados dados de uma 
turbina em uma plataforma de testes, propõe-se a utilização da técnica Extreme Gradient Boosting (XGBoost), a qual combina 
uma série de árvores de regressão, com uma estrutura de modelo não linear autoregressivo e exógeno (NARX) para reproduzir o 
comportamento do motor a jato. Para avaliar o desempenho do modelo proposto, foi utilizado o coeficiente de determinação (𝑅") 
e testes baseados na correlação estatística dos resíduos do modelo. 

Palavras-chave¾ motor a jato, identificação de sistemas, modelo paramétrico, técnica XGBoost. 

1   Introduction 

Gas turbines have been widely used in industrial, ma-
rine, and especially in aerospace applications. This 
type of engine can be defined as a complex system 

comprising multiple subsystems that have dependent 
interactions. Additionally, gas turbines are highly val-
uable assets in aircraft, where large sums are spent in 
maintenance support and logistics (Zaidan, Harrison, 
Mills, & Fleming, 2015). 



By considering the intense competition that char-
acterize both energy and aerospace sectors, gas tur-
bine industry currently faces new challenges of in-
creasing operational flexibility, reducing operating 
costs, improving reliability and availability while mit-
igating the environmental impact (Tahan, Tsoutsanis, 
Muhammad, & Abdul Karim, 2017).  

According to (Filippone & Bojdo, 2018), from 
engine design to meeting more stringent targets that 
are agreed at the international level. In this way, 
proper reproduction of aircraft engine behavior and 
engine performance evaluation are important issues in 
aerospace engineering area. 

Black-box system identification strategies are be-
ing applied to reproduce the operation of gas turbine 
engines, especially in the cases where data about the 
engine performance is not available, making it nearly 
impossible to make any predictions about its behavior.  
One example is the work presented by (Lazzaretto & 
Toffolo, 2001), where authors adopted an artificial 
neural network (NN) model in order to overcome the 
lack of knowledge about the system. Another applica-
tion of NNs was presented by (Talaat, Gobran, & 
Wasfi, 2018), where the objective was the develop-
ment of a diagnosis system for an electrical power 
plant gas turbine. A hybrid thermodynamic model has 
been used to simulate gas turbine performance as well 
as the deterioration of engine components, and poste-
riorly, the data generated by the thermodynamic 
model was adopted for training the neural network for 
fault detection. Finally, the black-box model pre-
sented promising results when tested in a real system. 
However, distinct black-box system identification 
strategies are available for system identification pur-
poses. One technique which is attracting attention of 
academic and industrial researchers is the Extreme 
Gradient Boosting (XGBoost) (Chen, He, Benesty, 
Khotilovich, & Tang, 2018). 

XGBoost is a library designed and optimized for 
boosting trees algorithms, based on gradient boosting 
trees model and has been originally proposed by 
(Friedman, 2002). It is used for supervised learning 
problems, the training data with multiple features is 
used to predict a target behavior (Mostakim, 2016). 
Some applications of XGBoost were described in the 
sequence of this introduction in order to emphasize the 
application potential and results reached by this tech-
nique. 

In a first application, three machine learning tech-
niques (regression tree, random forest and gradient 
boosting machine) were applied to predict the total 
flavonoid content in 22 red wine grape cultivars (Bril-
lante et. al., 2015). Flavonoid are a class of bioactive 
compounds largely represented in grapevine and wine 
that affect the sensory quality of fruits and vegetables, 
and derived products contents. In this first analysed 
case, gradient boosting machine overcame the other 
two method when the coefficient of determination 
(𝑅"), and root mean squared error (RMSE) were eval-
uated as performance criteria in both training and val-
idation phases. 

In the work proposed by (Persson, Bacher, Shiga, 
& Madsen, 2017), multi-site (42 individual PV roof-
top installations) prediction of solar power generation 
on a forecast horizon of one to six hours has been per-
formed using single-site linear autoregressive analysis 
and gradient boosting method, which is a prior version 
of XGBoost. In this study, gradient boosted technique 
shows competitive results in terms of RMSE on all 
forecast horizons. 

The comparative study presented by (Fan et al., 
2018), Support Vector Machine (SVM) and XGBoost 
were compared in order to predict daily global solar 
radiation using temperature and precipitation in 
China. In this study, XGBoost overcame SVM in 
terms of accuracy, stability and computational speed. 

