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Pedro Daniel de Cerqueira Gava, Cairo Lúcio Nascimento Júnior, Geraldo Adabo∗

∗Division of Electronic Engineering
Instituto Tecnológico de Aeronáutica - ITA
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Abstract— This article presents a new approach to implement real-time Dense RGB-D Visual Odometry
taking advantage of the computational power of a modern GPU and the kind of parallelization it offers, exploring
the quantity of data that needs to be handled. Our objective is to provide a fast and accurate method to estimate
the camera motion using photometric error minimization. Assuming constant intensity, the error minimized is
modeled in a nonlinear fashion requiring robust iterative methods to solve it. The algorithm developed was made
having in mind now everyday hardware GPU present in PCs, phones, and embedded computers. Our results
show that the algorithm is robust enough to handle displacements of a camera moving with small velocities and
performing real-time odometry. Also, a linear algebra library was created alongside this work to near the gap
between parallel programming concepts and linear algebra with high level procedures and data structures.
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1 Introduction

The usage of RGB-D cameras have become in-
creasingly popular over the last years (Huang
et al., 2017; Gupta et al., 2014; Jafari et al., 2014),
and with it applications taking advantage of its
properties have been constantly developed spe-
cially in robotics field for visual odometry and
SLAM (Henry et al., 2014; Endres et al., 2014).
In general these applications and techniques fo-
cus on the usage of the CPU of a computer to
process the information although they are ca-
pable of achieving real time processing, consid-
ering a camera frame rate of 30Hz. Most of
them have to give up on some precision to do it
(Kerl et al., 2013). So one can say that it is a
problem of computation effort, and this type of
problem have always being an issue in the enter-
tainment industry because of realistic computer
graphics. Nowadays it appears also when dealing
with large amounts of data which is known as Big
Data (Gutiérrez et al., 2017), and in recently re-
search of Artificial Intelligence and Deep Learning
(Schmidhuber, 2015). All those problems have re-
curred to the usage of massive computation inside
GPUs (Graphics Processing Unit) and in this pa-
per we use this processing unit to process a dense
visual odometry algorithm developed for RGB-D
cameras.

Today GPU is a well established technology in
present days, ranging from graphics cards for per-
sonal computers to embedded solutions that com-
mute both CPU and GPU (NVIDIA®, 2017a),
from self-driving cars to cell phones (NVIDIA®,
2017b) and not using it is a waist of a valuable
resource. Not only because one could do a task
faster but also because one can separates tasks
that need massive and concurrent computation of
elements, e.g. subtraction of an image, and tasks

that are inherently serial problems which have do
done in a CPU.

Applications of the parallel paradigm in RGB-
D visual algorithms for movement estimation are
scarce if compared to usual approaches, and our
objective is to enable the motion of a camera
mounted in any platform, being it automated or
not, to be estimated in high frequency with ac-
curacy, enabling usage of smaller resolutions of
cameras but higher frame rate. In this paper we
present

• A parallel algorithm for real-time dense RGB-
D visual odometry based on (Kerl et al., 2013)
implemented in a GPU;

• A library that has been a spin off of the main
algorithm to straight the gap between the
GPU parallel programming paradigm and the
usual developer;

The code resultant from this work can
be accessed in https://github.com/Akindart/

cgmapping.

Also, in this paper it is used the CUDA™

technology, made by NVIDIA®, therefore all con-
cepts and examples of applications described here
has an implicit information that it is done with
CUDA™ and compatible hardware. Section 2 de-
scribes briefly previous approachs to the problem
of visual odometry using RGB-D cameras. Sec-
tion 3 explain how to perform the estimation of
the camera motion and presents the first version
of our algorithm, and a description of how we par-
allelize one of the functions we use. Section 4
presents our results, comparing the frequency our
algorithm executes with the algorithm based on.

https://github.com/Akindart/cgmapping
https://github.com/Akindart/cgmapping


2 Related Work

2.1 Dense Visual Odometry

This type of approach uses the whole image to
estimate the camera motion, first presented to
be used with a pair of stereo images (Comport
et al., 2010). Recently such methods were pro-
posed to RGB-D cameras (Steinbrücker et al.,
2011; Tykkälä et al., 2011) using photometrical
error, which can be considered a 3D version of
the 2D Lucas-Kanade image alignment algorithm
(Lucas et al., 1981). There is also the possibil-
ity of minimizing the geometrical error between
3D surfaces instead of photometrical error, and
this problem is solved using the iterative clos-
est point (ICP) of algorithms (Rusinkiewicz and
Levoy, n.d.). One drawback of ICP is its depen-
dency on using nearest neighbor-search, and sev-
eral strategies and algorithms have been proposed
to overcome this (Blais and Levine, 1995; Henry
et al., 2014; Stückler and Behnke, 2012).

