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Abstract— Recently, different notions of robust diagnosability of discrete event systems (DES) against perma-
nent and intermittent sensor failures have been proposed in the literature. In these works, different assumptions
are considered regarding event observation losses, and different strategies for verifying the diagnosability of the
language of the system subject to uncertainties in the event observations are presented. In this paper, we present
the relation between different notions of robust diagnosability proposed in the literature, and we show that ro-
bust diagnosability against intermittent and permanent loss of observations are equivalent. We also show that
observation masks can always be replaced with projections in the case of non selective sensor failures to model the
diagnoser observation of the system, and that even in the case of non selective sensor failures, the two definitions
of robust diagnosability of DES against permanent sensor failures proposed in the literature are not equivalent.
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Resumo— Recentemente, noções diferentes de diagnosticabilidade robusta de Sistemas a Eventos Discretos
(SED) a falhas permanentes e intermitentes de sensores foram propostas na literatura. Nesses trabalhos, hipóteses
distintas são consideradas com relação às perdas de observação de eventos, e diferentes estratégias para verificação
da diagnosticabilidade da linguagem do sistema sujeita às incertezas nas observações de eventos são apresentadas.
Neste trabalho, são apresentadas as relações entre diferentes noções de diagnosticabilidade robusta propostas na
literatura, e é mostrado que as noções de diagnosticabilidade robusta a perdas intermitentes e permanentes de
observação de eventos são equivalentes. É mostrado também que máscaras de observação podem sempre ser
substitúıdas por projeções no caso de falhas não seletivas de sensores para modelar a observação do sistema pelo
diagnosticador, e que mesmo no caso de falhas de sensores não seletivas, as duas noções de diagnosticabilidade
robusta de SED com relação a falhas permanentes de sensores propostas na literatura não são equivalentes.

Palavras-chave— Diagnóstico de Falhas, Sistemas a eventos discretos, Diagnosticabilidade robusta, Falha de
sensores.

1 Introduction

The problem of fault diagnosis of discrete event
systems (DES) have been addressed in several
works proposed in the literature (Lin; 1994; Sam-
path et al.; 1995; Qiu and Kumar; 2006; Moreira
et al.; 2011). In these works, it is considered that
the sensors used to record the occurrence of events
always work correctly. However, sensors are sub-
ject to failures due, for instance, to aging degra-
dation, dirt or atmospheric interference. In these
cases, the diagnoser constructed assuming perfect
sensor operation may get stuck, or even provide
wrong diagnosis decisions, being necessary to con-
struct a robust diagnoser when some sensors of the
system are not reliable for fault diagnosis.

The problem of fault diagnosis of systems sub-
ject to sensor failures have been considered in Car-
valho et al. (2012), Carvalho et al. (2013), and
Kanagawa and Takai (2015), where different as-
sumptions regarding sensor failures are consid-
ered, yielding to different notions of robust di-
agnosability of DES, and verification algorithms.
In Carvalho et al. (2012), the problem of fault
diagnosis of DES subject to intermittent loss of
observations is considered, i.e., it is assumed in
Carvalho et al. (2012) that a subset of the observ-
able event set is associated with unreliable sen-

sors that can intermittently fail, losing the obser-
vation of the corresponding events. In Carvalho
et al. (2013), permanent sensor failures are con-
sidered under the assumption that these failures
occur only prior to the first observation of the
event recorded by the defective sensor, i.e., the
event that should be observed is never observed
by the diagnosis system. We call in this paper
this notion of robust diagnosability as robust di-
agnosability against uncertainty in the observable
event set, since the possible existence of a defec-
tive sensor in the system, leads to an uncertain
observable event set.

More recently, in Kanagawa and Takai (2015),
the assumption of sensor failure only before the
first occurrence of the event to be recorded by
the defective sensor is relaxed, and a definition
of robust diagnosability against permanent sen-
sor failures is proposed. An example is used to
show that the language of a system can be ro-
bustly diagnosable in the sense proposed in Car-
valho et al. (2013), and not robustly diagnosable
using the definition presented in Kanagawa and
Takai (2015). In order to do so, it is considered
that the same sensor can be used to identify the
occurrence of different events, and that the sensor
failure can affect the observation of only one of the
events that are detectable by the defective sensor.



This sensor failure behavior is called in this paper
as selective sensor failure.

