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Abstract— In this paper, we address the robust visual servoing problem for a fixed target using an eye-
in-hand camera configuration, when the camera calibration parameters are uncertain. The proposed solution
combines the image-based visual servoing (IBVS) and the position-based visual servoing (PBVS) approaches to
take advantage of both strengths to perform successful robotic fruit harvesting tasks. An image-based detection
and recognition method, based on SURF and RANSAC algorithms, is used to extract the image feature of
the fruit for the vision-based control algorithm. A kinematic control design, with robustness properties, is
employed to cope with the uncertainties in the calibration parameters of the camera-robot system. To deal
with possible singular configurations of the robot arm, that may arise during the task execution, we employ
the Damped Least-Squares (DLS) inverse method. Experimental results, obtained with a Mitsubishi robot arm
RV-2AJ carrying out strawberry harvesting tasks, are included to illustrate the performance and feasibility of
the proposed methodology.
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Resumo— Neste trabalho, considera-se o problema de servovisão robusta para um alvo fixo usando uma
configuração de câmera eye-in-hand, quando os parâmetros de calibração da câmera são incertos. A solução
proposta combina as abordagens de servovisão baseada em imagem e servovisão baseada em posição utilizando
suas principais vantagens para realizar tarefas bem-sucedidas de colheita robótica de frutas. Um método de
detecção e reconhecimento de imagem, baseado nos algoritmos SURF e RANSAC, é usado para extrair a carac-
teŕıstica da imagem da fruta. Um algoritmo de controle cinemático, com propriedades de robustez, é empregado
para lidar com as incertezas nos parâmetros de calibração do sistema câmera-robô. Para lidar com posśıveis
configurações singulares do braço robótico, que podem surgir durante a execução da tarefa, utiliza-se o método
Damped Least-Squares (DLS) inverso. Resultados experimentais, obtidos com um robô manipulador Mitsubishi
RV-2AJ executando tarefas de coleta de morangos, são inclúıdos para ilustrar o desempenho e a viabilidade da
metodologia proposta.

Palavras-chave— Servovisão, Robôs Agŕıcolas, Coleta de Frutas Autômática, Controle Cinemático.

1 INTRODUCTION

In the last decades, the technological advances
of sensors and communication systems have en-
couraged the agricultural industry to employ in-
telligent autonomous robots to carry out a num-
ber of repetitive and dull tasks for farmers (Edan
et al., 2009). Fruit harvesting and picking, weed
control, autonomous mowing, pruning, seeding
and spraying, plant phenotyping, sorting and
packing are just a few examples of how robots are
taking over fields around the world. In general,
these robots are equipped with navigation sys-
tems as well as specialized accessories and tools
in order to accomplish all the tasks successfully,
safely and efficiently (Bac et al., 2014). The agri-
cultural environment introduces several challenges
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and difficulties, particularly, for robotic harvesting
systems. Indeed, changes in seasons and weather
conditions, crop growth and rotation, dense veg-
etation, different maturity levels of fruits, the ex-
istence of diseases and fungi in plants, all these
factors create a dynamic and poorly structured
environment. In this context, a new trend for
agricultural robotics is to combine and integrate
advanced control theory, computer vision algo-
rithms and machine learning techniques into vi-
sual servoing approaches, allowing robots to op-
erate with a high level of autonomy and decision-
making (Kapach et al., 2012).

Visual servoing is the area of robotics that
is concerned with the pose control of robot arms
or mobile robots based on the feedback of visual
information extracted from one or more image
features, by using a single or multiple cameras
(Chaumette and Hutchinson, 2006). Such cam-
eras may have different models (e.g., monocular,
stereo and RGB-D) and be mounted in differ-
ent configurations: fixed in the robot workspace
(i.e., eye-to-hand) or attached to the robot end-