On the other hand, system identification algo-
rithms have been extensively used in the field of ma-
chine learning. Black-box modeling based on NNs 
have been thoroughly discussed in the literature since 
some decades (Juditsky et. al., 1995; Sjöberg et. al., 
1995). Recently, Bagherzadeh (2018) proposes the 
identification of aircraft flight dynamics with NNs 
with specialized architecture. In (Tunjuni, 2016) the 
use of transfer functions to approximate NNs is 
proposed, where the NN weights are directly linked to 
transfer function parameters. As will be shown in the 
next sections, the vectorial mapping from the system’s 
lagged inputs/outputs to predicted outputs can be 
directly treated with machine learning algorithms 
devised for regression. To bridge the methods 
conceived for machine learning to the field of 
dynamic systems modeling, however, is not 
straightforward and tests should be performed 
whenever e.g. corrupted measurements take place or 
free-run simulation is aimed. 

Based on the impact of gradient boosting predic-
tion mentioned on the previous studies, and the im-
portance of modelling gas turbines in engineering ap-
plications, this work extends a previous study pre-
sented by (Tavakolpour-Saleh, Nasib, Sepasyan, & 
Hashemi, 2015). In the present paper, we propose a 
distinct system identification approach in order to re-
produce an aircraft gas turbine behavior.  

In the original case study, an experimental proce-
dure was carried out to collect data from a turbojet en-
gine, and two models, focusing on parametric and 
nonparametric techniques, were proposed to repro-
duce the engine behavior, using as input fuel flow rate 
(kg/h) and rotation speed of the engine (RPM). In the 
present paper, Extreme Gradient Boosting 
(XGBoost), which combines several different 
XGBoost tree models, was adopted in the system iden-
tification procedure. The contribution of this work 
consists on testing the XGBoost algorithm for the pur-
pose of dynamic systems modeling to the same set of 
data used in (Tavakolpour-Saleh, Nasib, Sepasyan, & 
Hashemi, 2015), with linear models and NN based-
NARX models. 

The remainder of the paper is organized as fol-
lows. Section 2 describes the mathematics behind 
XGBoost algorithm. Section 3 presents the model 
structure adopted in this work, followed by the metrics 



assumed to validate the proposed strategy, and system 
identification procedures. Section 4 describes the case 
study based on the turbo jet engine and also presents 
the results of the system identification procedures. Fi-
nally, section 5 addresses the conclusions and future 
works of this research. 

2   Extreme Gradient Boosting (XGBoost) 

Boosting is one of the most powerful learning ideas 
introduced in the last twenty years. It was originally 
designed for classification problems, but it can profit-
ably be extended to regression and system identifica-
tion as well (Hastie, Tibshirani, & Friedman, 2009). 

XGBoost combines a series of regression trees to 
constitute a model. These structures can capture com-
plex interaction in the dataset. It has both linear model 
solver and tree learning algorithms. This makes 
XGBoost at least 10 times faster than existing gradient 
boosting implementations. It supports various objec-
tive functions, including regression, classification and 
ranking.  

As presented in (Chen, Jiang, Zheng, & Chen, 
2018), in most cases, a single regression tree is inade-
quate for a good regression model. In order to improve 
the method performance, the idea is to combine a 
number of regression trees into an ensemble.  

Separate trees can be added together in the same 
way those individual predictors can be added together 
in a regression model. In XGBoost, 𝐾 additive func-
tions are used to predict the output as presented in the 
sequence: 

 

𝑦&' =)𝑓+(𝑥')
.

+/0

 (1) 

 
where 𝑦&' is the i-th estimated output, 𝑓+ ∈ ℱ, and ℱ =
3𝑓(𝑥) = 𝑤5(6)7	(𝑞 ∶ 	ℜ< → 𝑇, 𝑤 ∈ ℜ@)  is the space 
of regression trees. Each 𝑓+  refers to an independent 
tree structure 𝑞  and leaf weights 𝑤 . Besides, 𝑞  de-
notes the structure of each tree that maps an example 
to the corresponding leaf index, where 𝑇 represents 
the number of leaves in the tree. 
Generally, the regression tree 𝑇(𝑥) can be expressed 
as (J. Hastie, Tibshirani, & Friedman, 2009): 
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In Eq. (2), 𝑥 ∈ 𝑅<, and the data is split into 𝑀 re-

gions 𝑅0, 𝑅",… , 𝑅C . The parameter 𝑐< is the response 
in region 𝑚. Under the mean squared error (MSE) loss 
function, 𝑐< can be estimated by: 
 

