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Abstract— It is usual to consider, in the derivation of robot dynamics, that the arm is a linkage of connected

rigid bodies, neglecting, this way, cross-coupling and nonlinear effects that result from the dynamic interactions

with the drive system. However, many industrial robots exhibit significant joint flexibility and cannot be con-

sidered a pure system of rigid bodies. Thus, control designs that do not consider this effect may lead to poor

performance, especially for precise motion systems, where high performance with high speed is required. This

paper proposes a control design based on the backstepping technique, where the gains are obtained by solving

an optimization problem, which is able to guarantee tracking of the reference trajectory for a single-link robot

manipulator with flexible joints.
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Resumo— A maioria dos modelos dinâmicos de robôs manipuladores assume que o braço robótico é composto

por uma união de elos rígidos, negligenciando assim os efeitos do acoplamento dinâmico e os efeitos não lineares

resultantes da interação dinâmica com o sistema de acionamento. Porém, vários robôs industriais possuem juntas

significativamente flexíveis, fazendo com que o sistema não possa ser considerado como conexão de corpos rígidos.

Desta forma, os projetos de controladores que não consideram esse tipo de efeito podem levar o robô a ter um

desempenho limitado, principalmente em sistemas que devem seguir uma trajetória desejada com precisão. Este

artigo propõe o projeto de um controlador não linear, baseado na técnica backstepping, em que os ganhos são

obtidos através da solução de um problema de otimização, capaz de garantir rastreamento de trajetória para um

braço robótico de um único elo de junta flexível.

Palavras-chave— Robô, Rastreamento de trajetória, Backstepping, Controle não-linear.

1 Introduction

Robot manipulators are extensively used in all
major industries, for a large variety of applica-
tions (Spong, 1992; Spong et al., 2006; Abdallah
et al., 1991). One main difficulty in designing
controllers, for precise trajectory tracking of the
robot end-effector, is produced by the flexibility
of the structure, of which the main source are the
harmonic drives (Sweet and Good, 1985; Spong,
1990). This aspect is of paramount significance
for high performance applications.

Thus, it is important to consider a dynamic
model that includes such effects, like the single-
link flexible-joint nonlinear dynamic model. For
such class of systems, it is important to use a
nonlinear control design strategy (Slotine, 1991;
Khalil, 2002), which is robust and can be effi-
ciently used for trajectory tracking purposes.

The backstepping procedure is among the
most important nonlinear control design tech-
niques, with numerous applications (Kokotovic,
1992; Krstic et al., 1995; Freeman and Koko-
tović, 1993). It provides a recursive method for
stabilizing the origin of a system in strict-feedback
form, and can be used for output stabilization or
trajectory tracking. Moreover, it is also possible
to use backstepping to relax the matching con-
dition on the additive uncertainties required by
most control techniques. Application of backstep-
ping in robotics can be found in (Sahab and Mod-
abbernia, 2011; Bridges et al., 1995; Fierro and
Lewis, 1995; Lozano and Brogliato, 1992; Ramirez

et al., 2003) and references therein.

This paper proposes a nonlinear control law
based on the backstepping approach, which is
able to solve, in some sense, the trajectory track-
ing control problem for the single-link flexible-
joint robot manipulator. An optimization prob-
lem, inspired by the celebrated LQR control de-
sign (Kwakernaak and Sivan, 1972), is proposed
in order to optimally select the gains used within
the backstepping control law. The proposed con-
trol problem consists in developing a control law
for the robot manipulator that guarantees both
uniform ultimate boundedness of the tracking er-
ror under bounded disturbance, and asymptotic
tracking for the system without uncertainties and
disturbances.

2 Single-link flexible-joint robot

Figure 1 shows the undamped single-link flexible-
joint robot.
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Fig. 1: Single-link flexible-joint robot.



The equation of motion for this system, taken
from (Ghorbel et al., 1989), is given by

Iq̈1 + k(q1 − q2) +Mgl sin(q1) = 0

Jmq̈2 + k(q2 − q1) = u,

in which k is the joint stiffness, I is the link inertia,
M is the link mass, l is the distance from the
shaft to the link center of mass, Jm is the motor
inertia, and u is the torque used as control input.
The position and angular velocity of the link are
respectively denoted by q1 and q̇1. The position
and angular velocity of the motor are respectively
denoted by q2 and q̇2.