effector (i.e., eye-in-hand). More advanced appli-
cations, however, can use different types and set-
tings of cameras simultaneously. In general, the
direct measurements provided by the vision sys-
tem are related to the image feature parameters
in the image space, while the robotic task is de-
fined in the operating or task space in terms of
the relative pose of the robot end effector with re-
spect to the target object. In this context, vision-
based controllers can be classified into two main
groups: position-based visual servoing (PBVS),
image-based visual servoing (IBVS) as well as hy-
brid visual servoing (HVS) that combines the ben-
efits of both approaches. One of the main ad-
vantages of the IBVS approach over the PBVS
approach is its higher robustness to camera cali-
bration errors, which results in better positioning
accuracy for the vision system (Chaumette and
Hutchinson, 2007). Following this trend, a color-
based object extraction method based on OHTA
color space was developed by Wei et al. (2014)
and used to carry out robotic strawberry pick-
ing tasks under complex agricultural background.
Mehta et al. (2016) have designed a vision-based
estimation and control system for robotic citrus
harvesting based on the combination of large field-
of-view of a fixed camera and the accuracy of a
mobile camera. Barth et al. (2016) have proposed
a visual servoing approach which uses the eye-to-
hand camera configuration for sweet pepper har-
vesting in dense vegetation. A detection and lo-
calisation algorithm applied to robotic apple har-
vesting which detects red and bicoloured fruits on
tree by using an RGB-D camera was introduced
by Nguyen et al. (2016).

In this work, we address the soft-fruit harvest-
ing problem by using a visual servoing approach
based on the combination of computer vision, and
control theory methodologies. The control de-
sign uses a kinematic control approach based on
the Damped Least-Squares (DLS) inverse method
to deal with the existence of singular configu-
rations for the robot arm during the harvesting
task. A robust vision-based control scheme which
combines the image-based visual servoing (IBVS)
and the position-based visual servoing (PBVS) ap-
proaches is designed to cope with parametric un-
certainties in the camera-robot system. The color
feature extraction method for fruit detection is
based on OHTA color space, which is able to deal
with color singularity problem and more suitable
for real-time image processing compared to HSV
and RGB color spaces (Wei et al., 2014). The
fruit recognition method uses a combination of the
Speeded-Up Robust Features (SURF) and Ran-
dom Sample Consensus (RANSAC) algorithms
(Bay et al., 2008), due to their well-known proper-
ties of robustness, fastness, and accuracy. Exper-
imental results, obtained with a Mitsubishi RV-
2AJ robot performing strawberry picking tasks,

illustrate the performance and feasibility of the
proposed visual servoing scheme.

2 PROBLEM FORMULATION

In this work, we address the robotic fruit harvest-
ing problem using a visual servoing scheme with
an RGB-D stereo camera mounted on the robot
end effector (Fig. 1). Here, the following notation
is considered: pij ∈ R

3 and Rij ∈ SO(3) denote
respectively the position vector and orientation
matrix of the frame Fj with respect to frame Fi;
Tij ∈R4×4 is the homogeneous transformation ma-
trix, which denotes the pose of the frame Fj with
respect to frame Fi. In this context, the pose
of the camera frame Fc with respect to the base
frame Fb is given by Tbc=Tbe Tec, say:

Tbc=

[

Rbc pbc
0T 1

]

=

[

Rbe Rec Rbe pec + pbe
0T 1

]

. (1)

Here, we assume that (A1) Tbe can be obtained
from the forward kinematics map by using, for
example, the Denavit-Hartenberg convention. In
this case, pbe= pbe(q) and Rbe=Rbe(q). For sim-
plicity, we also assume that (A2) the camera frame
Fc and the end-effector frame Fe are aligned only
with respect to z-axis, but the relative translation
between their origins and the relative orientation
of their z-axes, denoted by ϕ, may be uncertain.
In this case, Rec=Rec(ϕ).
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Figure 1: Visual servoing system for harvesting tasks.