�̂�< = 𝐸[𝑦'|𝑥' ∈ 𝑅<] (3) 
 

The final optimization target can be represented 
as: 
 

ℒM =)𝑙(𝑦&', 𝑦')
'

)Ω(𝑓+)
+

 (4) 

 
where 

Ω(𝑓+) = 𝛾𝑇 +
1
2𝜆
‖𝑤‖" (5) 

 
In the previous equations, 𝑙  is a differentiable 

convex loss function that measures the difference be-
tween the predicted output 𝑦&' and the measured output 
𝑦'. In the regression task, 𝑙 is normally set to squared-
error function. Ω(𝑓) is the penalty term, which avoids 
the problem of over-fitting in the model, where 𝛾 is a 
threshold for the gain and 𝜆 is a regularization param-
eter. By assuming this penalty term, a model with sim-
ple and predictive functions is more likely to be se-
lected. 

In order to train all trees at the same time, an ad-
ditive strategy is introduced. The trees that have been 
trained are fixed, then add one new tree at a time. As-
sume the prediction value at step 𝑡 is denoted as 𝑦&'

(M), 
then Eq. (4) can be written as: 

 

ℒM =)W𝑔'𝑓+(𝑥') +
1
2ℎ'𝑓+

"(𝑥')Z
[

'

Ω(𝑓+) (6) 
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formulated as: 
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where 𝐼l = {𝑖|𝑞(𝑥') = 𝑗}. Given a fixed tree structure 
𝑞(𝑥), the optimal leaf weight scores on each leaf node 
𝑗∗ , and the extreme value of ℒM can be solved as: 
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3   Black-box System Identification  

Black-box models such as nonlinear autoregressive 
exogenous (NARX) models are employed when 



access to the complicated dynamic equations of the 
system is not possible or struggling with them is diffi-
cult and undesirable (Jelali & Kroll, 2012). This type 
of model structure has a recurrent dynamic nature and 
is commonly used in time-series modeling (Asgari et 
al., 2016).  

NARX includes feedback connections enclosing 
several layers of the network. A nonlinear ARX model 
(NARX) can be defined as an extension of the linear 
model found in (Ljung, 1987), which structure can be 
modified to create a nonlinear form presented in Eq. 
(10): 

 

𝑦&(𝑡) = 𝜙

⎝

⎛

𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … ,
𝑦(𝑡 − 𝑛~), 𝑢(𝑡 − 𝑛+ − 1),

𝑢(𝑡 − 𝑛+ − 2), … ,
𝑢(𝑡 − 𝑛+ − 𝑛�) ⎠

⎞. (10) 

 
The nonlinear function 𝜙  can be expressed in 

terms of the model regressors, and the nonlinear map-
ping can be performed using nonlinear estimators. The 
model structure is entirely defined by the integers 𝑛~, 
𝑛�, and 𝑛+,  where 𝑛~ represents the number of lagged 
outputs, 𝑛� is the number of lagged exogenous inputs, 
and 𝑛+  is the time delay of the systems. The above 
mentioned orders define the complexity of the model 
with respect to the dynamics of the system to be rep-
resented.  
 
3.1 Model Validation Metrics 

Taking into account that the autocorrelation of the re-
siduals and the cross-correlation of the residuals and 
inputs are not sufficient to validate nonlinear models 
(Billings & Voon, 1983). This work assumes a series 
of tests that indicate the validity of a model based on 
the calculation of the correlation function coefficients, 
for systems on the form presented in Eq. (10). The set 
of tests are given by: 
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⎪
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φb��d��(𝜏) = 0, ∀𝜏,

φ(��)���(𝜏) = 0, ∀𝜏,

 

 

(11) 

 
where 𝜉(𝑡) = 𝑦&(𝑡) − 𝑦(𝑡) , 𝛿(. )  Is the Kronecker 
delta function, (𝑢")�(𝑡) = 𝑢(𝑡)" − 𝑢�" , 𝜉𝑢 = 𝜉(𝑡 +
1)𝑢(𝑡 + 1), and φ~� is the normalized cross-correla-
tion function between two sequences {𝑎}  and {𝑏} , 
which can be described as (Billings, 2013): 
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(12) 

 
In order to evaluate the model performance, the 

coefficient of determination, which was described in 

Eq. (13), was considered for both training (𝑅M�" ) and 
validation (𝑅 ~¡" ) phases. 