By defining the state vector x as

[

x1 x2 x3 x4

]T
=
[

q1 q̇1 q2 q̇2
]T

,

the model is given by

ẋ1 = x2

ẋ2 =
−k

I
x1 +

Mgl

I
sin(x1) +

k

I
x3

ẋ3 = x4

ẋ4 =
k

Jm
x1 −

k

Jm
x3 +

1

Jm
u,

which can be equivalently written as

ẋ1 = x2

ẋ2 = f1(x1) + ν3x3

ẋ3 = x4

ẋ4 = f2(x1, x3) + ν5u,

(1)

where

f1(x1) = ν1x1 + ν2 sin(x1), ν3 = k/I

f2(x1, x3) = ν4(x1 − x3), ν5 = 1/Jm,

with

ν1 = −k/I, ν2 = Mgl/I, ν4 = k/Jm

3 Controller design

The goal of the controller is to asymptotically
drive to zero the position error e1, defined by

e1 = x1 − xd, (2)

where xd is the reference position, i.e., the de-
sired link position, for a system without distur-
bance and precisely known.

The approach proposed in this paper to solve
the above trajectory tracking control problem is
based on the backstepping procedure. For a
detailed explanation of backstepping see (Krstic
et al., 1995; Khalil, 2002).

To apply the backstepping procedure, con-
sider the dynamics of the position error given by

ė1 = ẋ1 − ẋd = x2 − ẋd.

Now, define the first Lyapunov function candidate
as

V1(e1) =
1

2
e21.

Then, its derivative is given by

V̇1 = e1ė1 = e1(x2 − φ1 + φ1 − ẋd).

For the next step, let’s define e2 by

e2 = x2 − φ1, (3)

with φ1 a virtual input for x2. Then, we have

V̇1 = e1(e2 + φ1 − ẋd).

Now, choosing the virtual input φ1 as

φ1 = ẋd − λ1e1,

we obtain

V̇1 = e1(e2 − λ1e1) = −λ1e
2
1 + e1e2.

Notice that ė2 is given by

ė2 = ẋ2 − φ̇1 = f1(x1) + ν3x3 − φ̇1.

To proceed, let us define the second Lyapunov
function candidate V2 as

V2(e1, e2) = V1(e1) +
1

2
e22.

Then, we obtain, after some manipulations,

V̇2 = V̇1 + e2ė2

= −λ1e
2
1 + e1e2 + e2(f1(x1)+

ν3x3 − φ̇1)

= −λ1e
2
1 + e1e2 + e2(f1(x1)+

ν3(x3 − φ2) + ν3φ2 − φ̇1)

= −λ1e
2
1 + e1e2 + e2(f1(x1) + ν3e3

+ ν3φ2 − φ̇1),

with e3 defined as

e3 = x3 − φ2. (4)

In this case, φ2 is the control law for the virtual
input x3. Choosing φ2 as

φ2 =
1

ν3
(−f1(x1) + φ̇1 − e1 − λ2e2),

it immediately follows that

V̇2 = −λ1e
2
1 − λ2e

2
2 + ν3e2e3.

Notice that ė3 is given by

ė3 = ẋ3 − φ̇2 = x4 − φ̇2.



Now, it remains to design a control law φ3

for the virtual input x4. For this purpose, let us
define the Lyapunov function candidate V3 as

V3(e1, e2, e3) = V2(e1, e2) +
1

2
e23,

for which the time derivative is given by

V̇3 = V̇2 + e3ė3 = V̇2 + e3(x4 − φ̇2)

= −λ1e
2
1 − λ2e

2
2 + ν3e2e3 + e3(e4 + φ3 − φ̇2),

with the error e4 given by

e4 = x4 − φ3, (5)

where φ3 is the control law for the virtual input
x4. Choosing φ3 as

φ3 = φ̇2 − ν3e2 − λ3e3

gives

V̇3 = −λ1e
2
1 − λ2e

2
2 − λ3e

2
3 + e3e4.

Notice that ė4 is given by

ė4 = ẋ4 − φ̇3 = f2(x1, x3) + ν5u− φ̇3.

Now, let us define the last Lyapunov function can-
didate V4 as

V4(e1, e2, e3, e4) = V3(e1, e2, e3) +
1

2
e24.