In this work, we show that the verification
of robust diagnosability against intermittent loss
of observations (Carvalho et al.; 2012) is equiv-
alent to the robust diagnosability against perma-
nent loss of observations, which is a particular case
of the robust diagnosability against uncertain ob-
servable event set (Carvalho et al.; 2013). More-
over, we show that in the case of non selective sen-
sor failures, it is always possible to replace obser-
vation masks with projections to model the obser-
vation of the system by the diagnoser. This allows
us to compare the notions of robust diagnosabil-
ity against permanent sensor failures proposed in
the literature in a more realistic way, and we show
that the robust diagnosability against permanent
sensor failures proposed in Kanagawa and Takai
(2015) is not equivalent to the definition of robust
diagnosability against uncertain observable event
set, even if non selective sensor failures are con-
sidered.

This paper is organized as follows. In Sec-
tion 2 we present some preliminary concepts,
and the following definitions: (i) robust diagnos-
ability against intermittent loss of observations
(Carvalho et al.; 2012); (ii) robust diagnosabil-
ity against uncertain observable event set (Car-
valho et al.; 2013); and (iii) robust diagnosability
against permanent sensor failures (Kanagawa and
Takai; 2015). In Section 3, we compare the three
notions of robust diagnosability proposed in the
literature. The conclusions are drawn in Section
4.

2 Preliminaries

2.1 Notations and definitions

In this paper G = (X,Σ, f, x0) denotes a deter-
ministic automaton of a DES, whereX is the set of
states, Σ is the finite set of events, f : X×Σ∗ → X
is the partial transition function, where Σ∗ de-
notes the Kleene-closure of Σ, and x0 is the ini-
tial state. The language generated by G is de-
fined as L = {s ∈ Σ∗ : f(x0, s) is defined}.
The prefix-closure of a language L is given by
L = {s ∈ Σ∗ : (∃t ∈ Σ∗) ∧ (st ∈ L)}. The
active event function Γ : X → 2Σ is given as
Γ(x) = {σ ∈ Σ : f(x, σ) is defined}. Let us
assume, without loss of generality, that the lan-
guage generated by automaton G, L, is live, i.e.,
Γ(x) 6= ∅, for all x ∈ X.

Let ε denote the empty trace. The projection
operation P l

s : Σ∗l → Σ∗s, where Σs ⊂ Σl is defined
as P l

s(ε) = ε, P l
s(σ) = σ, if σ ∈ Σs or P l

s(σ) = ε,
if σ ∈ Σl \ Σs, and P l

s(sσ) = P l
s(s)P l

s(σ), for all
s ∈ Σ∗l , and σ ∈ Σl. The projection can also
be applied to language L, by applying the projec-
tion to all traces s ∈ L. The inverse projection

P l−1

s : Σ∗s → 2Σ∗
l when applied to a trace s ∈ Σ∗s

generates all traces of Σ∗l whose projection is equal
to s. The inverse projection can also be applied
to languages.

Let M : Σ → ∆ ∪ {ε} be a mask, where ∆ is
a set of symbols. There are two types of masks:
projection masks and non-projection masks. If a
mask M is a projection mask, then each event
σ ∈ Σ is mapped to a different symbol in ∆, or
it is mapped to the empty trace ε. On the other
hand, if M is a non-projection mask, then there
are at least two different events σ1, σ2 ∈ Σ that are
mapped to the same symbol δ ∈ ∆, i.e., M(σ1) =
M(σ2) = δ. Mask M can be extended to M :
Σ∗ → ∆∗ as M(sσ) = M(s)M(σ), for all s ∈ Σ∗,
σ ∈ Σ, and M(ε) = ε.

Let us suppose that the event set of G is parti-
tioned as Σ = Σo∪̇Σuo, where Σo and Σuo denote
the sets of observable and unobservable events, re-
spectively. The set of fault events is denoted here
as Σf ⊆ Σuo. For the sake of simplicity, it is as-
sumed in this paper that there is only one fault
event, i.e., Σf = {σf}.

A fault trace is a sequence of events s such
that σf is one of the events that form s. A fault-
free trace, on the other hand, does not contain
event σf .

2.2 Diagnosability of Discrete Event Systems

LetGN be the subautomaton ofG that models the
fault-free behavior of the system with respect to
the fault event set Σf , i.e., the language generated
by GN is LN ⊂ L formed of all fault-free traces
generated by the system. Thus, the set of all fault
traces generated by the system is L \LN , where \
denotes set difference.

The following definition of language diagnos-
ability can be stated (Sampath et al.; 1995).