The key assumption of this approach is that
it requires constant intensity from 3D observed
from different positions. Jumps in the estimated
trajectory if can occur because of occlusions, dy-
namic objects, and sensor noise, which prob-
lems were dealt with in (Huber, 2011; Gelman
et al., 2014). Our work use the robustness pre-
sented in (Huber, 2011) and implemented also in
(Kerl, 2012) to handle such problems.

2.2 Sparse Visual Odometry

Sparse visual odometry relies on obtaining sig-
natures of point features present in a image, in
some sense condensing information before process-
ing some correspondence between them and after-
wards deciding how these signatures are related to
previous ones. These signatures can be created us-
ing small patches around features or using feature
descriptors (Bay et al., 2008), where the later re-
quires more computational power. The minimiza-
tion of error between correspondents signatures
are then carried out minimizing the reprojection
error between each pair.

Visual odometry approaches have had success
in controlling robotic platforms such ground ve-
hicles (Nistér et al., 2004) and unmanned aerial
vehicles (Weiss et al., 2012). But to recon-
struct a rigid body motion one needs the depth
of the camera points. Hence when estimating it
with triangulation point depths cannot be deter-
mined in metric values, only up to a scale fac-
tor and RGB-D cameras make the problem eas-
ier by giving absolute depth. To estimate this
unknown scale some authors use the measure-
ments from IMU and EKF simultaneously (Engel
et al., 2012; Weiss et al., 2012). A detailed revi-
sion on the topic can be found in (Scaramuzza

and Fraundorfer, 2011; Fraundorfer and Scara-
muzza, 2012).

3 The Parallel RGB-D visual odometry

Our proposed solution take advantage of the par-
allelism brought by modern day GPUs such as
those from NVIDIA®, which enables fast and
massive computation based on calculation band-
width output rather than velocity. In this work we
address the problem using NVIDIA® hardware
which enables the usage of CUDA™ (NVIDIA®,
2018) and its libraries to process information in
the GPU. The algorithm implemented is a parallel
version of the one presented in (Kerl et al., 2013),
the difference resides in how and which device per-
forms the computation. While the former run
theirs in a single core of an i5 from Intel, in ours,
we use a commoner from NVIDIA®.

Before diving into implementation details,
first we will present the concepts of visual odom-
etry based on photogametry consistency with
RGB-D cameras and after it is presented how we
achieve computation parellelism in the GPU. The
first concept is how to describe the reconstruc-
tion of movement based on the apparent bright-
ness displacement between two images; the second
is how to minimize the displacement error between
images using the description previously discussed
within a robust probability framework.

3.1 Movement estimation

3.1.1 Warping function

A warp function links the pixel x in the first image
I1 and the warped pixel in the second image I2, see
Figure 1. The first step is to write the position of a
given pixel x = (u, v)T in 3D as the point ~p ∈ <3

using the inverse of pinhole projection function π
as

~p = π−1(x, Z1(x)) (1)

= Z1(x)

(
u− cx
fx

,
v − cy
fy

, 1

)
(2)

where fx and fy are the focal length of the camera,
cx and cy are the optical center and Z(x) is the
depth of the given pixel x.

Next step is put point ~p written with respect
to (w.w.r.t.) I2 using rigid body transformation
consisted of a rotation matrix R ∈ SO(3) and a
translation vector ~t ∈ <3 together, it is common
to refer to both rotation and translation as the
rigid body transformation g ∈ SE(3).