Then, taking its time derivative, we obtain

V̇4 = V̇3 + e4(f2(x1, x3) + ν5u− φ̇3).

The control input u(t) can now be chosen as

u(t) =
1

ν5
(−f2(x1, x3) + φ̇3 − e3 − λ4e4),

With this choice, we finally obtain

V̇4 = −λ1e
2
1 − λ2e

2
2 − λ2e

2
3 − λ4e

2
4, (6)

which is negative definite if λi > 0. Thus, it fol-
lows that the origin e = 0 is asymptotically sta-
ble and, consequently, the tracking error e(t) con-
verges to zero, i.e., e1 → 0, e2 → 0, e3 → 0, and
e4 → 0.

Notice that the backstepping methodology is
a systematic design procedure, which allows dif-
ferent choices for the virtual control inputs and
Lyapunov functions.

3.1 The control law summary

Summarizing, the final control law u(t) is thus
given by

u(t) =
1

ν5
(−f2(x1, x3) + φ̇3 − e3 − λ4e4), (7)

with

e1 = x1 − xd, e2 = x2 − φ1,

e3 = x3 − φ2, e4 = x4 − φ3,

and

ė1 = ẋ1 − ẋd = x2 − ẋd,

ë1 = ẋ2 − ẍd = f1(x1) + ν3x3 − ẍd,
...
e 1 = ḟ1 + ν3x4 −

...
x d,

ė2 = ẋ2 − φ̇1 = f1(x1) + ν3x3 − φ̇1.

The term φ1 and its time derivatives are given by

φ1 = ẋd − λ1e1,

φ̇1 = ẍd − λ1ė1,

φ̈1 =
...
x d − λ1ë1,

...
φ 1 = x

(4)
d − λ1

...
e 1.

The term φ2 and its derivatives are given by

φ2 =
1

ν3
(−f1(x1) + φ̇1 − e1 − λ2e2),

φ̇2 =
1

ν3
(−ḟ1 + φ̈1 − ė1 − λ2ė2),

φ̈2 =
1

ν3
(−f̈1 +

...
φ 1 − ë1 − λ2ë2).

The term φ3 and its derivatives are given by

φ3 = φ̇2 − ν3e2 − λ3e3,

φ̇3 = φ̈2 − ν3ė2 − λ3ė3.

3.2 The closed-loop system

With the control law above, it is possible to de-
rive the dynamics of the closed-loop error. Let us
define the tracking error state vector by

e =
[

e1 e2 e3 e4
]T

,

where the error signal e1, e2, e3, and e4 are respec-
tively given by (2), (3), (4) and (5). Then, after
some manipulations, the dynamics of the closed-
loop error is given by

ė =









−λ1 1 0 0
−1 −λ2 ν3 0
0 −ν3 −λ3 1
0 0 −1 −λ4









e, (8)

which is linear and time invariant.
Clearly, enforcing the gains to be positive λi >

0, as requested from Lyapunov stability condition
(6), ensures that the error dynamics is asymp-
totically stable and, thus, ei → 0 for any initial
conditions. This can be easily shown by choosing
a Lyapunov function of the form V (e) = eT e/2.
However, this is a conservative choice, since the
matrix above can be stable with λi not necessarily
positive. For instance, take λ1 = 0, λ2 = ν3 > 0,



λ4 = 1, then system matrix (8) is Hurwitz for any
λ3 > −1.

It is important to note that the first state
from error dynamics (8), which is the tracking er-
ror e1 = q1 − xd between link angular position q1
and desired position xd, has an immediate phys-
ical meaning. The second state e2 is given by
e2 = (q̇1 − ẋd) + λ1e1, which is clearly the com-
bination (weighted by λ1) of velocity tracking er-
ror q̇1 − ẋd with position tracking error e1 for the
link. The physical interpretation for the other two
states, e3 and e4, related to the motor’s angular
position and velocity, is not immediate.