Definition 1 (Diagnosability of DES) Let L be
the prefix-closed and live language generated by
automaton G, and let LN ⊂ L be the prefix-closed
language formed of all fault-free traces generated
by the system. Then, L is said to be diagnosable
with respect to projection Po : Σ∗ → Σ∗o, and Σf

if:

(∃z ∈ N)(∀s ∈ L\LN )(∀st ∈ L\LN ,‖t‖ ≥ z)⇒D

where the diagnosability condition D is

Po(st) 6= Po(ω), ∀ω ∈ LN ,

where ‖.‖ denotes the length of a trace. 2

In the following example, presented in Kanagawa
and Takai (2015), we illustrate the diagnosability
definition.

Example 1 Let G be the automaton depicted in
Figure 1, where Σ = {a, b, c, σf}. Let Σo = {a, c}



and Σuo = {b, σf}. Since for all fault traces
σfaac

k ∈ L \ LN , with k ≥ 1, and ω ∈ LN ,
we have that Po(ω) 6= Po(σfaac

k), then, accord-
ing to Definition 1, L is diagnosable wit respect
to Po and Σf . Notice that if we consider a differ-

ent set of observable events Σ̂o = {c}, then, the
fault-free trace ω = abbck has the same projection
P̂o : Σ∗ → Σ̂∗o than the fault trace σfaac

k for all
values of k ∈ N, which implies that L is not diag-
nosable with respect to P̂o and Σf .

0 b1 2a

a4 5

σ f
a c

3 cb

6

Figure 1: Automaton G.

2.3 Robust diagnosability against intermittent
loss of observations

The problem of robust diagnosability subject to
intermittent loss of observations (RDILO) has
been introduced in Carvalho et al. (2012). In
Carvalho et al. (2012), it is considered that some
sensors, or the communication between sensors
and diagnosers, may intermittently fail. In this
case, the set of observable events is partitioned as
Σo = Σilo∪̇Σnilo, where Σilo is the set of events
subject to intermittent loss of observations, and
Σnilo is the set of observable events that are not
subject to intermittent loss of observations. In or-
der to characterize the intermittent loss of obser-
vation, set Σ′ilo = {σ′ : σ ∈ Σilo} is created, where
σ′ is an unobservable event that models the loss of
observation of event σ due to sensor malfunction
or communication failure.

The following definition is presented in Car-
valho et al. (2012) to obtain the language observed
by the diagnoser due to the intermittent loss of
observations of the events in Σilo.

Definition 2 (Dilation) Let Σ = Σilo∪̇Σnilo∪̇
Σuo, Σ′ilo = {σ′ : σ ∈ Σilo}, and Σdil = Σ ∪ Σ′ilo.
Then, the dilation D is the mapping D : Σ∗ →
2Σ∗

dil where

D(ε) = ε,

D(σ) =

{
σ, if σ ∈ Σ\Σilo,
{σ, σ′}, if σ ∈ Σilo,

D(sσ) = D(s)D(σ), s ∈ Σ∗, σ ∈ Σ.

2

The dilation operation D can be extended from
traces to languages by applying it to all traces in
the language, that is, D(L) =

⋃
s∈LD(s).

According to Definition 2, the language ob-
served by the diagnoser, when the sensors of the

system associated with Σilo are subject to inter-
mittent failures, is given by Pdil,o(D(L)), where
Pdil,o : Σ∗dil → Σ∗o is a projection.

In the sequel we present the definition of
RDILO presented in Carvalho et al. (2012).

Definition 3 (Robust diagnosability of DES
against intermittent loss of observations) A
prefix-closed and live language L is robustly
diagnosable with respect to dilation D, projection
Pdil,o : Σ∗dil → Σ∗o and Σf if the following holds
true:

(∃z∈N)(∀s∈L\LN )(∀st∈L\LN , ‖t‖ ≥ z)⇒ RI ,

where the robust diagnosability condition RI is

Pdil,o(D(st)) ∩ Pdil,o(D(ω)) = ∅,∀ω ∈ LN

2

According to Definition 3, a system is said to be
robustly diagnosable with respect to D, Pdil,o, and
Σf if, and only if, there does not exist an arbitrar-
ily long length fault trace st with the same obser-
vation, obtained considering the intermittent loss
of observation of the events in Σilo, computed as
D(st), than a fault-free trace ω, whose observa-
tion also considers the possible intermittent loss
of observation modeled by D(ω). In Carvalho
et al. (2012), to verify the RDILO of the lan-
guage generated by automaton G, an automaton
whose generated language is D(L), Gdil, is com-
puted by adding unobservable transitions labeled
with σ′ ∈ Σ′ilo in parallel to all transitions labeled
with σ ∈ Σilo of G. Then, the verification algo-
rithm proposed in Moreira et al. (2011) is applied
to Gdil.

