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Abstract— This paper presents a comparison of two methods used for trajectory tracking: kinematic control
and optimization problem via sequential quadratic programming. The end-effector of a redundant serial robot
manipulator has to track a desired trajectory while a point of the kinematic chain is subject to a holonomic
scleronomic constraint. In addition two manipulability indices are take into account, the first refers to the
Jacobian before the constraint and the second refers to the constrained Jacobian. Experiments are performed in
a Baxter R© robot.
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Resumo— Este artigo apresenta uma comparação entre dois métodos usados para rastreamento de trajetó-
ria: controle cinemático e problema de otimização via programação quadrática sequencial. O efetuador de um
manipulador robótico serial redundante deve seguir a trajetória desejada enquanto um ponto em sua cadeia está
sujeito a uma restrição escleronômica holonômica. Adicionalmente dois ı́ndices de manupulabilidade são leva-
dos em conta, o primeiro se refere ao Jacobiano antes da restrição e o segundo se refere ao Jacobiano restrito.
Experimentos são realizados em um robo Baxter R©.
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1 Introduction

An open chain robot is kinematically redundant
if the number of joints is larger than the dimen-
sion of the task space (Murray et al., 1994). This
provides the robot with an increased level of dex-
terity that may be used to avoid singularities, joint
limits, and workspace obstacles, but also to min-
imize joint torque, energy or, in general, to opti-
mize suitable performance indices.

In many situations the environment adds con-
straints that can be overcomed by redundant
robots, in these situations robots need to satisfy
these constraints while performing tasks. Exam-
ples can be found in:

• Minimally invasive surgery (From, 2013;
Coutinho, 2015): At the insertion point in
the body’s patient during a minimally inva-
sive surgery the surgery instrument should
not move transversely in order to not cause
serious lesions in the epithelium.

• Extreme environment (Hosford, 2016): The
robot performs the main task in a poorly
mapped environment.

• Mapping (Everist and Shen, 2009): Mapping
opaque single path tubes through insertion.

• Manipulation of Valves (Faria et al., 2015):
Optimal control to avoid joint limits closing
valves.

In robotics manipulation a singularity is a
configuration where the behavior of a manipula-
tor cannot be predicted so the physical measures

quantities (as example the forces) become infinite
or non deterministic. The manipulability measure
is a index given by the product of the singular val-
ues of the Jacobian matrix.

It can be noted that during singular configu-
rations the determinant of the matrix Jacobian is
null. This means null singular values and also a
null manipulability. So a manipulability analysis
could help to improve a control strategy when re-
dundant robots are subject to constraints because
it is an indication of how close the manipulator is
from a singular configuration.

A general discussion about manipulability for
robot manipulators can be found in (Siciliano
et al., 2009). Manipulability of constrained sys-
tems is discussed in (Wen and Wilfinger, 1999)
and for constrained serial manipulators in (From
et al., 2014). A geometrical approach can be found
in (Park and Kim, 1998; Wen and O’Brien, 2003).
A control scheme based on the constrained Jaco-
bian in task space for constrained manipulators is
discussed in (Pham et al., 2014; Coutinho, 2015).
In industrial applications a confined environment
can be seen as a kinematic constraint in the ma-
nipulator chain (Simas et al., 2013; Everist and
Shen, 2009). In (Yoshikawa, 1985) is presented
a method for maximize the manipulability for a
non-constrained redundant manipulator using the
null space of the geometric Jacobian. In (Zhang
et al., 2012) an optimization problem is proposed
in order to maximize the manipulability of self-
motion planning in a redundant manipulator. In
(Dufour and Suleiman, 2017) the inverse kinemat-
ics problem is solved as a optimization problem
maximizing the manipulability index.