The fruit harvesting task we consider consists
of moving the robot arm to the vicinity of the
fruit, cut the stem using a suitable device attached
to the robot end-effector and store the fruit in a
storage device. The first goal is to solve the image
segmentation and interpretation problem, that is,
to detect and recognize the target object located
in the robot workspace by using an image-based
detection and recognition (DR) algorithm. Once
the target object is tracked by using a stereo vision
system, the next step is to solve the correspon-
dence and 3D reconstruction problem, that is, to



compute the 3D coordinates of the fruit with re-
spect to the camera by using, for example, a sim-
ple triangulation technique (Siciliano et al., 2009).
Thus, the pose of the target frame Ft with respect
to the base frame Fb is given by Tbt=Tbc Tct, say:

Tbt=

[

Rbt pbt
0T 1

]

=

[

Rbc Rct Rbc pct + pbc
0T 1

]

, (2)

where Tct is pose of the target frame Ft with re-
spect to the camera frame Fc, which can be com-
puted from the application of the DR algorithm
and the triangulation technique. where the entries
of Tct can be computed from the application of
the DR algorithm and the triangulation technique.
Finally, since Tbt is computed, we can employ an
inverse kinematics-based algorithm to transform
the motion specifications, assigned to the robot
end-effector in the task space, into the correspond-
ing joint space motions, allowing for the successful
execution of the desired motion.

3 VISUAL SERVOING APPROACH

The main idea of visual servoing is to use visual in-
formation obtained from a single or multiple cam-
eras to control the pose of a robot arm with re-
spect to a target object or a set of image features.
In computer vision, an image feature may be any
geometric characteristic that could be extracted
from a given image. In general, an image feature
can be obtained from the projection of a physical
feature of the target object onto the camera im-
age plane. Among several types of image features
available in the literature, in this work, we adopt
the centroid coordinates and the area of the pro-

jected surface of the fruit of interest, in order to
carry out the harvesting task.

The main differences between position-based
visual servoing (PBVS) and image-based visual
servoing (IBVS) approaches are related to how the
pose of the target object is obtained (e.g., pose es-
timate or feature measurements) and which coor-
dinates space the output error is computed (e.g.,
task or image). The main advantages of using the
visual information directly into a feedback control
loop are twofold: (i) there is no need to estimate
the pose of the target frame Ft with respect to
the camera frame Fc (i.e., the object pose) in real-
time; (ii) the lower sensitivity to calibration errors
in the camera (Chaumette and Hutchinson, 2006).

3.1 Robot Kinematics

Here, we consider the kinematic model of a robot
manipulator. In this framework, the operational

space variables are related to the joint space vari-
ables by means of the following forward kinematics

and differential kinematics mappings:

p = h(q) , ṗ = Jp(q) q̇ , (3)

where q, q̇ ∈ Rn denote the position and velocity
vectors of the robot joints, and p, ṗ ∈Rm denote
the position and linear velocity of the end-effector
frame Fe with respect to the base frame Fb. No-
tice that, h(·) : Rn 7→ Rm is a nonlinear function
and Jp(q) = (∂h/∂q)∈Rm×n is the position part
of the analytical Jacobian (Siciliano et al., 2009).

The orientation of the end-effector frame Fe

with respect to the base frame Fb can be described
by the unit quaternion representation, given by
φ= {η, ǫ}∈H, where η ∈R is the scalar part and
ǫ∈R3 is the vector part, subject to the unit norm
constraint η2 + ǫ2 = 1. The so-called quaternion

propagation rule relates the time-derivative of the
unit quaternion φ̇ ∈ H to the angular velocity of
the end-effector frame Fe with respect to the base
frame Fb, denoted by ω∈R3, as:

φ̇ =
1

2
E(q)ω , E(q) =

[

ǫT

ηI −Q(ǫ)

]

, (4)

where Q(·) : R3 7→ SO(3) denotes the skew-
symmetric operator and Jr(φ) = 2ET(φ) ∈ R

3×4

is the well-known representation Jacobian.
The differential kinematics equation provides

the relationship between the joint velocities and
the corresponding linear and angular velocities of
the end-effector frame Fe with respect to the robot
frame Fb as:

v =

[

ṗ
ω

]

=

[

Jp(q)
Jo(q)

]

= J(q) q̇ , (5)

where J(q) ∈Rm′×n is the geometric Jacobian of
the robot manipulator. Notice that, in general,
the orientation of the robot end-effector is given in
terms of the robot joint angles as φ=g(q), where
g(·) : Rn 7→R4 is a nonlinear function. Thus, con-
sidering (5), implies that Jo(q)=Jr(φ) (∂g(q)/∂q),
which is the so-called orientation part of the ana-
lytical Jacobian.