The following example illustrates the RDILO
definition.

Example 2 Let G be the plant automaton pre-
sented in Figure 1, and let us first consider that
the sensor used to record the occurrence of event
b is subject to intermittent failure, i.e. Σilo =
{b}, Σnilo = {a, c}, and Σuo = {σf}. Au-
tomaton Gdil, whose generated language is the
dilation of L, D(L), is depicted in Figure 2(a),
where b′ is the unobservable event that models
the loss of observation of event b. In this case,
the fault trace σfaac

k ∈ L \ LN has projec-
tion Pdil,o(D(σfaac

k)) = {aack}, for all values
of k ∈ N. In addition, it is not difficult to see
that Pdil,o(D(σfaac

k)) ∩ Pdil,o(D(ω)) = ∅, for all
ω ∈ LN = abbc∗. Thus, L is robustly diagnos-
able against the intermittent loss of observation
of event b.

Let us now consider that events a and
b are subject to intermittent loss of obser-
vations. In this case, the automaton that
generates language D(L), Gdil, is presented



in Figure 2(b), where it can be seen that
Pdil,o(D(σfaac

k)) = {ck, ack, aack}. Moreover,
since Pdil,o(D(abbck)) = {ck, ack, bck, bbck,
abck, abbck}, then Pdil,o(D(σfaac

k)) ∩
Pdil,o(D(abbck)) 6= ∅, for all values of k ∈ N,
which implies, according to Definition 3, that L is
not robustly diagnosable against the intermittent
loss of observations of events a and b.

0 b,b'1 2a

a4 5
σ f

a c

3 cb,b'
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(a) Σilo = {b}

0 b,b'1 2a,a'

a,a'4 5
σ f

a,a' c

3 cb,b'
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(b) Σilo = {a, b}

Figure 2: Automata Gdil.

2.4 Robust diagnosability against uncertainty in
the observable event set

In Carvalho et al. (2013), the problem of robust di-
agnosis against permanent loss of observations is
considered, and the following assumption is car-
ried out.
A1. Any loss of observations, when it occurs,
takes place before the first occurrence of the (ini-
tially observable) event associated with the sensor
that has failed, and it is permanent, i.e., the event
remains unobservable.

In this case, the actual set of observable events
is unknown, i.e., Σo denotes the set of potentially
observable events of the system, and the objective
is to construct a diagnosis scheme for the DES
subject to an uncertain observable event set. For
this reason, this problem is called in this paper
as robust diagnosis against uncertainty in the ob-
servable event set (RDUOES).

Let us suppose that there arem possible losses
of observation of events of Σo, Σj

plo ⊂ Σo, for

j = 1, . . . ,m, where Σj
plo can be equal to the

empty set, and let us suppose that one of them
corresponds to the actual loss of observation of
the system events. Thus, Σj

o = Σo \ Σj
plo, for

j = 1, . . . ,m denotes a possible set of observable
events of the system. Then, the following defini-
tion of RDUOES can be presented Carvalho et al.
(2013).

Definition 4 (Robust diagnosability against un-
certainty in the observable event set) Let Σj

o, j =
1, . . . ,m, denote a possible set of observable events
of an automaton G, and let Σj

plo = Σo \ Σj
o,

j = 1, . . . ,m, denote a possible permanent loss of
observation of the events of Σo. Then, the prefix-
closed and live language L generated by G is ro-
bustly diagnosable with respect to P j

o : Σ∗ → Σj∗
o ,

j = 1, . . . ,m, and Σf , or equivalently with respect
to the permanent loss of observation of the events
of all sets Σj

plo, j = 1, . . . ,m, and Σf if:

(∃z∈N)(∀s ∈ L\LN )(∀st ∈ L\LN ,‖t‖ ≥ z)⇒RP

where the robust diagnosability condition RP is

(∀k, l ∈ {1, . . . ,m})[P k
o (st) 6= P l

o(ω), ∀ω ∈ LN ].