This work presents a general formulation to
determine the Jacobian of a serial redundant ma-
nipulator with constraints in a point of this kine-
matic chain, the called constrained Jacobian. As
stated by (From et al., 2014) the analysis of ma-
nipulability of a serial redundant constrained ma-
nipulator must take into account not only the con-
strained Jacobian, but also the manipulator Jaco-
bian until the joint before the constraint. So a
multi-objective problem is presented in order to
maximize two manipulability indices (correspond-
ing to constrained Jacobian and the Jacobian un-
til the joint before the constraint) while the end-
effector follows a trajectory and the imposed con-
straints are satisfied. The analysis is addressed to
an arm of the Baxter R© robot with seven revolute
joints and a plane constraint. Experiments results
are presented and compared between two meth-
ods, a analytic approach for kinematic control in
Cartesian space and multi-objective optimization
problem via sequential quadratic programming.

The following notation and definitions are
used throughout the paper. R := (−∞,∞) and
R+ := [0,∞). A frame is represented by F , Fi

is the i-th frame. The joint angle vector is rep-
resented by θ, the i-th joint angle is θi, a joint
angle vector θi,j = [θi θi+1 · · · θj−1 θj ]. Given
x ∈ R3, [x] is the skew symmetric matrix. The lin-
ear and angular velocities are denoted by v ∈ R3

and ω ∈ R3, respectively. The velocity at a frame
i is defined by:

Vi =

[
vi
ωi

]
.

The adjoint matrix Φi,j (Siciliano et al., 2009)
maps velocities between Fi and Fj :

Vi+1 = Φi+1,iVi,

Φi+1,i =

[
RT

i,i+1 −RT
i,i+1[(ri,i+1)i]

0 RT
i,i+1

]
,

where Ri,i+1 ∈ SO(3) is the orientation of Fi+1

with respect to Fi and (ri,i+1)i is the vector be-
tween frames Fi and Fi+1 represented in Fi. The
superscripts B and G mean that a variable is de-
fined in the body frame and inertial frame, respec-
tively.

The geometric Jacobian in body coordinates
is defined by (Siciliano et al., 2009):

V B
i = JB

i (θ1,i)θ̇1,i,

JB
i (θ1,i) =

[
(h1)i × (r1,i)i

(h1)i

· · ·
· · ·

(hi−1)i × (ri−1,i)i
(hi−1)i

0
(hi)i

]
where (hj)i is the axis of rotation of the joint j in
Fi (without loss of generality, here, only revolute
joints are considered). For a Jacobian matrix J ,
JT (JJT )−1 is the pseudo-inverse denoted by J†.

The pose of the manipulator is represented by
p(θ) ∈ Rb while the desired pose is pd ∈ Rb, b is
the task space dimension.

2 Constraints in Applied Mechanics

A constraint is defined as the mathematical ex-
pression of restriction in motion of particles or
rigid bodies. In a system with n particles Pi(i =
1, 2, ..., n) in the space S, the position of this par-

ticles is defined by rGi =
[
xi yi zi

]T
.

Considering two points P1(x1, y1, z1) ∈ R3

and P2(x2, y2, z2) ∈ R3, the distance between P1

and P2 is:
rG1,2 = |rG1 − rG2 |. (1)

If (1) is invariant to a translation then S is
homogeneous. If (1) is invariant to a rotation then
S is isotropic (Jazar, 2011).

The motion of the system in time t is a
trajectory of configuration points (SCpoint) in a
space defined as the configuration space, SCspace:
XC = {xi, yi, zi : i = 1, 2, ..., a} (a is the number
of particles of the system). The SCspace is homo-
geneous and isotropic.

2.1 Holonomic Constraint

A holonomic constraint is a equation in function of
configuration displacement and/or time. A scle-
ronomic holonomic constraint is defined in config-
uration space:

f(θ1, θ2, θ3, ..., θN ) = f(θ) = 0. (2)

In (2) θi is a system variable and θ is the vec-
tor of system variables, considering a manipulator
with only revolute joints θ is the joint angle vector.

When a scleronomic holonomic constraint is
imposed in a finite displacement, there is too a
constraint in a infinitesimal displacements dθi:

df(θ, t) = f1(dθ, dt) = 0. (3)

A scleronomic constraint for infinitesimal dis-
placements is defined by:

N∑
i=1

∂f

∂θi
dθi = 0, (4)

The differential constraints in (4) is total dif-
ferential and can be integrated in (2), so it is a
scleronomic holonomic constraint.