Now, we consider the kinematic control prob-
lem for a n-DoF robot manipulator. In this frame-
work, the robot motion can be described by

q̇i ≈ ui , i = 1, · · · , n , (6)

where q̇i is the velocity of the i-th robot joint and
ui is the velocity control signal applied to the i-
th joint motor drive. Then, from the differential
kinematic equation (5) and considering the kine-
matic control approach (6), we obtain the follow-
ing control system:

[

ṗ
ω

]

= J(q)u . (7)

For the cases where the Jacobian matrix J is non-
square (m′ < n), the velocity control signal u∈Rn

can be given simply by:

u(t) = J†(q) v = J†(q)

[

vp
vo

]

, (8)



where J†=JT(JJT)−1 is the right pseudo-inverse
of J and v = [ vp vo ]

T is a Cartesian control sig-
nal, for position and orientation, to be designed.
Notice that, the control signal (8) locally mini-
mizes the norm of the joint velocities, provided
that (i) the robot kinematics is fully known and
(ii) the Cartesian control signal v(t) does not lead
the robot to singular configurations. The failure
of the last assumptions is a fairly open-problem in
robotics area, and will be discussed later on.

3.2 PBVS control design

Consider the pose control problem for a n-DoF
robot arm. Here, we assume that the task of in-
terest is to move the robot end-effector towards
a fixed target, located at the robot workspace
(i.e., regulation task) using the eye-in-hand cam-
era configuration. The control goal is to regu-
late the current pose of the robot end-effector
x= [ p φ ]T - estimated by the camera—to a con-
stant desired pose xd = [ pd φd ]

T, assumed to be
bounded, that is:

lim
t→∞

[

p(t)
φ(t)

]

=

[

pd
φd

]

. (9)

The position error ep is defined as ep := pd−p,
however the orientation error eo should be defined
in terms of the algebra of rotation groups, instead
of the vector algebra (Siciliano et al., 2009). Thus,
considering the unit-quaternion representation, it
is usual to define the orientation error eo as the
vector part of the error quaternion:

eo := ∆ǫ = η(q)ǫd − ηdǫ(q)−Q(ǫd)ǫ(q) , (10)

where the pair φd = {ηd, ǫd} denotes respec-
tively the scalar and vector parts of the desired
quaternion. The error quaternion is defined as
∆φ := {∆η,∆ǫ} = φd ∗ φ−1, where the symbol
“∗” denotes the quaternion product operator. No-
tice that, we have ∆φ = {1, 0T} if and only if
the quaternions φ and φd are coincident, which
means that the corresponding coordinates frames
are aligned.

Now, we are able to compute the velocity con-
trol signal u using a control algorithm based on the
Jacobian pseudo-inverse:

u(t) := J†(q)

[

vp
vo

]

= J†(q)

[

Λp ep
Λo eo

]

, (11)

where Λp=ΛT

p > 0 and Λo=ΛT

o > 0 are the posi-
tion and orientation gain matrices. The stability
and convergence analysis of the kinematic control
approach is based on the Lyapunov stability the-
ory and can be found in (Siciliano et al., 2009).
Now, considering that during the execution of the
fruit harvesting task the robot arm may move in
the neighborhood of singular configurations, that
is, those joint configurations where the Jacobian

matrix has deficient rank, the key idea is to employ
the well-known Damped Least-Squares (DLS) in-
verse method (Siciliano et al., 2009).