2

According to Definition 4, if there exists an arbi-
trarily long length trace st, and a fault-free trace
ω such that P k

o (st) = P l
o(ω), then we are not sure

if the fault trace st has been executed by the sys-
tem and the correct observable event set is Σk

o , or
if the fault-free trace ω has been executed and the
correct observable event set is Σl

o. Thus, in this
case, the language of the system L is not robustly
diagnosable against uncertainty in the observable
event set.

Example 3 Consider the same system presented
in Figure 1 where Σo = {a, b, c}, and let us assume
that we are uncertain about the observation of
event b, i.e., we have two different possible perma-
nent observation losses Σ1

plo = ∅, and Σ2
plo = {b}.

Thus, in order to verify if L is robustly diagnosable
with respect to P 1

o , P 2
o , and Σf , it is necessary to

investigate if the fault event can be detected even if
we are not sure about the observation of b. In this
example, if the fault trace σfaa is executed, then
P 1
o (σfaa) = P 2

o (σfaa) = aa, and there is no fault-
free trace ω ∈ LN such that P 1

o (σfaa) = P 1
o (ω),

or P 1
o (σfaa) = P 2

o (ω), or P 2
o (σfaa) = P 1

o (ω),
or P 2

o (σfaa) = P 2
o (ω). Thus, we are sure that

the fault has occurred after the execution of trace
σfaa, being b observable or not, and L is robustly
diagnosable against uncertainty in the observation
of b.

Let us now assume that we are uncertain
about the observation of events a and b, i.e., we
have the following four possible losses of observa-
tion of events: Σ1

plo = ∅; Σ2
plo = {a}; Σ3

plo = {b};
and Σ4

plo = {a, b}. In this case, it can be seen

that it is not possible to know if trace σfaac
k

has been executed by the system and event a be-
came unobservable, or if trace abbck has been ex-
ecuted and both events a and b became unobserv-
able. This reasoning is expressed as P 2

o (σfaac
k) =

P 4
o (abbck) = ck, for all k ∈ N. Thus, according to

Definition 4, L is not robustly diagnosable with
respect to P j

o , j = 1, . . . , 4, and Σf .

2.5 Robust diagnosability against permanent
sensor failures

A different notion of robust diagnosability against
permanent sensor failures (RDPSF) is addressed
in Kanagawa and Takai (2015). In Kanagawa and



Takai (2015) assumption A1 is relaxed, and the
sensor failure can occur at any time, even after
the first observation of the event recorded by the
defective sensor, leading to the loss of observa-
tion of the event. In addition, differently from
Carvalho et al. (2013) and Carvalho et al. (2012),
that assume projections to model the observation
of events, in Kanagawa and Takai (2015) masks
are considered to model the observation of events,
i.e., different events can be observed by the diag-
noser using the same symbol. Based on this fact,
the sensor failures considered in Kanagawa and
Takai (2015) can be selective in the sense that
the observation of only one of the events that are
recorded by the same defective sensor can be lost.
In order to relax assumption A1, the following
definition of observation mask subject to perma-
nent sensor failure is presented in Kanagawa and
Takai (2015).

Definition 5 (Mask subject to permanent sensor
failures) Let M : Σ→ ∆∪{ε} denote the nominal
observation mask obtained considering that none
of the observable events lose observation, and let
Mi : Σ → ∆i ∪ {ε}, where ∆i ⊂ ∆ and i ∈
I = {1, 2, . . . ,m}, represent a possible loss of ob-
servation of events due to permanent sensor fail-
ures. Then, the observation mask subject to per-
manent sensor failures Mf : Σ∗ → 2∆∗

is defined
as Mf (s) = {M(s1)Mi(s2) : s1s2 = s ∧ i ∈ I}. 2

According to Definition 5, the set of all observed
traces due to permanent sensor failures of a lan-
guage L is given by Mf (L) =

⋃
s∈LMf (s). Notice

that the transition from mask M to Mi after the
occurrence of s1 represents the instant when the
permanent sensor failure occurs, and mask Mi in-
dicates which observations have been lost.

In the sequel, we present the definition of
RDPSF proposed in Kanagawa and Takai (2015).

Definition 6 A prefix-closed and live language L
is said to be robustly diagnosable with respect to
the observation mask Mf : Σ∗ → 2∆∗

, and Σf if:

(∃z ∈ N)(∀s ∈ L\LN )(∀st ∈ L\LN ,‖t‖ ≥ z)⇒RS

where condition RS is given as

[Mf (st) ∩Mf (ω) = ∅,∀ω ∈ LN )].