2.2 Generalized Coordinates

The configuration degrees of freedom fC is defined
by:

fC = N − L, (5)

where N is the system degrees of freedom and L
the number of independent holonomic constraints.



Figure 1: Serial manipulator with revolute joints.

Each holonomic constraint defines a subspace
in XC that a SCpoint can move. Thus dθ has fC
degrees of freedom and a new set of variables of
size fC can be defined to determine the N com-
ponents of dθ. These variables are the generalized
coordinates:

g = gi(θ1, θ2, ..., θN ) i = 1, 2, ..., fc. (6)

3 Constrained Jacobian

The constrained Jacobian is a matrix that maps
velocities of joint space in task space that also
take into account the holonomic constraints in the
manipulator chain. A general formulation to ob-
tain the constrained Jacobian of a constrained se-
rial manipulator with one or more holonomic con-
straints located in only one point in this chain is
presented below.

In Figure 1 a system with n joints (only revo-
lute joints are considered) is presented. F0 is iner-
tial frame, the frame Fi (i = 1, ..., n) is tied to the
i-th joint, Fe is the end-effector frame, Fk is the
frame in the joint before the holonomic constraints
and Fc the frame at the holonomic constraints.

The velocity at Fk in the body frame and the
joint velocity are related by:

V B
k = JB

k (θ1,k)θ̇1,k. (7)

The velocity at Fc and Fk are related by:

V B
c = Φc,kV

B
k . (8)

Suppose that a point ∈ Rb in the kinematic
chain of the manipulator is subject to a holonomic
constraint where the point belongs to a surface S.
So a scleronomic holonomic constraint in SCspace
(recalling that the system variables vector is the
joint angle vector) at Fc can be defined using a
matrix H ∈ Rm×6 where m is the dimension of
the constraint, i.e.,

HV B
c = 0. (9)

Substituting (7) and (8) in (9), one has

HΦc,kJ
B
k (θ1,k)θ̇1,k = 0. (10)

Defining
∧ = HΦc,k, (11)

the joint velocity vector satisfying (10) is given by:

θ̇1,k = JB
k

†
(θ1,k) ∧# uf , (12)

where ∧# spans the null space of ∧ and uf is a con-
trol degree of freedom. Using (5) the dimension
of uf (buf

) is defined for N = k (manipulator de-
grees of freedom until the holonomic constraints)
and L = m (number of independent holonomic
constraints considering that all lines of H are lin-
early independent):

buf
= k −m. (13)

The end-effector velocity is given by:

V B
e = JB

e (θ)θ̇. (14)

Separating JB
e (θ) into two parts, the end-

effector velocity can be written as:

V B
e =

[
JB
e1(θ) JB

e2(θk+1,n)
] [ θ̇1,k

θ̇k+1,n

]
. (15)

Replacing (12) in (15) creates:

V B
e =

[
JB
e1(θ)JB

k

†
(θ1,k)∧# JB

e2(θk+1,n)
][ uf
θ̇k+1,n

]
.

(16)
In (16) the product of matrix multiplica-

tion JB
e1(θ)JB

k

†
(θ1,k) only depends of θk+1,n in

the condition that JB
k (θ1,k) is not singular (see

(Coutinho, 2015) for proof). Thus JB
r (θk+1,n),

called constrained Jacobian matrix, is defined:

JB
r (θk+1,n)=

[
JB
e1(θ)JB

k

†
(θ1,k)∧# JB

e2(θk+1,n)
]
.

(17)
Then rewriting (16) with (17):

V B
e = JB

r (θk+1,n)

[
uf

θ̇k+1,n

]
. (18)

4 Manipulability Indices

The manipulability is an index that represents the
manipulator distance to singular configurations.
For a given Jacobian matrix J(θ) the manipula-
bility measure is:

w =
√
det(J(θ)JT (θ)). (19)

In order to analyze the manipulability of a
constrained serial manipulator two Jacobian ma-
trices have to be taken into account, the geo-
metric Jacobian until the joint before the con-
straint JB

k (θ1,k) and the constrained Jacobian
JB
r (θk+1,n).