T (g, ~p) = R~p+ ~t (3)

In order to find a minimal representation we
use the twist coordinates ~ξ = (ν1:3, ω1:3)T ∈ <6,
which contains linear [m/s] and angular velocities



Figure 1: Graphical interpretation of the photo-
consitency assumption used in this paper. Two
different views of the same scene and the goal is
to warp the second image so it matches the first.

[grad/s], and is related to the SE(3) through the
Lie Algebra se(3) using the exponential map

g(~ξ) = exp(ξ̂) (4)

where ξ̂ is a matrix in the tangent space of SE(3).
If the reader has any further interest in Lie Alge-
bra and Lie Groups, q.v. (Ma et al., 2012).

Last, we shall take the point T (g, ~p) =
(x, y, z)T which is w.w.r.t. I2 and make use of
the projection function π to find the correspon-
dent pixel in I2.

π(T (g, ~p)) =

(
fx
z

+ cx,
fy
z

+ cy

)
(5)

And finally, the warping function τ arises as
the following expression

τ(~ξ, x) = π(T (g(~ξ), ~p)) (6)

= π(T (g(~ξ), π−1(x, Z1(x))) (7)

3.1.2 Robust optimization

Assuming the camera displacement is small
enough we have used the photogametry difference
between images as the parameter we want to min-
imize, i.e., we want to use the brightness residual
between images in order to estimate the camera
movement. Taking the residual to have the same
number of elements of the images used one can
define ~r(~ξ) ∈ <m.n, where m and n are the image

dimension of height and width. Also ri(~ξ) ∈ < it
is defined as the residual of the i-th pixel and its
expression is

ri(~ξt, xi) = I2(τ(~ξt, xi))− I1(xi). (8)

To minimize the residual the Gauss-Newton
method comes in play to solve it iteratively. Lin-
earizing the residuals using first order of Taylor
Expansion Series, one is confronted with

ri(~ξt, xi) ≈ ri(~ξt, xi) +
∂ri(~ξ, xi)

∂~ξ

∣∣∣∣
~ξ=0

∆~ξ (9)

= ri(0) + Ji(0)∆~ξ (10)

where Ji ∈ <(m.nx6) it is the Jacobian of the resid-
ual equation and ∆~ξ is the update of the initial ~ξ
that was used as pivot for the linearized function.
The update is given by the well know formula

JTWJ∆~ξ(k) = −JTW~r(~ξ
(k−1)
t ) (11)

where ~ξ
(k)
t describes the k-th iteration dur-

ing the estimation of ~ξ in instant t. W =
diag(w1, w2, ..., wm.n) ∈ <(m.nxm.n) is a squared
diagonal matrix that weights the residuals accord-
ing to some criteria. If Gaussian distribution is
assumed for the residuals W is the information
matrix Σ−1, but as have been shown by (Kerl
et al., 2013), the best fitting distribution for these
residuals is the t-distribution. Ergo, to calculate
the weight of the residuals two parameters have
to be determined, the degree of freedom ν of the
t-distribution and the variance σ2. The former
is done empirically while the later is calculated
iteratively until convergence and is dependent of
the first. The following equations are derived in
(Kerl, 2012) and presented here

σ2
k+1 =

1

m.n

∑
i

r2i
ν + 1

ν +
(
ri
σk

)2 (12)

w(ri) =
ν + 1

ν +
(
ri
σ

)2 (13)

The update of the variables describing the
movement is done using sequentially the logarithm
and exponential map, this operation will be writ-
ten with a � binary operation for the sake of sim-
plicity.

~ξk = ~ξ
(k−1)
t � ∆~ξ = log(exp(~ξ

(k−1)
t )exp(∆~ξ)).

(14)

Using a coarse-to-fine scheme. An image
pyramid is built where each layer has half of the
size of the layer under it, and the estimated move-
ment of upper layers are used as first estimation
of those below. The image pyramid concept is il-
lustrated in Figure 2.

In the absence of sufficient texture and struc-
ture the approach presented does not estimates
accurately the camera motion and as was shown
in (Steinbrücker et al., 2011).

3.2 The parallelization

The parallelization procedure is done analyzing
the seven principal steps of the algorithm de-
scribed below. Theses steps are macro procedures



Figure 2: Illustration of the concept of an im-
age pyramid with four layers, where each superior
layer has half the dimension of the one under it.

that encapsulates previous discussed equations in
3.1.1 and 3.1.2.