2

Example 4 Consider the system presented in fig-
ure 1, where Σ = {a, b, c, σf}, ∆ = {α, β} and the
nominal mask M is such that M(a) = M(b) = α,
M(c) = β, and M(σf ) = ε. Notice that event
c is identified from the observation of β while
events a and b cannot be distinguished. Let us
consider that event b becomes unobservable due to

a selective sensor failure, i.e., the sensor that ob-
serves both a and b loses the capability of sens-
ing only event b, and is always capable of observ-
ing event a. Then, M1 is given as M1(a) = α,
M1(c) = β, and M1(σf ) = M1(b) = ε. In this
case, if the system executes the fault-free trace
abbck, and the observation of event b is lost af-
ter the first observation of b, then the diagnoser
observes trace M(ab)M1(bck) = ααβk. Since
M(σfaac

k) = ααβk, then L is not robustly di-
agnosable with respect to mask Mf and Σf .

In the next section we compare the three no-
tions of robust diagnosability proposed in the lit-
erature.

3 Relation among the robust
diagnosability notions

In this section, we compare the notions of robust
diagnosability presented in the previous section.
We show first that language L is robustly diagnos-
able against the intermittent loss of observations
of the events in set Σilo if, and only if, L is diagnos-
able with respect to projection Pnilo : Σ∗ → Σ∗nilo
and Σf , i.e., the intermittent observation of the
events in Σilo does not contribute to the robust
diagnosability of L.

Theorem 1 Let L be a prefix-closed and live lan-
guage, and Σ = Σilo∪̇Σnilo∪̇Σuo. Then, L is
robustly diagnosable with respect to dilation D,
projection Pdil,o : Σ∗dil → Σ∗o, and Σf if, and
only if, L is diagnosable with respect to projection
Pnilo : Σ∗ → Σ∗nilo, and Σf .

Proof: (⇒) Let us assume that L is ro-
bustly diagnosable with respect to D, Pdil,o and
Σf . Then, there exists z ∈ N such that for
all fault trace st ∈ L \ LN , where ‖t‖ ≥ z,
Pdil,o(D(st)) ∩ Pdil,o(D(ω)) = ∅, for all ω ∈ LN .
Since Pnilo(st) ∈ Pdil,o(D(st)), and Pnilo(ω) ∈
Pdil,o(D(ω)), then it is straightforward to see that
Pnilo(st) 6= Pnilo(ω), for all ω ∈ LN , and thus, L
is diagnosable with respect to Pnilo and Σf .

(⇐) Let us assume now that L is diagnosable
with respect to Pnilo and Σf . Then, there exists
z ∈ N such that for all st ∈ L\LN , where ‖t‖ ≥ z,
Pnilo(st) 6= Pnilo(ω), for all ω ∈ LN . Since, Σilo ∩
Σnilo = ∅, and according to the definitions of D
(Definition 2) and Pdil,o, all traces in Pdil,o(D(st))
and Pdil,o(D(ω)), are obtained by adding events
in Σilo to the traces of Pnilo(st) and Pnilo(ω), re-
spectively, then Pdil,o(D(st)) ∩ Pdil,o(D(ω)) = ∅.
Thus, according to Definition 3, L is robustly di-
agnosable with respect to D, Pdil,o and Σf .

Notice that the diagnosability of L with re-
spect to Pnilo and Σf is equivalent to the robust
diagnosability of L against permanent loss of ob-
servations of the events in Σilo under Assumption
A1, which is a particular case of the RDUOES



presented in Definition 4. Thus, Theorem 1 shows
that the robust diagnosability of L against in-
termittent loss of observations of the events in
Σilo is equivalent to the robust diagnosability of
L against uncertainty in the observable event set,
considering Σilo as the unique possible loss of ob-
servation of events, Σplo. In this particular case,
the verification of RDILO can be carried out using
any diagnosability verification procedure proposed
in the literature (Qiu and Kumar; 2006; Moreira
et al.; 2011), being not necessary to compute Gdil

as it is done in Carvalho et al. (2012). In Figure
3 we show the implications of theorem 1.

L is
RDILO

L is RDUOES
with Σilo=Σplo

L is diagnosable
considering Σilo as

unobservable

Figure 3: Relation between RDILO and RDUOES
of Theorem 1.