The manipulability of JB
k (θ1,k) is a measure

of how efficiently the constrained manipulator can



generate motions in Fk in order to track the de-
sired trajectory of the end-effector:

wk =

√
det(JB

k (θ1,k)JB
k

T
(θ1,k)). (20)

For the constrained Jacobian matrix
JB
r (θk+1,n), which can only depends on the

constraint type and kinematics of the joints after
the constraint, the manipulability indicates the
possibility of generating the desired trajectory in
the end-effector associated with the use of uf and

θ̇k+1,n:

wr =

√
det(JB

r (θk+1,n)JB
r

T
(θk+1,n)). (21)

5 Kinematic Control in Cartesian Space

In this section a approach for kinematic con-
trol in Cartesian Space is presented, this scheme
have been used in (Pham et al., 2014; Coutinho
et al., 2014; Coutinho, 2015). Considering only
the position in Cartesian space the end-effector
position pe must track a desired time-varying tra-
jectory pd(t), so in the ideal case pe → pd(t), while
a point in the manipulator chain is subject to one
or more holonomic constraints.

The Figure 2 shows a block diagram for a
kinematic position control loop in Cartesian space.
The block Internal Control Loop is a robot in-
ternal controller that makes θ̇ = θ̇d. Utilizing
the constrained position Jacobian Jrp(θk+1,n) ∈
R3×n−m that is equal to the first three lines of
Jr(θk+1,n), is possible to obtain the linear veloc-
ity of the end-effector ve ∈ R3 from (18):

ve = JB
rp(θ)θ̇ = JB

rp(θk+1,n)

[
uf

θ̇n+1,k

]
. (22)

Still in Figure 2 integrating θ̇ over time and
applying the forward kinematics results in pe. The
position error ep is:

ep = pd − pe. (23)

For a Cartesian control signal up = Kpep +
ṗd(t), where Kp ∈ R3×3 and up is a proportional
plus feed forward controller, using (22) the con-

strained velocity vector
[
uf θ̇k+1,n

]T ∈ Rn−m

is given by:[
uf

θ̇k+1,n

]
= JB

rp

†
(θk+1,n)up. (24)

Now θ̇1,k is obtained using uf ∈ Rk−m from
(24), Jkp(θ1,k) ∈ R3×k is equal to the first three
lines of Jk(θ1,k):

θ̇1,k = JB
kp

†
(θ1,k) ∧# uf . (25)

θ̇d is the vertical concatenation of θ̇1,k

from (24) and θ̇k+1,n from (25), θ̇d =

[
θ̇1,k θ̇k+1,n

]T
, so it can be rewritten in a ma-

trix multiplication form using the terms of right
side of equalities (24) and (25):

θ̇d =

[
JB
kp

†
(θ1,k)∧# 0k,n−k

0n−k,k−m In−k

]
JB
rp

†
(θk+1,n)up.

(26)
In (22) ve also can be rewritten in a ma-

trix multiplication form because from (25) uf =

(JB
kp

†
(θ1,k)∧#)†θ̇1,k, so:

ve = JB
rp(θk+1,n)

[
JB
kp

†
(θ1,k)∧# 0k,n−k

0n−k,k−m In−k

]†
θ̇.

(27)
Now in order to obtain the position error dy-

namics, derives (23), substitutes ṗd(t) with up −
Kpep and considering that θ̇ = θ̇d substituting
(26) in (27) implies ve = up:

ėp = ṗd − ve = up −Kpep − ve = −Kpep (28)

where with a positive definite matrix Kp implies
that limt→∞ ep(t) = 0.