3.3 Control law in terms of e(t)

In terms of the trajectory error e(t), the control
law u(t) is given by

u(t) =
1

ν3ν5

(

5
∑

i=1

γi +

4
∑

i=1

αiei

)

,

with αi and γi given by

α1 = 1 + ν23 − ν3ν4 − 3λ2
1 + λ4

1 + ν4(λ
2
1 − 1)

− 2λ1λ2 − ν1(ν4 + λ2
1 − 1)− λ2

2

α2 = −(λ1 + λ2)(ν4 − λ2
1 + λ2

2) + ν1(λ1 + λ2)

+ ν23(λ1 + 2λ2 + λ3)− 2(λ2
1 − 1)(λ1 + λ2)

α3 = ν3(λ
2
1 + λ1λ2 + λ2

2 + (λ1 + λ2)λ3 + λ2
3)

+ ν3(ν4 − ν1 − ν23 − 2)

α4 = −ν3(λ1 + λ2 + λ3 + λ4)

γ1 = −ν3ν4xd + ν4ẍd + x
(4)
d − ν1ν4xd − ν1ẍd

γ2 = −ν2ẍd cos(xd + e1)− ν2ν4 sin(xd + e1)

+ ν2ẋ
2
d sin(xd + e1)

+ (e1λ1 + e2)
2ν2 sin(xd + e1)

γ3 = (−ν2(λ
2
1 − 1) cos(xd + e1)

− 2ν2(ẋd + e2)λ1 sin(xd + e1))e1

γ4 = (ν2(λ1 + λ2) cos(xd + e1)

+ 2ν2(ẋd − e1λ1) sin(xd + e1))e2

γ5 = −ν3ν2 cos(xd + e1)e3

In steady state, after the transient vanished,
i.e., after the error dynamics converged to zero
(e(t) → 0), the control law u(t) reaches steady
state response uss(t), which is given by

uss(t) =
1

ν3ν5
(x

(4)
d − ν1ν4xd − ν3ν4xd

+ ν4ẍd − ν1ẍd − ν2ẍd cos(xd)

− ν2ν4 sin(xd) + ν2ẋ
2
d sin(xd).

This expression will be central in the next section
to define a performance metric used to optimize
the choice of the controller parameters λ1, . . . , λ4.

4 Optimizing the control gains

This section describes the approach used to design
the gains λi in the error dynamics given by (8), so
that robot link q1 is guaranteed to track desired
trajectory xd with a prescribed amount of control
energy.

Inspired by the celebrated LQR control prob-
lem, we define as our performance metric the cost
function J given by

J =

∫ Tmax

0

eTQe+ (u− uss)
TR(u− uss) dt, (9)

for some positive semidefinite matrix Q = QT ,
and positive definite matrix R = RT . The time-
horizon for the cost function is given by Tmax.

Some important issues deserve our attention.
Even though (9) is quadratic with respect the to
control input u(t) and the error e(t), subject to the
linear error dynamics (8), the optimization prob-
lem, considering the controller gains λi as decision
variables, is not, in general, convex. Therefore,
methods based on the solution of algebraic Ric-
cati equations may not be suitable for this prob-
lem. Consequently, we rely on local optimiza-
tion methods. For all the numerical examples in
the sections to come, optimization was performed
with the BFGS quasi-Newton method (Nocedal
and Wright, 2006), where the gradient was es-
timated using finite differences. This method is
implemented, for instance, in fminunc function in
MATLAB or scipy.optimize.fmin_bfgs in Python.
Finally, the term (u− uss) is used due to the fact
tat the control law uss(t) is necessary to maintain
the system at zero error after steady state.

5 Numerical simulations

This section presents the numerical simulations
for the single-link flexible-joint robot given by (1)
using the backstepping control law given by (7),
with the gains λi computed in the previous sec-
tion.

The numerical data used for this simulation,
taken from (Ghorbel et al., 1989), are: k = 31.0
[N.m/rad]; Mgl = 0.8 [N.m]; Jm = 0.004 [Kg.m2];
I = 0.031 [Kg.m2]. The reference trajectory xd(t),
which the robot arms have to follow, is given by

xd(t) = 1 + sin(2t+ π/2) cos(3t) [rad].

It is assumed the robot is under rest with initial
conditions x0 = 0. For the cost function (9), the
terminal time is taken to be Tmax = 7 seconds,
matrix R is given by R = 10, and matrix Q is
given by Q = [qij ], with q11 = 1, q22 = q33 =
q44 = 0.01, and qij = 0 otherwise.

Using the optimization procedure proposed in
Section 4, the following control gains are obtained



for R = 10:

[

λ1, λ2, λ3, λ4

]

=
[

3.28, −703.66, 1.4164× 103, 25.20
]

.