In the sequel we compare the definitions of
RDUOES and RDPSF. First of all, notice that
it is always possible to replace a non projec-
tion mask M : Σ → ∆ ∪ {ε} with a projection
P : (∆ ∪ Σuo)∗ → ∆∗, and obtain an equivalent
automaton Geq, such that M(L) = P (Leq), where
Leq is the language generated by Geq. In order
to compute Geq, all transitions of G labeled with
observable events in Σo are replaced with their
corresponding symbol in ∆, and all transitions of
G labeled with unobservable events remain unal-
tered. In the sequel, the equivalent projection P is
computed as: (i) if for σ ∈ Σ and δ ∈ ∆, we have
that M(σ) = δ, then P (δ) = δ; (ii) if M(σ) = ε,
then P (σ) = ε. The following example illustrates
the replacement of the observation mask with a
projection that does not alter the observation of
the language generated by the system.

Example 5 Let us consider the same problem
presented in Example 4, where M(a) = M(b) = α,
M(c) = β, and M(σf ) = ε. In this case, the do-
main for the equivalent projection P is {α, β, σf},
and P (α) = α, P (β) = β and P (σf ) = ε. In
order to obtain an automaton Geq whose observed
language considering projection P is equal to the
observed language for the automaton G of Figure
1 using mask M , it suffices to replace events a and
b with α, and event c with β, as shown in Figure
4.

0 α1 2α

α4 5
σ f

α β

3 βα

6

Figure 4: Automaton Geq, where P (Leq) = M(L).

The sensor failures considered in Carvalho
et al. (2013) are related with sensor malfunction,

that can be caused by aging degradation, dirt, at-
mospheric interference, or problems in the com-
munication between sensor and diagnoser. In this
regard, even if the same sensor is used to detect
the occurrence of different events, then any oc-
currence of these events may be permanently lost.
This sensor failure behavior is non selective, and
projections can be used to model the observation
of the system events. However, if a very specific
kind of sensor failure occurs, that makes the sen-
sor be capable of always identifying the occurrence
of one of the events that it can record, and never
be capable of recording the occurrence of a dif-
ferent event, then projections cannot be used to
model the observed behavior of the system, since
the knowledge of which event observation is lost
is not preserved using projections. Thus, only in
this very special case of selective sensor failure,
we cannot use projections to model the diagnoser
observation of the events generated by the sys-
tem. In the sequel, we consider that the sensor
failure is non selective, and, in order to compare
the notions of RDUOES and RDPSF, we rewrite
Definitions 5 and 6 using projections instead of
masks to model the observation of the events, and
define the robust diagnosability against non selec-
tive permanent sensor failures (RDNSPSF).

Definition 7 (Projection subject to permanent
sensor failures) Let Po : Σ∗ → Σ∗o denote the
nominal projection obtained considering that none
of the observable events lose observation, and let
P j
o : Σ∗ → Σj∗

o , where Σj
o ⊂ Σo and j ∈ I =

{1, 2, . . . ,m}, represent a possible loss of obser-
vation of events due to permanent sensor fail-
ures. Then, the projection subject to permanent
sensor failures Pf : Σ∗ → 2Σ∗

o is defined as
Pf (s) = {Po(s1)P j

o (s2) : s1s2 = s ∧ j ∈ I}. 2

Definition 8 (Robust diagnosability against non
selective permanent sensor failures) A prefix-
closed and live language L is said to be robustly
diagnosable with respect to projection Pf : Σ∗ →
2Σ∗

o , and Σf if:

(∃z ∈ N)(∀s ∈ L\LN )(∀st ∈ L\LN ,‖t‖ ≥ z)⇒Sf

where condition Sf is

[Pf (st) ∩ Pf (ω) = ∅,∀ω ∈ LN )].

2

The following result shows that if L is robustly
diagnosable against non selective permanent sen-
sor failures, then L is robustly diagnosable against
uncertain observable event sets.

Theorem 2 If L is robustly diagnosable with re-
spect to Pf and Σf , then L is robustly diagnosable
with respect to P j

o : Σ∗ → Σj∗
o , j = 1, . . . ,m, and

Σf .



Proof: Suppose that L is robustly diagnosable
with respect to Pf and Σf . Then, there exists z ∈
N such that for all fault trace st, where ‖t‖ ≥ z,
we have that Pf (st) ∩ Pf (ω) = ∅, for all ω ∈ LN .
Since, according to Definition 7, P k

o (st) ∈ Pf (st),
and P l

o(ω) ∈ Pf (ω), for k, l ∈ I, then it is straight-
forward to see that P k

o (st) 6= P l
o(ω), which implies,

according to Definition 4, that L is robustly diag-
nosable with respect to P j

o and Σf .
In Figure 5, we show the implications of The-

orem 2.