There are two manipulability indices, wk and
wr, the control strategy in this Section, that is ap-
plied in (Pham et al., 2014; Coutinho et al., 2014),
does not address specifically those two indices (or
any other that can be defined), it only strives to
follow a trajectory with the holonomic constraints
satisfied. So a modification of (24) and (25) is
proposed, it consists in expand the null space of
JB
rp(θk+1,n) and JB

kp(θ1,k) rewriting (24) and (25)
respectively as:

[
uf

θ̇k+1,n

]
= JB

rp

†
(θk+1,n)up+

(In−k − JB
rp

†
(θk+1,n)JB

rp(θk+1,n))µr,

(29)

θ̇1,k = JB
kp

†
(θ1,k) ∧# uf+

(Ik − JB
kp

†
(θ1,k)JB

kp(θ1,k))µk,
(30)

where µk and µr are additional degrees of freedom
that are utilized for maximize a function, in this
case the manipulabilities defined in (20) and (21).
So:

µk = Kk

(
∂wk(θ1,k)

∂θ

)
, (31)

µk = Kr

(
∂wr(θk+1,n)

∂θ

)
, (32)

where Kk ∈ R+ and Kr ∈ R+ define the weight
of (31) and (32) respectively.

6 Multi-objective Problem Formulation

In this section a multi-objective problem is pro-
posed, the manipulator must follow the trajec-
tory while maintaining the manipulability indices
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ṗd

K p

up

∫

Internal 
Control Loop

θ̇
+

−

J rp
B ꝉ

(θk+1, n)

θpe Forward 
kinematics

[ u f

θ̇k+1,n ]
u f

J kp
B ꝉ

(θ1, k)∧
#

θ̇k+1, n

θ̇1, k [ θ̇1, k

θ̇k+1,n
]=θ̇d

+

+

Figure 2: Kinematic position control loop.

as high as possible and satisfying the holonomic
constraints.

Whenever a manipulator tracks a trajectory
the position error in end-effector at an instant t is
the difference between the desired position pd(t)
and the actual position pe(θ(t)):

e(t) = pd(t)− pe(θ(t)). (33)

Using a method that finds a solution θ̇s(t), a
joint velocity command for the manipulator at a
fixed step time T , that aims to bring the position
error in (33) to zero in a step time, the predicted
error is:

ẽ(t+ T ) = pd(t+ T )− pe(θ̃(t+ T )), (34)

where the predicted joint angle vector in (34) is

θ̃(t+ T ) = θ(t) + θ̇s(t)T. (35)

In a optimization problem a function can be
maximized searching through the minimization of
his negative. Then functions f1 and f2 are respec-
tively the negative of wk and wr evaluated at the
predicted joint angle vector in (35):

f1 =−
√
det(JB

kp(θ̃1,k(t+T ))JB
kp

T
(θ̃1,k(t+T ))),

(36)

f2 =−
√
det(JB

rp(θ̃k+1,n(t+T ))JB
rp

T
(θ̃k+1,n(t+T ))).

(37)
As a multi-objective problem, a linear scalar-

ization is used for functions f1 and f2 together
with a parameter α ∈ R+ where 0 ≤ α ≤ 1. For
a serial redundant manipulator with one or more
holonomic constraints in a point of this chain and
subject to track a trajectory, using (36) and (37) a
multi-objective problem (the solution is the joint
velocity vector θ̇s(t)) is defined as:

min αf1 + (1− α)f2, (38)

s.t. − δ ≤ ẽ(t+ T ) ≤ δ (39)

HΦc,kJ
B
kp(θ̃1,k(t+ T ))θ̇s1,k(t) = 0, (40)

θ− ≤ θ̃(t+ T ) ≤ θ+, (41)

θ̇− ≤ θ̇s(t) ≤ θ̇+, (42)

where δ ∈ R+ is a constant, θ+ and θ− denote
respectively the upper and lower joint angle limits
while θ̇+ and θ̇− denote respectively the upper and
lower joint velocity limits.

The decision variables of the multi-objective
problem in (38) to (42) are the joint velocities θ̇i.
Although the decision variables are not explicit
in (38), (39) and (41) the relations are defined
in (34) to (37). The search method for multi-
objective problem in (38) to (42) could be any
algorithm that solves nonlinear convex optimiza-
tion problems. In this work a sequential quadratic
programming (sqp) algorithm is used.

The objective function in (38) is minimized at
each step of the sqp method reflecting in a momen-
tary value for wk and wr. The inequality in (39)
means that the predicted error is between a lower
and a upper bound. The constraint (40), same ex-
pression of (10) but now evaluated at θ̃(t+T ) and
θ̇s(t), is the scleronomic holonomic constraint in
the manipulator chain. The inequality constraints
(41) and (42) are the manipulator physical con-
straints in terms of joint angle limits and joint
velocity limits respectively.