• Step 1 - Constructing the image pyra-
mids: In this step each pyramid can be built
separately, in a sense that even if to build
a coarser image of the RGB one need also
depth map, the action of reading the depth
map does exclude the possibility of process it
separately to build its own pyramid, there-
fore one can write that pyrDownrgb(Irgb)
and pyrDowndepth(Idepth) are independent of
each other and can be done at the same time
interval;

• Step 2 - Warping function: Recalling eq.
6, the warping function implicitly depends on
the already treated images of Step 1, there-
fore implicating in information dependency;

• Step 3 - Partial derivatives calculation:
Obviously, partial derivatives of the warped
image in x (I∗2,x) and y (I∗2,y) directions can
be computed separately if the source image is
only read thus it can be read by two opera-
tions at the same time;

• Step 4 - Residual calculation: From eq.
8 it is straightforward to observe the depen-
dency on Step 1 and Step 2 but not on Step
3, and more, Step 3 is not affected by Step
4 either;

• Step 5 - Jacobian Calculation: The Ja-
cobian can be factored in two parts Jw and
JI . Jw is dependent of the three dimensional
point of pixel xi in I1, this inverse projection
procedure was carried during the calculation
of the warped image I∗2 in Step 2, then it is
clever to cache it to be used here;

• Step 6 - Weight calculation: Weights are
dependent of the residuals. One thing to no-
tice is that from Step 2, the warped image
I∗2 may have invalid pixels and those are dis-
carded when computing the weights;

• Step 7 - Solve normal equations: This is
dependent of all other precedent steps.

The solution of the normal equations (cf. eq.
14) also is parallelized and it is implemented as
presented in Figure 3

Figure 3: Parallelized normal equations.

Below, in Algorithm 1, we present a straight
forward linearized version of the algorithm it-
self in a high level style, highlighting its main
functions described previously. Also this ver-
sion is a Foward Compositional Algorithm(Baker
and Matthews, 2004) version, not requiring relin-
earization every iteration. IT also explains how a
solution is accepted based on convergence or the
reaching of maximum number of iterations. Ob-
serve that in the weighted error have to be reini-
tialized after every change of level of the pyramid
because errors of different sizes are not compara-
ble.

4 Results

Our results have shown that our implementation
has achieved a similarly precision in the track of
the camera but we have outperformed by little
the original version in speed. Experiments have
been done with the same datasets used by (Kerl
et al., 2013) and we noticed that using simple and
yet effective scheduling policies to execute the al-
gorithm made possible to run it at 16Hz with full
resolution of the camera 640x480 using double pre-
cision floating point. Table 1 shows the frequency
of our algorithm.

The accuracy obtained can be seen in Figure
5, where the horizontal axis presents the the lowest
level of the image pyramid used in the optimiza-

Figure 4: This image depics the time schedule de-
fined for the direct visual odometry algorithm as
seen from a parallel perspective.



Input: Reference image I1, current image
I2, reference depth Z1, current
depth Z2, a convergence
acceptation value ε, degrees of
freedom ν for the t-distribution,
max number of iterations itmax

Result: The estimated motion of the
RGB-D camera in twist
coordinates ~ξ∗

~ξ∗ ← 0
I1,pyr = pyrDown(I1)
I2,pyr = pyrDown(I2)
Z1,pyr = pyrDown(Z1)
Z2,pyr = pyrDown(Z2)
for (l← 0; l > 0; l← l − 1) do

I1,l ← I1,pyr(l)
I2,l ← I2,pyr(l)
Z1,l ← Z1,pyr(l)
Z2,l ← Z2,pyr(l)
k ← 0
errork−1 ←∞
errork ← 0
∆~ξ ←∞
~ξ
(0)
t ← ~ξ∗

while
(errork−1 − errork) > ε ∧ k > itmax
do

I∗2,l ← I2,l(w(~ξ
(k)
t � ∆~ξ, x))