Figure 2 shows the position [rad] of the link
and the motor (x1 and x3, respectively) and the
velocity [rad/s] of the link and the motor (x2 and
x4, respectively). One can observe that the ampli-
tude of the link position and the rotor position are
quite close to each other. The same observation
holds for the velocity profile.
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Fig. 2: Link and motor positions and velocities.

Figure 3 shows the position [rad] and velocity
[rad/s] of the link (x1 and x2) and the position
[rad] and velocity [rad/s] of the desired reference
trajectory (xd and ẋd).
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Fig. 3: Link and reference trajectory.

Despite of the large difference between the
link initial condition at zero and the desired ref-
erence initial condition at xd(0) = 2, the posi-
tion and velocity tracking error of the link, given
respectively by e1(t) = x1 − xd and e2(t) =
x2 − ẋd, converged asymptotically to zero, as was
expected. This fact is immediately seen in Fig-
ure 4, in which the time response (the time to
reach a tube of radius 0.01 around the origin) of

tracking errors e1(t) and e2(t) is found to be ap-
proximately 1.7 seconds.
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Fig. 4: Tracking error e1(t) and e2(t) for R = 10.

Figure 5 and Figure 6 show, respectively,
tracking errors e3(t) and e4(t), for R = 10. Both
errors converged to zero at a fast rate. The time
response are, approximately, 1.6 seconds for e3
and 0.5 seconds for e4.
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Fig. 5: Tracking error e3(t) for R = 10.
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Fig. 6: Tracking error e4(t) for R = 10.

The control law u(t) and the steady state com-
ponent uss(t) are shown in Figure 7. For the
weighting R = 10, one has that the control law



at the initial time is u(0) = 1.24 [N.m] and the
L2-norm of the difference between the control law
u(t) and its steady state component uss(t) is given

by ‖u−uss‖L2 =
∫ Tmax

0
(u(τ)−uss(τ))

2 dτ = 0.42.
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Fig. 7: Control law u(t) for R = 10.

Other values of R would provide a trade-off
between control effort and convergence rates. For
example, for R = 0.1, the controller gains ob-
tained are

[

λ1, λ2, λ3, λ4

]

=
[

4.16, −979.04, 1.0205× 103. 146.99
]

.

Figure 8 shows the control law u(t) and its
steady state component uss(t). For this new value
of R, the control effort is less penalized and one
obtains ‖u − uss‖L2 = 1.39, which is about three
times higher than the previous case. The control
law at the initial time is u(0) = 5.11 [N.m].
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Fig. 8: Control law u(t) for R = 0.1.

Therefore, at the cost of larger control signals,
the tracking error can be driven to the origin at a
faster rate, as illustrated in Figure 9, which shows
the tracking error e1(t) and e2(t) for R = 0.1. For
this case, the time response is approximately 0.9
seconds, which is almost half the time response of
the tracking error in the previous case for R = 10.
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Fig. 9: Tracking error e1(t) and e2(t) for R = 0.1.

To verify that the proposed control law guar-
antees uniform ultimate boundedness of the track-
ing error e(t) under additive bounded disturbance,
it is assumed that the equation of motion of the
robot manipulator is subject to an independent
Gaussian noise torque disturbance.
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Fig. 10: Tracking error e(t), under disturbance
torques, for R = 10.

Figure 10 shows the tracking error e(t), un-
der this noise disturbance, for the gains computed
using the weighting R = 10. One observes that
e(t) is ultimately bounded for the bounded dis-
turbance applied to the equation of motion. Fig-
ure 11 shows the control law u(t) for this case.
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Fig. 11: Control law u(t) under disturbance.



6 Conclusions

A backstepping design was used to guarantee ref-
erence trajectory to a single-link robot manipu-
lator with a flexible joint. As shown trough nu-
merical simulation, the tracking error converged
to zero within a reasonable time.

A challenging part of this procedure is the se-
lection of the control gains, the free parameters
available in the design, that need to be chosen in
such a way that the closed-loop system is stable
and can also be used for performance improve-
ment. Imposing performance in a nonlinear con-
trol design is not so straightforward as in the linear
case.

It is also important to emphasize that the pro-
posed backstepping application can be extended
to multiple-link robot manipulators, and the lin-
ear design for the backstepping gains can also be
computed using many classical optimization and
control techniques.
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