In order to gather the values of wk or wr at
each step of the sqp method in one index, the in-
tegral of the manipulability indices are taken into
account:

Wk =

∫ tf

0

wkdt, (43)

Wr =

∫ tf

0

wrdt, (44)

where tf is the time that the trajectory tracking
ends. So one solution s∗ is defined as a pair Wk

and Wr for a fixed α.

Remark 1 The problem (38) to (42) can be
treated as a mono-objective but would result in a
single solution where the α parameter would have
to be fixed a priori. This unique solution results in
manipulability values that might not be good com-
pared to other attainable values. In fact, there may
be a range of α values that make the indices co-
operative an another range of α values the where



Figure 3: Baxter R© robot used in experiments.

Table 1: Parameters of Baxter’s right arm.
Joint θi (angle limit (rad)) θ̇i (velocity limit (rad/s))

1 θ1 (-1.70 to 1.70) θ̇1 (-2.0 to 2.0)

2 θ2 (-2.14 to 1.04) θ̇2 (-2.0 to 2.0)

3 θ3 (-3.02 to 3.02) θ̇3 (-2.0 to 2.0)

4 θ4 (-0.05 to 2.61) θ̇4 (-4.0 to 4.0)

5 θ5 (-3.05 to 3.05) θ̇5 (-4.0 to 4.0 )

6 θ6 (-1.57 to 2.09) θ̇6 (-4.0 to 4.0)

7 θ7 (-3.05 to 3.05) θ̇7 (-4.0 to 4.0)

the indices are in opposition. Then only with the
multi-objective problem is possible to verify the
correlation between the indices of manipulability,
this correlation changes according to the location
and type of constraint.

7 Experiments

In this section two trajectory tracking experiments
are presented using the right arm of the Baxter R©
robot, Figure 3. The objective is track the de-
sired trajectory (only position of the end-effector
is considered) while maintaining the manipulabil-
ity indices as high as possible using the approach
for kinematic control in Cartesian space and the
multi-objective formulation problem.

The Table 1 specifies the joint limits (angles
and velocities) for the Baxter’s right arm. In order
to restrict the search space in the sqp method the
limits of joint velocities are set for −0.5 rad/s to
0.5 rad/s for all θ̇i, this is necessary to avoid that
θ̇s(t) go to the lower and upper physical velocity
limits in consecutive steps of the sqp method.

A scleronomic holonomic constraint in a point
of Baxter kinematic chain between F4 and F5 (Fi

is tied to the i-th joint) defined by the displace-
ment Lc = 50 mm can be seen in Figure 4. In
Figure 4 there is a plane constraint in Fc meaning
there is no movement on one axis, in this par-
ticular case the x axis on the frame Fc. So the
dimension of the constraint is the set R and the
equation of the scleronomic holonomic constraint
in (11) has the following vector:

H =
[

1 0 0 0 0 0
]
. (45)

The constraint in Figure 4 is after F4 and be-
fore F5 so k = 4. Figure 5 shows wk (considering
only the position Jacobian JB

4p(θ1,4)) as function of

Figure 4: Kinematic model of Baxter’s right arm
with plane constraint between F4 and F5.
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Figure 5: Manipulability wk with k = 4, wk is
multiplied by 103.

θ2 and θ3. As JB
4p(θ1,4) takes into account only po-

sition until F4, wk does not depend on θ4 neither
θ1 because in the inertial frame the last column of
J4p(θ1,4) is null (no θ4) while in the body frame
the first column is null (no θ1), the manipulability
value is not affected for frame changes. The sin-
gular configuration is reached when θ3 = 0 as also
multiple of θ3 = ±π/2. The variation of θ2 does
not effect wk. High values of wk are reached near
odd multiples of θ3 = ±π/4.