3.3 IBVS modeling

Here, we consider a visual servoing approach using
an RGB-D stereo camera attached to the robot
end-effector. Let pc = [xc yc zc ]

T be the coor-
dinates of a 3D point expressed in the camera
frame Fc. From the perspective projection model,
the 3D point is projected in the image space as a
2D point with the coordinates pv = [xv yv]

T ex-
pressed in pixels, say:
[

xv

yv

]

=
f

zc

[

αx 0
0 αy

] [

xc

yc

]

+

[

xv0

yv0

]

, (12)

where {xv0, yv0, f, αx, αy} is the set of camera in-
trinsic parameters: xv0 and yv0 are the coordi-
nates of the principal point; f is the focal length;
αx and αy are the scaling factors in pixel per mil-
limeter. The 3D point is projected in the image
plane as a 2D point with normalized coordinates
pp=[xp yp]

T given by:

xp =
xv − xv0

fαx

, yp =
yv − yv0
fαy

. (13)

Now, we suppose that the robot end-effector is
moving with linear velocity vc ∈ R

3 and angular
velocity ωc ∈ R3 both expressed with respect to
the (instantaneous) camera frame Fc. Then, us-
ing the well-known relationship of velocity trans-

formation between the target frame Ft and the
camera frame Fc, we obtain the following motion
equation (Chaumette and Hutchinson, 2006):

ṗct = −vc −Q(ωc) pct , (14)

with vc =RT

bc ṗbc and ωc =RT

bcQ(bωbc)Rbc. From
the analysis of the camera-image coordinate trans-
formation (12), we can observe that by using a
bidimensional image may not be possible to ob-
tain any explicit information on depth coordi-
nate. Thus, we can not explicitly compute the
depth between the target frame Ft and the cam-
era frame Fc by using a single camera. This infor-
mation, however, can be recovered (i) indirectly,
using the image projected area of the object or
(ii) directly, using a stereo vision system. In the
indirect approach, the key idea is to use a target
with spherical geometry so that the projected area
in the image space becomes invariant with respect
to the object rotations (Chaumette and Hutchin-
son, 2006). Let av ∈R+ be the projected area of
the target object expressed in the image frame Fv.
The dynamics of the depth-to-area transformation

is given by:

ȧv = (−2av/zc) żc . (15)

Here, the following two assumptions can be con-
sidered: (A3) The image projected area av is



bounded and satisfies the inequality 0 < amin <
av(t) < amax for all time t; (A4) The sign of zc
is assumed to be constant and known. Taking the
time-derivative of (13) and using (14) yields:

ṡ = Ls vc ,





ẋp

ẏp
ȧv



 = Ls

[

vc
ωc

]

, (16)

with

Ls=













−1

zc
0

xp

zc
xp yp −(1 + x2

p) yp

0
−1

zc

yp
zc

(1 + y2p) −xp yp −xp

0 0
2 av
zc

2 av yp −2 av xp 0













where Ls∈R3×6 is the interaction matrix related
to the state vector s ∈ R

3, composed of the 3D
point coordinates expressed in the image space.
Notice that, since the target object is assumed to
be fixed with respect to the base frame Fb the
desired values for image features are assumed to
be constant, and changes in s depends only on
camera motion.

3.4 IBVS control design

Here, we assume that the control goal is to drive
a set of features s to a desired set value sd say:

s → sd , es := sd − s → 0 , (17)

where es∈R3 is the image feature error. From the
differential kinematics equations (7) and (16), we
obtain the following control system:

ṡ = Ls R
T

bc J(q)u . (18)

From the time-derivative of (17), we define the
velocity control signal u as:

u := J†(q)Rbc L
†
s Λs es , Λs = ΛT

s > 0 , (19)

where Λs is a positive definite gain matrix, which
ensures the asymptotic convergence of the image
feature error es to zero, that is, limt→∞ es(t) = 0,
provided that (i) the robot arm is far from singular
configurations and (ii) the calibration parameters
of the camera-robot system are fully known. How-
ever, it is well-known that the knowledge of the
camera calibration parameters and robot kinemat-
ics may not be satisfied from the practical point
of view, particularly when the eye-in-hand camera

configuration is used. In this context, the IBVS
control system (18), in the presence of modeling
errors or uncertainties, can be simply defined as:

ṡ = Ls(s)R
T

bc J(q)u + η(s, q, q̇, t) , (20)

where η(·) is a state-dependent nonlinear exter-
nal disturbance which satisfies the linear growth
bound

||η(s, q, q̇, t)|| ≤ γ||es|| , γ > 0 . (21)

Here, we also assume that η(·) is a nonlinear
function that vanishes at origin, locally Lipschitz
in s, q, q̇ and uniformly in time t for all t ≥ 0
(Khalil, 2002). Notice that, without loss of gener-
ality, we represent the perturbation term η(·) as
an additive term on the right-hand side of the sys-
tem equation (18). Therefore, an approximation
or an estimation of the interaction matrix Ls, the
rotation matrix Rbc as well as the Jacobian matrix
J(q) must be considered for the stability analysis
(Chaumette and Hutchinson, 2006). In this case,
the velocity control signal (19) takes the form:

u := Ĵ∗(q) R̂bcL̂
∗
s(s) Λs es , (22)

where R̂bc =Rbe(q)R̂ec(ϕ), and ϕ ∈R is the mis-
alignment angle between the camera frame Fc and
the end-effector frame Fe around the z-axes, as-
sumed to be uncertain. Notice that, the estimated
Jacobian matrix can be obtained from the DLS in-
verse method, say Ĵ∗= ĴT(Ĵ ĴT + α I)−1 where α
is a damping factor that avoids the ill-conditioning
problem of the Jacobian matrix.

Here, we also assume that (A3) J(q) is
bounded for all possibles values of q, that is
||J(q)||≤c0 for ∀q∈ [0, 2π] where c0∈R is a known
positive constant, because J(·) depends on q(t) as
the argument of bounded trigonometric functions;
(A4) Rbc∈SO(3) is bounded for all possible values
of q and ϕ, that is ||Rbc|| ≤ c1, where c1 ∈R is a
known positive constant; (A5) Ls(s) is bounded
for all possible values of s, that is ||Ls(s)|| ≤ c2,
where c2 ∈ R is a known positive constant, be-
cause we previously assumed that η(·) is state-
dependent and vanishes at origin (Khalil, 2002).

To analyse the stability and convergence prop-
erties of the IBVS control scheme, we employ
the Lyapunov stability formalism. Here, we con-
sider the following positive-definite candidate Lya-
punov function given by V (es) = eTs P es, with
P = P⊤ > 0. The time-derivative of V along the
system trajectories (17), (20) and (22), is given by

V̇ (es) = −2 e⊤s P LsR
⊤
bc J Ĵ∗ R̂bc L̂

∗
s Λs es +

2 e⊤s P η(s, q, q̇, t) .

Then, for P =(1/2)Λs, the first term of the right-
hand side of V̇ (es) is negative definite. Since the
second term, due to the effect of the perturbation,
satisfies (21) we have:

V̇ (es) ≤ c3||es||
2 + c4γ||es||

2 . (23)

If γ is small enough to satisfy the bound γ <
c3/c4 implies that V̇ (es)≤−(c3 − γ c4) ||es||

2 for
(c3−γ c4)>0 and, therefore, the origin is an expo-
nentially stable equilibrium point of the perturbed
system (20). Notice that, the time-derivative of V
is definite negative if the matrices Ĵ∗(q) and L̂∗

s

are assumed to be full-rank, which can be guaran-
teed respectively if the robot arm has redundant



degrees of freedom and the IBVS control scheme
uses one or more than two image features. The
condition V̇ < 0 with V > 0 implies that the sys-
tem trajectories uniformly converge to the origin,
that is, the error system is asymptotically stable.