 

R² = 1 −
∑ [𝑦(𝑡) − 𝑦&(𝑡)]"�¤
M/0
∑ [𝑦(𝑡) − 𝑦�]"�¤
M/0

 
 

(13) 

3.2 XGBoost for System Identification 

In the present subsection we detail how the ensemble 
learning approach devised with XGBoost can be ap-
plied to the identification of dynamic systems.  

It is possible to see that Eq. (1) we have the re-
gression performed by the sum of a vectorial mapping 
from the model’s input vector to the predicted output. 
On the other hand, by inspecting Eq. (10), it can be 
observed that, for the system identification procedure, 
the model inputs are defined with past measured in-
put/output values. Thus by setting the features of the 
machine learning model as the lagged inputs/outputs 
and the targets as the current outputs we can create the 
data-driven dynamic system model. 

In the following section we depict the results of 
the application of the aforementioned strategy to dy-
namic systems modeling. 

 

4   Results 

This section starts presenting the case study adopted 
for the system identification approach. Posteriorly, re-
sults were reported and the proposed model was eval-
uated. 

 
4.1 Case study description 

The turbo jet tester, which generated data for this 
study was originally presented in (Tavakolpour-Saleh 
et al., 2015). Figure 1 presents the experimental plant, 
while Figs. 2 and 3 show both input and output da-
tasets that were acquired from the turbo jet engine. 
 
4.2 Numerical experiments 

The modelling procedure described in Sections 2 and 
3, has been applied to the aforementioned case study. 
Specifically, the XGBoost algorithm has been used to 
proceed the dynamic modeling of the aircraft engine 
relation to RMP and fuel input. 𝑌(𝑡)  and 𝑢(𝑡)  are 
used as the model lagged inputs for the purpose of 
modeling following the NARX structure.  

The XGBoost version implemented in R pro-
graming language (Chen et al., 2018) was used. We 
employed 10 lags in both system’s input and output to 
build the regression matrix for model construction. 
The parameters for the XGBoost are stated in Table 1, 
where the cross-validation function has been used to 
determine the number of rounds. 

The variable importance is plotted in Fig. 4. It is 
possible to see that the most important variables are 
the first lagged input and output of the system, which 
were assumed in the model structure.  
 



 

Figure 1. Turbo jet engine tester (Tavakolpour-Saleh et al., 2015). 

 

Figure 2. Input of the system: fuel value vs. time (Tavakolpour-
Saleh et al., 2015). 

 

Figure 3. Output of the system: resolutions  per minute vs. time 
(Tavakolpour-Saleh et al., 2015). 

Table 1. Parameters for the XGBoost algorithm. 

Parameter Value 
Booster gbtree 
Objective  reg:linear 
eta 0.01 
Max_depth 10 
Min_child_weight 1 
Subsample 1 
Colsample_bytree 1 
nrounds 1076 

  

Values for the coefficient of determination of 
𝑅M�" = 0.9999672  and 𝑅 ~¡" = 0.9948271  were ob-
tained for training and validation phases, respectively.  
According to (Schaible, Xie, & Lee, 1997), values for 
R² higher than 0.9 are enough to express a model in 
system identification field.  

The statistical tests as in (Chen & Billings, 1992) 
have been used in order to validate the model statisti-
cal properties. In Fig. 5 we can see the good adherence 
to the model validation tests. In Fig. 6, it is possible to 
inspect the model output versus the measured data. As 
it can be verified in Fig. 6, the model reasonably rep-
resents the system under study during both training 
and validation phases. 
 

 
Figure 4. Relative importance of model input variables. 

 
Figure 5. Statistical tests based on correlation for the model. 



5   Conclusion 

In the present work, it was presented a system identi-
fication procedure solely based on measured data ob-
tained from an aircraft engine with an ensemble learn-
ing method called Extreme Gradient Boosting 
(XGBoost). Results indicated that the tool is able to 
capture and adequately represent the system dynamics 
as the error quantitative and statistical tests have indi-
cated.  

Future work will aim at the adaptation of the 
workflow possible in ensemble learning for automat-
ing the procedure of model construction. For example, 
we can use the variable importance which is automat-
ically extracted from the trees, to perform input selec-
tion for black-box nonlinear models. In addition, other 
operating envelopes of the aircraft model should be 
explored so that a switching logic can be implemented 
to simulate the engine in various operating conditions 
such as different values altitude and flight speed. 
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Figure 6. Output of the model and measured data (upper) and residuals (lower). Note the increase on the magnitude of the residuals in the 

test phase. 