~r ← I∗2,l − I1,l
∇I∗2,x,l ← image derivative x(I2,l)
∇I∗2,y,l ← image derivative y(I2,l)
J ←
calculate jacobian(∇I∗2,x,l, I∗2,y,l)
σ2 ← calculate scale(~r, ν);
W ←
calculate weight matrix(~r, ν, σ2);
errork−1 ← errork
errork ← 1

n~r
TW~r

if (errork−1 − errork) < ε then

∆~ξ ← −(JTWJ)−1JTW~r
~ξ
(k+1)
t ← ~ξ

(k)
t � ∆~ξ

end
else

∆~ξ ← 0
end
k ← k + 1

end
~ξ∗ ← ~ξ

(k)
t ;

end

tion, and the vertical axis is the RMSE of the drift
per frame. The sequences fr1/desk and fr1/desk2
have higher linear and angular velocities (close to )
while fr1/room and fr1/desk have lower velocities.
Observe that due to blur, the more levels of the
image pyramid is used the poor is the estimation
for faster sequences of images.

Another interesting result is a sudden gain of

Resolution [pixels] Avg. Frequency [Hz]
80× 60 79.2358

160× 120 53.4852
320× 240 33.2358
640× 480 16.3258

Table 1: This table presents the average frequency
the algorithm runs when using more than one res-
olution to estimate the camera motion.

(a) Coarse-to-fine VS Translational Drift

(b) Coarse-to-fine VS Rotational Drift

Figure 5: In (a) there is the behavior of the algo-
rithm with respect to the translational drift over
different resolutions used in the motion estimation
and (b) presents the rotational drift.

precision when lowering three times the magni-
tude of the convergence value, from 10−2 to 10−5

in all resolutions. Further diminishing in the con-
vergence value leads to almost non improvement,
see Figure 6.

Now, to determine the best suitable degree of
freedom we have analyzed how it influences the
drift per frame. Figure 7 shows the result and
from it one can observe that the value of degrees
of freedom that is fits best for all of the sequences
is nu = 5.

From these results it is possible to determine
the parameters to be used in the algorithm, be-
ing the convergence value ε = 10−5, the degree
of freedom is set to ν = 5 and the the level used
are from 80x60 up to 320x240. For completeness
purposes, the number of iterations is set to a maxi-
mum of 30, although experiments have shown that
the number of iterations rarely passes the number



(a) Precision VS Translational Drift

(b) Precision VS Rotational Drift

Figure 6: In (a) there is the behavior of the algo-
rithm with respect to the translational drift over
different convergence acceptance ε values used in
the motion estimation of frieburg1 desk and (b)
presents the rotational drift.

of 30.

5 Conclusion

This work has presented the basis for a parallel
version of visual odometry using an RGB-D cam-
era, its implementation details and demonstrates
that is possible to configure it to run on real-time
with acceptable centimetric or millimetric preci-
sion when estimating the camera motion between
to image pairs. Real-time operations is possible
when analyzing the algorithm for different sce-
narios with different configuration parameters and
choosing those that presents better precision and
accuracy but has a good trade-off with cost of
computation. Also, an easy to use liner algebra
library was created in the process and enables
other authors to use GPU power programming
in high level thinking, close to conventional cal-
culations narrowing the gap between conventional
hand held calculations and programming proce-
dures.

One bottleneck found in this work is the usage
of a CUDA Library called Thrust that performs
reduction and counting operations in GPU in a
synchronous fashion, holding the time of compu-
tation. Another problem found is that the algo-
rithm here developed is sensitive to the velocity

(a) T-Distribution DOF VS Translational Drift

(b) T-Distribution DOF VS Rotational Drift

Figure 7: In (a) there is the behavior of the algo-
rithm with respect to the translational drift over
different sequences and DOF used in the optimiza-
tion for the motion estimation and (b) presents the
rotational drift.

with which the camera is maneuvered, higher ve-
locities yield lower precision when estimating mo-
tion due to blur.

For future works, it is possible to create asyn-
chronous versions of those procedures of Thrust
library. Another improvement is to enable the us-
age of single precision matrices that, in theory,
would enable the algorithm to perform at 60 Hz
with images at 320× 240 resolution and 30Hz for
640 × 480. Another possibility of improvement is
to make the algorithm robust against higher veloc-
ities of camera performing, perhaps, some bundle
adjustment procedure.
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