L is RDNSPSF L is RDUOES

Figure 5: Relation between RDNSPSF and
RDUOES of Theorem 2.

The converse of Theorem 2, however, is not
true. In order to show this fact, in Kanagawa and
Takai (2015) a selective sensor failure and a non
projection mask are considered, which are unre-
alistic from the practical point of view. In the
following example we show that even when pro-
jections are used and non selective sensor failures
are considered, the RDUOES does not necessarily
imply in the RDNSPSF.

Example 6 Consider automaton G depicted in
Figure 6, where Σ = {a, b, c, d, σf}, Σo = {b, c, d},
and Σuo = {σf , a}. Let us suppose that we are
uncertain about the observation of events c and d,
and we have defined the following possible perma-
nent loss of observation Σ1

plo = {d}, and Σ2
plo =

{c}. Thus, P 1
o : Σ∗ → Σ1∗

o , and P 2
o : Σ∗ → Σ2∗

o ,
where Σ1

o = {b, c}, and Σ2
o = {b, d}, denote the

projections associated with the permament loss
of events d and c, respectively. In this case, it
is easy to see that if the permanent loss of ob-
servation occurs after the execution of trace cd,
then Po(cd)P 1

o (σf (bd)k) = cdbk, which is equal
to Po(cd)P 2

o (a(cb)k) = cdbk. Thus, according to
Definition 8, L is not robustly diagnosable against
the permanent loss of observation of events d and
c relaxing Assumption A1. However, if Assump-
tion A1 is considered, i.e., the loss of observa-
tion occurs prior to the first observation of the
event, then we have that P 1

o (cdσf (bd)k) = cbk,
P 1
o (cda(cb)k) = c(cb)k, P 2

o (cdσf (bd)k) = d(bd)k,
and P 2

o (cda(cb)k) = dbk. Thus, according to Defi-
nition 4, L is robustly diagnosable against perma-
nent sensor failure under Assumption A1.

0 d1 2c
a

σ f

b

d

c

b

3 4
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Figure 6: Automaton G.

In the sequel, we present a condition that im-
plies that if L is not robustly diagnosable in the
sense of Kanagawa and Takai (2015), then L is
also not robustly diagnosable in the sense of Car-
valho et al. (2013).

Theorem 3 Let st ∈ L \ LN , and ω ∈ LN , be
written as st = u1u2 and ω = v1v2. If there exists
an arbitrarily long length trace st, and a trace ω
such that Po(u1)P k

o (u2) = Po(v1)P l
o(v2), for k, l ∈

I, and Po(u1) ∈ Σk?
o and Po(v1) ∈ Σl?

o , then L is
not robustly diagnosable with respect to P j

o , j =
1, . . . ,m, and Σf .

Proof: Notice that if Po(u1) ∈ Σk?
o and Po(u2) ∈

Σl?
o , then Po(u1) = P k

o (u1), and Po(v1) = P l
o(v1).

Thus, if Po(u1)P k
o (u2) = Po(v1)P l

o(v2), we have
that P k

o (u1u2) = P l
o(v1v2), which implies, accord-

ing to Definition 4, that L is not robustly diagnos-
able with respect to P j

o and Σf .
In Example 6, the condition of Theorem 3 is

not satisfied. In order to see this fact, notice that
the fault trace st = cdσf (bd)k and the fault-free
trace ω = cda(cb)k can be divided, respectively,
as st = u1u2, where u1 = cd and u2 = σf (bd)k,
and ω = v1v2, where v1 = cd and v2 = a(cb)k.
Since Po(cd) /∈ Σj∗

o , for j = 1, 2, we have that the
condition of Theorem 3 is not satisfied. However,
in the cases that the condition of Theorem 3 is
satisfied, RDUOES and RDNSPSF are equivalent.

4 Conclusions

In this paper, we present a comparison between
different notions of robust diagnosability proposed
in the literature. We show that robust diagnos-
ability against intermittent and permanent obser-
vation losses are equivalent. We also show that
under a more realistic type of sensor failure, called
non selective sensor failure, observation masks can
always be replaced with projections to represent
event observation losses. Moreover, we show that
under non selective sensor failure, the language
of a system can be robustly diagnosable against
uncertain observable event sets and not against
permanent sensor failures.
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