Moreover, since the robot kinematics and
camera calibration intrinsic parameters are posi-
tive values, the presence of uncertainties in any or
both matrices, J∗(q) and L∗

s(s), is not capable to
violate the condition of negative definiteness (23).
Accordingly, the misalignment angle ϕ between
the camera and the end-effector frames needs to
be less than π

2
rad, that is |ϕ|< π

2
, in order to en-

sure the positive-definiteness property of the ma-
trix R̂ec(ϕ). Under these assumptions, it is pos-
sible to guarantee the asymptotic stability of the
IBVS system for regulation tasks. Conversely, for
tracking tasks, robust and adaptive control strate-
gies could be used to overcome the restriction
of the camera misalignment angle and deal with
the existence of parametric uncertainties in the
camera-robot system (Mehta et al., 2016; Mehta
and Burks, 2016).

4 VERIFICATION AND VALIDATION

In this section, we present experimental results for
a fruit harvesting task carried out in a strawberry
farm (Sylling, Norway) in order to illustrate the ef-
fectiveness of the proposed visual servoing scheme
(Fig. 2). We consider a RGB-D stereo camera at-
tached to the end-effector of a 5-DoF robot arm,
which is visually controlled at the velocity level
by an image-based visual servoing approach in the
neighborhood of singular configurations.

Numerical simulations were carried out on a
Lenovo laptop with Intel Core i7-6500U Processor
(4M Smart Cache, 2.5 GHz) 16 GB RAM, running
Windows OS 64 bits. The control algorithm was
implemented in MATLAB/Simulink (The Math-
Works Inc.) Release 2017a and V-REP PRO EDU
version 3.4.0 used as a robotic simulation plat-
form. A set of scripts and function blocks were
created to perform all necessary calculations and
execute the control loop. Experiments were car-
ried out using the Mitsubishi robot RV-2AJ and
the controller Mitsubishi Melfa CR1. The com-
munication channel between the laptop and the
controller was established through RS-232C com-
mand protocol by means of an own-built cable,
based on manufacturer manual. The camera at-
tached to the end-effector was the ZED 2K Stereo
Camera distributed by STEREOLABS and sim-
ple gripper was built ad-hoc using a pair of blades
driven with a 24-VDC ABB motor. The parame-
ters of the visual servoing system are f=10 mm,
αx=αy=100 pixelmm−1, xv0=yv0 = 500 pixel,
z0 =0.4640 m. The Denavit-Hartenberg parame-
ters (Siciliano et al., 2009) of the robot arm are:
α1=−π/2, and α4=π/2 and the offsets of joints

two and four are −π/2 and π/2, where all an-
gles are expressed in radians; a2=0.25, a3=0.16;
d1=0.3, and d5=0.072, where all lengths are ex-
pressed in meters. The control gains were chosen
as: Λp=7 × 102 I, Λo=8 × 104 I, Λs=3 × 104 I.
All other parameters are assumed to be zero.

Figure 2: Experimental setup at the strawberry farm.

In this section, we describe some aspects of
design and practical implementation of the pro-
posed visual servoing approach. The flowchart of
the fruit harvesting algorithm is shown in Fig. 3.
From the calculation of the same image feature in
both cameras of the stereo vision, we can compute
the 3D point coordinates of the target in the op-
erational space by using a triangulation technique
(Siciliano et al., 2009). In computer vision, a well-
known problem consists on recognizing matching
points that belong to the same image feature in
different scenes, along with object extraction or
image segmentation (Forsyth and Ponce, 2012).
In this context, the OHTA color space was chosen
due to its ability for processing the fruit object
extraction under complex agriculture background.
In addition to dealing with the color singularity
problem, others advantages of the OHTA space
is its simplicity of calculation and low computa-
tional cost, which help us to reduce the problem
of having a complex image processing during the
execution of the vision-based control scheme (Wei
et al., 2014).