Figure 6 shows wr (considering only the posi-
tion Jacobian JB

rp(θ5,7)) in function of θ5 and θ6.
As θ7 is tied to a revolute joint in x axis it does not
change the end-effector position (only orientation)
so it does not change the index wr. Visualization
of angle values for singular configurations would
be tricky in a 3D plot so Figure 6 shows wr in
a 2D plot, a dark blue area means the manipula-
tor is near a singular configuration while a dark
red area means the manipulability reached a high
value.

The end-effector position is represented by a
three element vector in the following order, po-
sition in axes x, y and z (px(θ(t)), py(θ(t)) and
pz(θ(t)) respectively) that can be found by the
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Figure 6: Manipulability wr in a θ5 − θ6 space
with plane constraint between frames F4 and F5.

Table 2: Gains.
Experiment Kk Kr

1 0 0
2 1 0
3 0 0.3
4 5 0.5

forward kinematics:

pe(θ) =

 px(θ)
py(θ)
pz(θ)

 . (46)

The first wave of experiments consists in ap-
plying the kinematic control, scheme of Figure 2,
with the following matrix Kp = diag(2.5, 3, 3.75)
where diag is the diagonal matrix.

The gains Kk an Kr are defined in Table 2.
Increasing Kr beyond 0.5 leads the system to in-
stability and increasing Kk does not change signif-
icantly the manipulability indices. One solution is
a pair Wk and Wr for a line in Table 2.

In the second wave of experiments the multi-
objective problem formulation from Section 6 is
used. Using the sqp method a set of solutions s∗

is generated for α =
[

0 0.01 · · · 0.99 1
]
.

In this case one solution is a pair Wk and Wr for a
fixed α, that way this set has 101 solution classi-
fied in dominated and non dominated (a solution
is non dominated if does not exist another solution
equal or better in all objectives at same time).

In the first trajectory the end-effector of the
constrained manipulator must track the following
desired trajectory:

pd(t) =

 px(0) + 15 sin(ωt)
py(0) + 66 cos(2ωt)− 66
pz(0) + 30 sin(2ωt)

mm, (47)

where px(0), py(0) and pz(0) are respec-
tively the initial positions in axes x, y and
z and ω = 2π/40 rad/s is the frequency. A
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Figure 7: Desired trajectory for case I.
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Figure 8: Wk and Wr for case I.

sketch of the desired smooth trajectory is
in Figure 7 considering the origin as initial
point. The joint angle initial state is θ(0) =[

0 −π/6 π/2 π/4 −π/3 π/4 0
]T
rad,

the initial position is px(0) = 960 mm,
py(0) = −426 mm and pz(0) = 595 mm,
the task duration is 40 s.

The solution plot is in Figure 8, for the 101
multi-objective problem solutions 22 are non dom-
inated (color red) and 79 are dominated (color
blue). The Figure 8 still shows the indices Wk

and Wr for 4 experiments of kinematic control,
these 4 solutions (color green) are clearly dom-
inated. Some values of α that form the global
Pareto-optimal set are explicit in Figure 8, so it
can be noted that the Pareto set is made by solu-
tions with a high value of α.
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Figure 10: Wk and Wr for case II.

7.1 Case II

In the second trajectory the desired trajectory is:

pd(t) =

 px(0) + 15 sin(ωt)
py(0) + 66 cos(2ωt)− 66
pz(0) + 30 sin(2ωt)

mm, (48)

where ω, θ(0) and task duration are the same from
the first trajectory. A sketch of the desired trajec-
tory with edges is in Figure 9.

The solution plot is in Figure 10, for the 101
multi-objective problem solutions again 22 are non
dominated (color red), 79 are dominated (color
blue) and the solutions of kinematic control (color
green) are clearly dominated. The values of α that
form the global Pareto-optimal, as can be seen in
Figure 10, again are high.

8 Conclusions

The multi-objective problem formulation was suc-
cessful in achieving high levels of manipulability in
both trajectories. That is, manipulability reaches
the peaks of Figures 5 or 6 according to alpha.

The proposed kinematic control failed in
maintain the system stability for a increase of Kr,
so it could not achieve a high level of manipula-
bility in Figures 5 and 6. Further investigation
should be made to determine the causes and cor-
rect the instability of the system. Other goal is

add another method for comparison, the optimiza-
tion problem via quadratic programming.
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