After extracting the object of interest from
the scene, we use the SURF algorithm (Bay et al.,
2008) in order to obtain features from both im-
ages and, then, the RANSAC algorithm (Forsyth
and Ponce, 2012) to identifying the corresponding

Figure 3: Fruit harvesting algorithm flowchart.



or matching points. It is worth noting that when
performing the extraction of image features after
object segmentation, a lower computational cost
and more simple calculations are required than if
the process is performed in the reverse order. On
the other hand, it is well-known that RANSAC al-
gorithm is a stochastic algorithm which does not
guarantee the total recognition of the inliers fea-
tures. In addition, by performing a triangulation
with outliers features from a considerable distance
will result in a target position which is very dif-
ferent from expected. Therefore, it is not always
possible to ensure the system stability by perform-
ing an end-point open-loop control based on the
PBVS approach, using as a target object the cor-
responding 3D point coordinates obtained from
the visual system. Under this constraint, a closed-
loop control system seems to be the more appro-
priate to ensure the reliability and safety of tasks
performed by vision-based controllers. The pro-
posed visual servo system involves different con-
trol techniques: (i) PBVS scheme for approaching
the target object (approaching phase); (ii) IBVS
scheme to maintain the object in the field of view
of the stereo vision system (fine tuning phase); (iii)
quaternion-based orientation control to ensure the
proper pose of the robot end-effector for harvest-
ing the selected fruit (picking phase). To deal
with the minimum and maximum depth range pre-
sented in the stereo vision system as well as the
depth needed for collecting the fruit properly, a
depth estimation method based on the object pro-
jected area is used to calculate the object depth
with respect to the camera. From a proper cam-
era calibration, it is possible to compute the 3D
point coordinates of the target using a single cam-
era. After reaching the desired distance, a final
image-based height adjustment is carried out for
positioning the gripper close to the fruit stem, cut
it and store the fruit in a storage box, completing
the harvesting task successfully.
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Figure 4: PBVS+IBVS: camera pose and image fea-

ture errors.

The experimental results1 for a fruit picking
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Figure 5: PBVS: pose control signals.

task, performed with the Mitsubishi robot RV-
2AJ at the strawberry farm in Sylling, Norway
(Fig. 2) are presented in Figures 4-7. The be-
havior in time for position, orientation and im-
age regulation errors can be observed in Fig. 4,
where it is possible to see the asymptotic conver-
gence of the errors. From Fig. 5, we can verify the
time history of the position and orientation con-
trol signals provided by the PBVS scheme during
the approaching phase. Conversely, the behav-
ior in time of the position and orientation control
signals provided by the IBVS scheme during the
picking phase is shown in Fig. 6. The time his-
tory of the velocity control signals applied to the
joints is shown in Fig. 7(a). We can observe the
smooth behavior of the joint velocities, and the
satisfactory performance of the orientation con-
trol scheme. The angular position of joint 5, q5,
is critical for the successful execution of the fruit
harvesting task and the orientation controller en-
sures that the values assumed by q5 remain close
to zero as seen Fig. 7(b).
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Figure 6: IBVS: linear and angular velocities.

1The preliminary experiments can be viewed in the ac-
companying video clip in: https://youtu.be/Hi10oiuG0_I
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Figure 7: PBVS+IBVS: joint positions and velocities.

5 CONCLUDING REMARKS

In this work, we have developed a visual servo-
ing control scheme based on PBVS and IBVS ap-
proaches for harvesting tasks in the presence of
uncertainties. Combining the benefits of both ap-
proaches, we use the first one to perform the ap-
proach phase towards the target and, then, we use
the second one to make fine adjustments in the
movement. Practical results have shown the effi-
ciency and feasibility of using robot arms to per-
form semi-autonomous harvesting tasks for soft
fruits in orchards and poly-tunnels. We expected
that in the near future other types of crops–that
introduce different types of challenges - may be
harvested by the robot arm and other agricultural
tasks that use robots can also be implemented.

Some proposed topics for further investiga-
tion involve: (i) improve the fruit stem detec-
tion and segmentation algorithm to perform the
fruit harvesting under different stems configura-
tions, since by finding the top of the fruit and
adding a small value to the height it is possible to
pick only fruits with a stem in upright position;
(ii) examine other methods for fruits recognition
and image segmentation based on machine learn-
ing and deep learning approaches; (iii) analyse
other vision-based control approaches, combining
different camera models and mounting configura-
tions, that are robust to parametric uncertainties
and kinematic singularities.
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